DAMASK_EICMD/processing/pre/seeds_fromRandom.py

90 lines
4.6 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys,string,math,random
import numpy as np
from optparse import OptionParser
import damask
scriptID = string.replace('$Id$','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0]
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog [options]', description = """
Distribute given number of points randomly within the three-dimensional cube [0.0,0.0,0.0]--[1.0,1.0,1.0].
Reports positions with random crystal orientations in seeds file format to STDOUT.
""", version = scriptID)
parser.add_option('-N', dest='N', type='int', metavar='int', \
help='number of seed points to distribute [%default]')
parser.add_option('-g','--grid', dest='grid', type='int', nargs=3, metavar='int int int', \
help='min a,b,c grid of hexahedral box %default')
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int', \
help='seed of random number generator [%default]')
parser.set_defaults(randomSeed = None)
parser.set_defaults(grid = (16,16,16))
parser.set_defaults(N = 20)
(options,filename) = parser.parse_args()
options.grid = np.array(options.grid)
# ------------------------------------------ setup file handle -------------------------------------
if filename == []:
file = {'output':sys.stdout, 'croak':sys.stderr}
else:
file = {'output':open(filename[0],'w'), 'croak':sys.stderr}
gridSize = options.grid.prod()
if gridSize == 0:
file['croak'].write('zero grid dimension for %s.\n'%(', '.join([['a','b','c'][x] for x in np.where(options.grid == 0)[0]])))
sys.exit()
if options.N > gridSize:
file['croak'].write('accommodating only %i seeds on grid.\n'%gridSize)
options.N = gridSize
if options.randomSeed == None:
options.randomSeed = int(os.urandom(4).encode('hex'), 16)
np.random.seed(options.randomSeed) # init random generators
random.seed(options.randomSeed)
grainEuler = np.random.rand(3,options.N) # create random Euler triplets
grainEuler[0,:] *= 360.0 # phi_1 is uniformly distributed
grainEuler[1,:] = np.arccos(2*grainEuler[1,:]-1)*180.0/math.pi # cos(Phi) is uniformly distributed
grainEuler[2,:] *= 360.0 # phi_2 is uniformly distributed
seedpoints = -np.ones(options.N,dtype='int') # init grid positions of seed points
if options.N * 1024 < gridSize: # heuristic limit for random search
i = 0
while i < options.N: # until all (unique) points determined
p = np.random.randint(gridSize) # pick a location
if p not in seedpoints: # not yet taken?
seedpoints[i] = p # take it
i += 1 # advance stepper
else:
seedpoints = np.array(random.sample(range(gridSize),options.N)) # create random permutation of all grid positions and choose first N
seeds = np.zeros((3,options.N),float) # init seed positions
seeds[0,:] = (np.mod(seedpoints ,options.grid[0])\
+np.random.random())/options.grid[0]
seeds[1,:] = (np.mod(seedpoints// options.grid[0] ,options.grid[1])\
+np.random.random())/options.grid[1]
seeds[2,:] = (np.mod(seedpoints//(options.grid[1]*options.grid[0]),options.grid[2])\
+np.random.random())/options.grid[2]
header = ["5\theader",
scriptID + " " + " ".join(sys.argv[1:]),
"grid\ta {}\tb {}\tc {}".format(options.grid[0],options.grid[1],options.grid[2]),
"microstructures\t{}".format(options.N),
"randomSeed\t{}".format(options.randomSeed),
"1_coords\t2_coords\t3_coords\tphi1\tPhi\tphi2",
]
for line in header:
file['output'].write(line+"\n")
np.savetxt(file['output'],np.transpose(np.concatenate((seeds,grainEuler),axis = 0)),fmt='%10.6f',delimiter='\t')