2287 lines
133 KiB
Fortran
2287 lines
133 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
||
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @brief contains lattice definitions including Schmid matrices for slip, twin, trans,
|
||
! and cleavage as well as interaction among the various systems
|
||
!--------------------------------------------------------------------------------------------------
|
||
module lattice
|
||
use prec
|
||
use IO
|
||
use config
|
||
use math
|
||
use rotations
|
||
|
||
implicit none
|
||
private
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! cF: face centered cubic (fcc)
|
||
|
||
integer, dimension(*), parameter :: &
|
||
CF_NSLIPSYSTEM = [12, 6] !< # of slip systems per family for cF
|
||
|
||
integer, dimension(*), parameter :: &
|
||
CF_NTWINSYSTEM = [12] !< # of twin systems per family for cF
|
||
|
||
integer, dimension(*), parameter :: &
|
||
CF_NTRANSSYSTEM = [12] !< # of transformation systems per family for cF
|
||
|
||
integer, dimension(*), parameter :: &
|
||
CF_NCLEAVAGESYSTEM = [3] !< # of cleavage systems per family for cF
|
||
|
||
integer, parameter :: &
|
||
CF_NSLIP = sum(CF_NSLIPSYSTEM), & !< total # of slip systems for cF
|
||
CF_NTWIN = sum(CF_NTWINSYSTEM), & !< total # of twin systems for cF
|
||
CF_NTRANS = sum(CF_NTRANSSYSTEM), & !< total # of transformation systems for cF
|
||
CF_NCLEAVAGE = sum(CF_NCLEAVAGESYSTEM) !< total # of cleavage systems for cF
|
||
|
||
real(pReal), dimension(3+3,CF_NSLIP), parameter :: &
|
||
CF_SYSTEMSLIP = reshape(real([&
|
||
! <110>{111} systems
|
||
0, 1,-1, 1, 1, 1, & ! B2
|
||
-1, 0, 1, 1, 1, 1, & ! B4
|
||
1,-1, 0, 1, 1, 1, & ! B5
|
||
0,-1,-1, -1,-1, 1, & ! C1
|
||
1, 0, 1, -1,-1, 1, & ! C3
|
||
-1, 1, 0, -1,-1, 1, & ! C5
|
||
0,-1, 1, 1,-1,-1, & ! A2
|
||
-1, 0,-1, 1,-1,-1, & ! A3
|
||
1, 1, 0, 1,-1,-1, & ! A6
|
||
0, 1, 1, -1, 1,-1, & ! D1
|
||
1, 0,-1, -1, 1,-1, & ! D4
|
||
-1,-1, 0, -1, 1,-1, & ! D6
|
||
! <110>{110}/non-octahedral systems
|
||
1, 1, 0, 1,-1, 0, &
|
||
1,-1, 0, 1, 1, 0, &
|
||
1, 0, 1, 1, 0,-1, &
|
||
1, 0,-1, 1, 0, 1, &
|
||
0, 1, 1, 0, 1,-1, &
|
||
0, 1,-1, 0, 1, 1 &
|
||
],pReal),shape(CF_SYSTEMSLIP)) !< cF slip systems
|
||
|
||
real(pReal), dimension(3+3,CF_NTWIN), parameter :: &
|
||
CF_SYSTEMTWIN = reshape(real( [&
|
||
! <112>{111} systems
|
||
-2, 1, 1, 1, 1, 1, &
|
||
1,-2, 1, 1, 1, 1, &
|
||
1, 1,-2, 1, 1, 1, &
|
||
2,-1, 1, -1,-1, 1, &
|
||
-1, 2, 1, -1,-1, 1, &
|
||
-1,-1,-2, -1,-1, 1, &
|
||
-2,-1,-1, 1,-1,-1, &
|
||
1, 2,-1, 1,-1,-1, &
|
||
1,-1, 2, 1,-1,-1, &
|
||
2, 1,-1, -1, 1,-1, &
|
||
-1,-2,-1, -1, 1,-1, &
|
||
-1, 1, 2, -1, 1,-1 &
|
||
],pReal),shape(CF_SYSTEMTWIN)) !< cF twin systems
|
||
|
||
integer, dimension(2,CF_NTWIN), parameter, public :: &
|
||
lattice_CF_TWINNUCLEATIONSLIPPAIR = reshape( [&
|
||
2,3, &
|
||
1,3, &
|
||
1,2, &
|
||
5,6, &
|
||
4,6, &
|
||
4,5, &
|
||
8,9, &
|
||
7,9, &
|
||
7,8, &
|
||
11,12, &
|
||
10,12, &
|
||
10,11 &
|
||
],shape(lattice_CF_TWINNUCLEATIONSLIPPAIR))
|
||
|
||
real(pReal), dimension(3+3,CF_NCLEAVAGE), parameter :: &
|
||
CF_SYSTEMCLEAVAGE = reshape(real([&
|
||
! <001>{001} systems
|
||
0, 1, 0, 1, 0, 0, &
|
||
0, 0, 1, 0, 1, 0, &
|
||
1, 0, 0, 0, 0, 1 &
|
||
],pReal),shape(CF_SYSTEMCLEAVAGE)) !< cF cleavage systems
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! cI: body centered cubic (bcc)
|
||
|
||
integer, dimension(*), parameter :: &
|
||
CI_NSLIPSYSTEM = [12, 12, 24] !< # of slip systems per family for cI
|
||
|
||
integer, dimension(*), parameter :: &
|
||
CI_NTWINSYSTEM = [12] !< # of twin systems per family for cI
|
||
|
||
integer, dimension(*), parameter :: &
|
||
CI_NCLEAVAGESYSTEM = [3] !< # of cleavage systems per family for cI
|
||
|
||
integer, parameter :: &
|
||
CI_NSLIP = sum(CI_NSLIPSYSTEM), & !< total # of slip systems for cI
|
||
CI_NTWIN = sum(CI_NTWINSYSTEM), & !< total # of twin systems for cI
|
||
CI_NCLEAVAGE = sum(CI_NCLEAVAGESYSTEM) !< total # of cleavage systems for cI
|
||
|
||
real(pReal), dimension(3+3,CI_NSLIP), parameter :: &
|
||
CI_SYSTEMSLIP = reshape(real([&
|
||
! <111>{110} systems
|
||
1,-1, 1, 0, 1, 1, & ! D1
|
||
-1,-1, 1, 0, 1, 1, & ! C1
|
||
1, 1, 1, 0,-1, 1, & ! B2
|
||
-1, 1, 1, 0,-1, 1, & ! A2
|
||
-1, 1, 1, 1, 0, 1, & ! A3
|
||
-1,-1, 1, 1, 0, 1, & ! C3
|
||
1, 1, 1, -1, 0, 1, & ! B4
|
||
1,-1, 1, -1, 0, 1, & ! D4
|
||
-1, 1, 1, 1, 1, 0, & ! A6
|
||
-1, 1,-1, 1, 1, 0, & ! D6
|
||
1, 1, 1, -1, 1, 0, & ! B5
|
||
1, 1,-1, -1, 1, 0, & ! C5
|
||
! <111>{112} systems
|
||
-1, 1, 1, 2, 1, 1, & ! A-4
|
||
1, 1, 1, -2, 1, 1, & ! B-3
|
||
1, 1,-1, 2,-1, 1, & ! C-10
|
||
1,-1, 1, 2, 1,-1, & ! D-9
|
||
1,-1, 1, 1, 2, 1, & ! D-6
|
||
1, 1,-1, -1, 2, 1, & ! C-5
|
||
1, 1, 1, 1,-2, 1, & ! B-12
|
||
-1, 1, 1, 1, 2,-1, & ! A-11
|
||
1, 1,-1, 1, 1, 2, & ! C-2
|
||
1,-1, 1, -1, 1, 2, & ! D-1
|
||
-1, 1, 1, 1,-1, 2, & ! A-8
|
||
1, 1, 1, 1, 1,-2, & ! B-7
|
||
! Slip system <111>{123}
|
||
1, 1,-1, 1, 2, 3, &
|
||
1,-1, 1, -1, 2, 3, &
|
||
-1, 1, 1, 1,-2, 3, &
|
||
1, 1, 1, 1, 2,-3, &
|
||
1,-1, 1, 1, 3, 2, &
|
||
1, 1,-1, -1, 3, 2, &
|
||
1, 1, 1, 1,-3, 2, &
|
||
-1, 1, 1, 1, 3,-2, &
|
||
1, 1,-1, 2, 1, 3, &
|
||
1,-1, 1, -2, 1, 3, &
|
||
-1, 1, 1, 2,-1, 3, &
|
||
1, 1, 1, 2, 1,-3, &
|
||
1,-1, 1, 2, 3, 1, &
|
||
1, 1,-1, -2, 3, 1, &
|
||
1, 1, 1, 2,-3, 1, &
|
||
-1, 1, 1, 2, 3,-1, &
|
||
-1, 1, 1, 3, 1, 2, &
|
||
1, 1, 1, -3, 1, 2, &
|
||
1, 1,-1, 3,-1, 2, &
|
||
1,-1, 1, 3, 1,-2, &
|
||
-1, 1, 1, 3, 2, 1, &
|
||
1, 1, 1, -3, 2, 1, &
|
||
1, 1,-1, 3,-2, 1, &
|
||
1,-1, 1, 3, 2,-1 &
|
||
],pReal),shape(CI_SYSTEMSLIP)) !< cI slip systems
|
||
|
||
real(pReal), dimension(3+3,CI_NTWIN), parameter :: &
|
||
CI_SYSTEMTWIN = reshape(real([&
|
||
! <111>{112} systems
|
||
-1, 1, 1, 2, 1, 1, &
|
||
1, 1, 1, -2, 1, 1, &
|
||
1, 1,-1, 2,-1, 1, &
|
||
1,-1, 1, 2, 1,-1, &
|
||
1,-1, 1, 1, 2, 1, &
|
||
1, 1,-1, -1, 2, 1, &
|
||
1, 1, 1, 1,-2, 1, &
|
||
-1, 1, 1, 1, 2,-1, &
|
||
1, 1,-1, 1, 1, 2, &
|
||
1,-1, 1, -1, 1, 2, &
|
||
-1, 1, 1, 1,-1, 2, &
|
||
1, 1, 1, 1, 1,-2 &
|
||
],pReal),shape(CI_SYSTEMTWIN)) !< cI twin systems
|
||
|
||
real(pReal), dimension(3+3,CI_NCLEAVAGE), parameter :: &
|
||
CI_SYSTEMCLEAVAGE = reshape(real([&
|
||
! <001>{001} systems
|
||
0, 1, 0, 1, 0, 0, &
|
||
0, 0, 1, 0, 1, 0, &
|
||
1, 0, 0, 0, 0, 1 &
|
||
],pReal),shape(CI_SYSTEMCLEAVAGE)) !< cI cleavage systems
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! hP: hexagonal [close packed] (hex, hcp)
|
||
|
||
integer, dimension(*), parameter :: &
|
||
HP_NSLIPSYSTEM = [3, 3, 6, 12, 6] !< # of slip systems per family for hP
|
||
|
||
integer, dimension(*), parameter :: &
|
||
HP_NTWINSYSTEM = [6, 6, 6, 6] !< # of slip systems per family for hP
|
||
|
||
integer, parameter :: &
|
||
HP_NSLIP = sum(HP_NSLIPSYSTEM), & !< total # of slip systems for hP
|
||
HP_NTWIN = sum(HP_NTWINSYSTEM) !< total # of twin systems for hP
|
||
|
||
real(pReal), dimension(4+4,HP_NSLIP), parameter :: &
|
||
HP_SYSTEMSLIP = reshape(real([&
|
||
! <-1-1.0>{00.1}/basal systems (independent of c/a-ratio)
|
||
2, -1, -1, 0, 0, 0, 0, 1, &
|
||
-1, 2, -1, 0, 0, 0, 0, 1, &
|
||
-1, -1, 2, 0, 0, 0, 0, 1, &
|
||
! <-1-1.0>{1-1.0}/prismatic systems (independent of c/a-ratio)
|
||
2, -1, -1, 0, 0, 1, -1, 0, &
|
||
-1, 2, -1, 0, -1, 0, 1, 0, &
|
||
-1, -1, 2, 0, 1, -1, 0, 0, &
|
||
! <-1-1.0>{-11.1}/1. order pyramidal <a> systems (direction independent of c/a-ratio)
|
||
-1, 2, -1, 0, 1, 0, -1, 1, &
|
||
-2, 1, 1, 0, 0, 1, -1, 1, &
|
||
-1, -1, 2, 0, -1, 1, 0, 1, &
|
||
1, -2, 1, 0, -1, 0, 1, 1, &
|
||
2, -1, -1, 0, 0, -1, 1, 1, &
|
||
1, 1, -2, 0, 1, -1, 0, 1, &
|
||
! <11.3>{-10.1}/1. order pyramidal <c+a> systems (direction independent of c/a-ratio)
|
||
-2, 1, 1, 3, 1, 0, -1, 1, &
|
||
-1, -1, 2, 3, 1, 0, -1, 1, &
|
||
-1, -1, 2, 3, 0, 1, -1, 1, &
|
||
1, -2, 1, 3, 0, 1, -1, 1, &
|
||
1, -2, 1, 3, -1, 1, 0, 1, &
|
||
2, -1, -1, 3, -1, 1, 0, 1, &
|
||
2, -1, -1, 3, -1, 0, 1, 1, &
|
||
1, 1, -2, 3, -1, 0, 1, 1, &
|
||
1, 1, -2, 3, 0, -1, 1, 1, &
|
||
-1, 2, -1, 3, 0, -1, 1, 1, &
|
||
-1, 2, -1, 3, 1, -1, 0, 1, &
|
||
-2, 1, 1, 3, 1, -1, 0, 1, &
|
||
! <11.3>{-1-1.2}/2. order pyramidal <c+a> systems
|
||
-1, -1, 2, 3, 1, 1, -2, 2, &
|
||
1, -2, 1, 3, -1, 2, -1, 2, &
|
||
2, -1, -1, 3, -2, 1, 1, 2, &
|
||
1, 1, -2, 3, -1, -1, 2, 2, &
|
||
-1, 2, -1, 3, 1, -2, 1, 2, &
|
||
-2, 1, 1, 3, 2, -1, -1, 2 &
|
||
],pReal),shape(HP_SYSTEMSLIP)) !< hP slip systems, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
|
||
|
||
real(pReal), dimension(4+4,HP_NTWIN), parameter :: &
|
||
HP_SYSTEMTWIN = reshape(real([&
|
||
! <-10.1>{10.2} systems, shear = (3-(c/a)^2)/(sqrt(3) c/a)
|
||
! tension in Co, Mg, Zr, Ti, and Be; compression in Cd and Zn
|
||
-1, 0, 1, 1, 1, 0, -1, 2, & !
|
||
0, -1, 1, 1, 0, 1, -1, 2, &
|
||
1, -1, 0, 1, -1, 1, 0, 2, &
|
||
1, 0, -1, 1, -1, 0, 1, 2, &
|
||
0, 1, -1, 1, 0, -1, 1, 2, &
|
||
-1, 1, 0, 1, 1, -1, 0, 2, &
|
||
! <11.6>{-1-1.1} systems, shear = 1/(c/a)
|
||
! tension in Co, Re, and Zr
|
||
-1, -1, 2, 6, 1, 1, -2, 1, &
|
||
1, -2, 1, 6, -1, 2, -1, 1, &
|
||
2, -1, -1, 6, -2, 1, 1, 1, &
|
||
1, 1, -2, 6, -1, -1, 2, 1, &
|
||
-1, 2, -1, 6, 1, -2, 1, 1, &
|
||
-2, 1, 1, 6, 2, -1, -1, 1, &
|
||
! <10.-2>{10.1} systems, shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
|
||
! compression in Mg
|
||
1, 0, -1, -2, 1, 0, -1, 1, &
|
||
0, 1, -1, -2, 0, 1, -1, 1, &
|
||
-1, 1, 0, -2, -1, 1, 0, 1, &
|
||
-1, 0, 1, -2, -1, 0, 1, 1, &
|
||
0, -1, 1, -2, 0, -1, 1, 1, &
|
||
1, -1, 0, -2, 1, -1, 0, 1, &
|
||
! <11.-3>{11.2} systems, shear = 2((c/a)^2-2)/(3 c/a)
|
||
! compression in Ti and Zr
|
||
1, 1, -2, -3, 1, 1, -2, 2, &
|
||
-1, 2, -1, -3, -1, 2, -1, 2, &
|
||
-2, 1, 1, -3, -2, 1, 1, 2, &
|
||
-1, -1, 2, -3, -1, -1, 2, 2, &
|
||
1, -2, 1, -3, 1, -2, 1, 2, &
|
||
2, -1, -1, -3, 2, -1, -1, 2 &
|
||
],pReal),shape(HP_SYSTEMTWIN)) !< hP twin systems, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! tI: body centered tetragonal (bct)
|
||
|
||
integer, dimension(*), parameter :: &
|
||
TI_NSLIPSYSTEM = [2, 2, 2, 4, 2, 4, 2, 2, 4, 8, 4, 8, 8 ] !< # of slip systems per family for tI
|
||
|
||
integer, parameter :: &
|
||
TI_NSLIP = sum(TI_NSLIPSYSTEM) !< total # of slip systems for tI
|
||
|
||
real(pReal), dimension(3+3,TI_NSLIP), parameter :: &
|
||
TI_SYSTEMSLIP = reshape(real([&
|
||
! {100)<001] systems
|
||
0, 0, 1, 1, 0, 0, &
|
||
0, 0, 1, 0, 1, 0, &
|
||
! {110)<001] systems
|
||
0, 0, 1, 1, 1, 0, &
|
||
0, 0, 1, -1, 1, 0, &
|
||
! {100)<010] systems
|
||
0, 1, 0, 1, 0, 0, &
|
||
1, 0, 0, 0, 1, 0, &
|
||
! {110)<1-11]/2 systems
|
||
1,-1, 1, 1, 1, 0, &
|
||
1,-1,-1, 1, 1, 0, &
|
||
-1,-1,-1, -1, 1, 0, &
|
||
-1,-1, 1, -1, 1, 0, &
|
||
! {110)<1-10] systems
|
||
1, -1, 0, 1, 1, 0, &
|
||
1, 1, 0, 1,-1, 0, &
|
||
! {100)<011] systems
|
||
0, 1, 1, 1, 0, 0, &
|
||
0,-1, 1, 1, 0, 0, &
|
||
-1, 0, 1, 0, 1, 0, &
|
||
1, 0, 1, 0, 1, 0, &
|
||
! {001)<010] systems
|
||
0, 1, 0, 0, 0, 1, &
|
||
1, 0, 0, 0, 0, 1, &
|
||
! {001)<110] systems
|
||
1, 1, 0, 0, 0, 1, &
|
||
-1, 1, 0, 0, 0, 1, &
|
||
! {011)<01-1] systems
|
||
0, 1,-1, 0, 1, 1, &
|
||
0,-1,-1, 0,-1, 1, &
|
||
-1, 0,-1, -1, 0, 1, &
|
||
1, 0,-1, 1, 0, 1, &
|
||
! {011)<1-11]/2 systems
|
||
1,-1, 1, 0, 1, 1, &
|
||
1, 1,-1, 0, 1, 1, &
|
||
1, 1, 1, 0, 1,-1, &
|
||
-1, 1, 1, 0, 1,-1, &
|
||
1,-1,-1, 1, 0, 1, &
|
||
-1,-1, 1, 1, 0, 1, &
|
||
1, 1, 1, 1, 0,-1, &
|
||
1,-1, 1, 1, 0,-1, &
|
||
! {011)<100] systems
|
||
1, 0, 0, 0, 1, 1, &
|
||
1, 0, 0, 0, 1,-1, &
|
||
0, 1, 0, 1, 0, 1, &
|
||
0, 1, 0, 1, 0,-1, &
|
||
! {211)<01-1] systems
|
||
0, 1,-1, 2, 1, 1, &
|
||
0,-1,-1, 2,-1, 1, &
|
||
1, 0,-1, 1, 2, 1, &
|
||
-1, 0,-1, -1, 2, 1, &
|
||
0, 1,-1, -2, 1, 1, &
|
||
0,-1,-1, -2,-1, 1, &
|
||
-1, 0,-1, -1,-2, 1, &
|
||
1, 0,-1, 1,-2, 1, &
|
||
! {211)<-111]/2 systems
|
||
-1, 1, 1, 2, 1, 1, &
|
||
-1,-1, 1, 2,-1, 1, &
|
||
1,-1, 1, 1, 2, 1, &
|
||
-1,-1, 1, -1, 2, 1, &
|
||
1, 1, 1, -2, 1, 1, &
|
||
1,-1, 1, -2,-1, 1, &
|
||
-1, 1, 1, -1,-2, 1, &
|
||
1, 1, 1, 1,-2, 1 &
|
||
],pReal),shape(TI_SYSTEMSLIP)) !< tI slip systems for c/a = 0.5456 (Sn), sorted by Bieler 2009 (https://doi.org/10.1007/s11664-009-0909-x)
|
||
|
||
|
||
interface lattice_forestProjection_edge
|
||
module procedure slipProjection_transverse
|
||
end interface lattice_forestProjection_edge
|
||
|
||
interface lattice_forestProjection_screw
|
||
module procedure slipProjection_direction
|
||
end interface lattice_forestProjection_screw
|
||
|
||
public :: &
|
||
lattice_init, &
|
||
lattice_equivalent_nu, &
|
||
lattice_equivalent_mu, &
|
||
lattice_symmetrize_33, &
|
||
lattice_symmetrize_C66, &
|
||
lattice_SchmidMatrix_slip, &
|
||
lattice_SchmidMatrix_twin, &
|
||
lattice_SchmidMatrix_trans, &
|
||
lattice_SchmidMatrix_cleavage, &
|
||
lattice_nonSchmidMatrix, &
|
||
lattice_interaction_SlipBySlip, &
|
||
lattice_interaction_TwinByTwin, &
|
||
lattice_interaction_TransByTrans, &
|
||
lattice_interaction_SlipByTwin, &
|
||
lattice_interaction_SlipByTrans, &
|
||
lattice_interaction_TwinBySlip, &
|
||
lattice_characteristicShear_Twin, &
|
||
lattice_C66_twin, &
|
||
lattice_C66_trans, &
|
||
lattice_forestProjection_edge, &
|
||
lattice_forestProjection_screw, &
|
||
lattice_slip_normal, &
|
||
lattice_slip_direction, &
|
||
lattice_slip_transverse, &
|
||
lattice_labels_slip, &
|
||
lattice_labels_twin
|
||
|
||
contains
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Module initialization
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine lattice_init
|
||
|
||
print'(/,1x,a)', '<<<+- lattice init -+>>>'; flush(IO_STDOUT)
|
||
|
||
call selfTest
|
||
|
||
end subroutine lattice_init
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Characteristic shear for twinning
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_characteristicShear_Twin(Ntwin,lattice,CoverA) result(characteristicShear)
|
||
|
||
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(sum(Ntwin)) :: characteristicShear
|
||
|
||
integer :: &
|
||
a, & !< index of active system
|
||
p, & !< index in potential system list
|
||
f, & !< index of my family
|
||
s !< index of my system in current family
|
||
|
||
integer, dimension(HP_NTWIN), parameter :: &
|
||
HP_SHEARTWIN = reshape( [&
|
||
1, & ! <-10.1>{10.2}
|
||
1, &
|
||
1, &
|
||
1, &
|
||
1, &
|
||
1, &
|
||
2, & ! <11.6>{-1-1.1}
|
||
2, &
|
||
2, &
|
||
2, &
|
||
2, &
|
||
2, &
|
||
3, & ! <10.-2>{10.1}
|
||
3, &
|
||
3, &
|
||
3, &
|
||
3, &
|
||
3, &
|
||
4, & ! <11.-3>{11.2}
|
||
4, &
|
||
4, &
|
||
4, &
|
||
4, &
|
||
4 &
|
||
],[HP_NTWIN]) !< indicator to formulas below
|
||
|
||
a = 0
|
||
myFamilies: do f = 1,size(Ntwin,1)
|
||
mySystems: do s = 1,Ntwin(f)
|
||
a = a + 1
|
||
select case(lattice)
|
||
case('cF','cI')
|
||
characteristicShear(a) = 0.5_pReal*sqrt(2.0_pReal)
|
||
case('hP')
|
||
if (cOverA < 1.0_pReal .or. cOverA > 2.0_pReal) &
|
||
call IO_error(131,ext_msg='lattice_characteristicShear_Twin')
|
||
p = sum(HP_NTWINSYSTEM(1:f-1))+s
|
||
select case(HP_SHEARTWIN(p)) ! from Christian & Mahajan 1995 p.29
|
||
case (1) ! <-10.1>{10.2}
|
||
characteristicShear(a) = (3.0_pReal-cOverA**2)/sqrt(3.0_pReal)/CoverA
|
||
case (2) ! <11.6>{-1-1.1}
|
||
characteristicShear(a) = 1.0_pReal/cOverA
|
||
case (3) ! <10.-2>{10.1}
|
||
characteristicShear(a) = (4.0_pReal*cOverA**2-9.0_pReal)/sqrt(48.0_pReal)/cOverA
|
||
case (4) ! <11.-3>{11.2}
|
||
characteristicShear(a) = 2.0_pReal*(cOverA**2-2.0_pReal)/3.0_pReal/cOverA
|
||
end select
|
||
case default
|
||
call IO_error(137,ext_msg='lattice_characteristicShear_Twin: '//trim(lattice))
|
||
end select
|
||
enddo mySystems
|
||
enddo myFamilies
|
||
|
||
end function lattice_characteristicShear_Twin
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Rotated elasticity matrices for twinning in 6x6-matrix notation
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_C66_twin(Ntwin,C66,lattice,CoverA)
|
||
|
||
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), dimension(6,6), intent(in) :: C66 !< unrotated parent stiffness matrix
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(6,6,sum(Ntwin)) :: lattice_C66_twin
|
||
|
||
real(pReal), dimension(3,3,sum(Ntwin)):: coordinateSystem
|
||
type(tRotation) :: R
|
||
integer :: i
|
||
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
coordinateSystem = buildCoordinateSystem(Ntwin,CF_NSLIPSYSTEM,CF_SYSTEMTWIN,&
|
||
lattice,0.0_pReal)
|
||
case('cI')
|
||
coordinateSystem = buildCoordinateSystem(Ntwin,CI_NSLIPSYSTEM,CI_SYSTEMTWIN,&
|
||
lattice,0.0_pReal)
|
||
case('hP')
|
||
coordinateSystem = buildCoordinateSystem(Ntwin,HP_NSLIPSYSTEM,HP_SYSTEMTWIN,&
|
||
lattice,cOverA)
|
||
case default
|
||
call IO_error(137,ext_msg='lattice_C66_twin: '//trim(lattice))
|
||
end select
|
||
|
||
do i = 1, sum(Ntwin)
|
||
call R%fromAxisAngle([coordinateSystem(1:3,2,i),PI],P=1) ! ToDo: Why always 180 deg?
|
||
lattice_C66_twin(1:6,1:6,i) = R%rotStiffness(C66)
|
||
enddo
|
||
|
||
end function lattice_C66_twin
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Rotated elasticity matrices for transformation in 6x6-matrix notation
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_C66_trans(Ntrans,C_parent66,lattice_target, &
|
||
cOverA_trans,a_cF,a_cI)
|
||
|
||
integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family
|
||
character(len=2), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol)
|
||
real(pReal), dimension(6,6), intent(in) :: C_parent66
|
||
real(pReal), optional, intent(in) :: cOverA_trans, a_cF, a_cI
|
||
real(pReal), dimension(6,6,sum(Ntrans)) :: lattice_C66_trans
|
||
|
||
real(pReal), dimension(6,6) :: C_bar66, C_target_unrotated66
|
||
real(pReal), dimension(3,3,sum(Ntrans)) :: Q,S
|
||
type(tRotation) :: R
|
||
integer :: i
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! elasticity matrix of the target phase in cube orientation
|
||
if (lattice_target == 'hP' .and. present(cOverA_trans)) then
|
||
! https://doi.org/10.1063/1.1663858 eq. (16), eq. (18), eq. (19)
|
||
! https://doi.org/10.1016/j.actamat.2016.07.032 eq. (47), eq. (48)
|
||
if (cOverA_trans < 1.0_pReal .or. cOverA_trans > 2.0_pReal) &
|
||
call IO_error(131,ext_msg='lattice_C66_trans: '//trim(lattice_target))
|
||
C_bar66(1,1) = (C_parent66(1,1) + C_parent66(1,2) + 2.0_pReal*C_parent66(4,4))/2.0_pReal
|
||
C_bar66(1,2) = (C_parent66(1,1) + 5.0_pReal*C_parent66(1,2) - 2.0_pReal*C_parent66(4,4))/6.0_pReal
|
||
C_bar66(3,3) = (C_parent66(1,1) + 2.0_pReal*C_parent66(1,2) + 4.0_pReal*C_parent66(4,4))/3.0_pReal
|
||
C_bar66(1,3) = (C_parent66(1,1) + 2.0_pReal*C_parent66(1,2) - 2.0_pReal*C_parent66(4,4))/3.0_pReal
|
||
C_bar66(4,4) = (C_parent66(1,1) - C_parent66(1,2) + C_parent66(4,4))/3.0_pReal
|
||
C_bar66(1,4) = (C_parent66(1,1) - C_parent66(1,2) - 2.0_pReal*C_parent66(4,4)) /(3.0_pReal*sqrt(2.0_pReal))
|
||
|
||
C_target_unrotated66 = 0.0_pReal
|
||
C_target_unrotated66(1,1) = C_bar66(1,1) - C_bar66(1,4)**2/C_bar66(4,4)
|
||
C_target_unrotated66(1,2) = C_bar66(1,2) + C_bar66(1,4)**2/C_bar66(4,4)
|
||
C_target_unrotated66(1,3) = C_bar66(1,3)
|
||
C_target_unrotated66(3,3) = C_bar66(3,3)
|
||
C_target_unrotated66(4,4) = C_bar66(4,4) - C_bar66(1,4)**2/(0.5_pReal*(C_bar66(1,1) - C_bar66(1,2)))
|
||
C_target_unrotated66 = lattice_symmetrize_C66(C_target_unrotated66,'hP')
|
||
elseif (lattice_target == 'cI' .and. present(a_cF) .and. present(a_cI)) then
|
||
if (a_cI <= 0.0_pReal .or. a_cF <= 0.0_pReal) &
|
||
call IO_error(134,ext_msg='lattice_C66_trans: '//trim(lattice_target))
|
||
C_target_unrotated66 = C_parent66
|
||
else
|
||
call IO_error(137,ext_msg='lattice_C66_trans : '//trim(lattice_target))
|
||
endif
|
||
|
||
do i = 1,6
|
||
if (abs(C_target_unrotated66(i,i))<tol_math_check) &
|
||
call IO_error(135,'matrix diagonal in transformation',label1='entry',ID1=i)
|
||
enddo
|
||
|
||
call buildTransformationSystem(Q,S,Ntrans,cOverA_trans,a_cF,a_cI)
|
||
|
||
do i = 1,sum(Ntrans)
|
||
call R%fromMatrix(Q(1:3,1:3,i))
|
||
lattice_C66_trans(1:6,1:6,i) = R%rotStiffness(C_target_unrotated66)
|
||
enddo
|
||
|
||
end function lattice_C66_trans
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Non-schmid projections for cI with up to 6 coefficients
|
||
! https://doi.org/10.1016/j.actamat.2012.03.053, eq. (17)
|
||
! https://doi.org/10.1016/j.actamat.2008.07.037, table 1
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_nonSchmidMatrix(Nslip,nonSchmidCoefficients,sense) result(nonSchmidMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
real(pReal), dimension(:), intent(in) :: nonSchmidCoefficients !< non-Schmid coefficients for projections
|
||
integer, intent(in) :: sense !< sense (-1,+1)
|
||
real(pReal), dimension(1:3,1:3,sum(Nslip)) :: nonSchmidMatrix
|
||
|
||
real(pReal), dimension(1:3,1:3,sum(Nslip)) :: coordinateSystem !< coordinate system of slip system
|
||
real(pReal), dimension(3) :: direction, normal, np
|
||
type(tRotation) :: R
|
||
integer :: i
|
||
|
||
|
||
if (abs(sense) /= 1) error stop 'Sense in lattice_nonSchmidMatrix'
|
||
|
||
coordinateSystem = buildCoordinateSystem(Nslip,CI_NSLIPSYSTEM,CI_SYSTEMSLIP,'cI',0.0_pReal)
|
||
coordinateSystem(1:3,1,1:sum(Nslip)) = coordinateSystem(1:3,1,1:sum(Nslip))*real(sense,pReal) ! convert unidirectional coordinate system
|
||
nonSchmidMatrix = lattice_SchmidMatrix_slip(Nslip,'cI',0.0_pReal) ! Schmid contribution
|
||
|
||
do i = 1,sum(Nslip)
|
||
direction = coordinateSystem(1:3,1,i)
|
||
normal = coordinateSystem(1:3,2,i)
|
||
call R%fromAxisAngle([direction,60.0_pReal],degrees=.true.,P=1)
|
||
np = R%rotate(normal)
|
||
|
||
if (size(nonSchmidCoefficients)>0) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
|
||
+ nonSchmidCoefficients(1) * math_outer(direction, np)
|
||
if (size(nonSchmidCoefficients)>1) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
|
||
+ nonSchmidCoefficients(2) * math_outer(math_cross(normal, direction), normal)
|
||
if (size(nonSchmidCoefficients)>2) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
|
||
+ nonSchmidCoefficients(3) * math_outer(math_cross(np, direction), np)
|
||
if (size(nonSchmidCoefficients)>3) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
|
||
+ nonSchmidCoefficients(4) * math_outer(normal, normal)
|
||
if (size(nonSchmidCoefficients)>4) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
|
||
+ nonSchmidCoefficients(5) * math_outer(math_cross(normal, direction), &
|
||
math_cross(normal, direction))
|
||
if (size(nonSchmidCoefficients)>5) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
|
||
+ nonSchmidCoefficients(6) * math_outer(direction, direction)
|
||
enddo
|
||
|
||
end function lattice_nonSchmidMatrix
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Slip-slip interaction matrix
|
||
!> @details only active slip systems are considered
|
||
!> @details https://doi.org/10.1016/j.actamat.2016.12.040 (cF: Tab S4-1, cI: Tab S5-1)
|
||
!> @details https://doi.org/10.1016/j.ijplas.2014.06.010 (hP: Tab 3b)
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_interaction_SlipBySlip(Nslip,interactionValues,lattice) result(interactionMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for slip-slip interaction
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: interactionMatrix
|
||
|
||
integer, dimension(:), allocatable :: NslipMax
|
||
integer, dimension(:,:), allocatable :: interactionTypes
|
||
|
||
|
||
integer, dimension(CF_NSLIP,CF_NSLIP), parameter :: &
|
||
CF_INTERACTIONSLIPSLIP = reshape( [&
|
||
1, 2, 2, 4, 7, 5, 3, 5, 5, 4, 6, 7, 10,11,10,11,12,13, & ! -----> acting (forest)
|
||
2, 1, 2, 7, 4, 5, 6, 4, 7, 5, 3, 5, 10,11,12,13,10,11, & ! |
|
||
2, 2, 1, 5, 5, 3, 6, 7, 4, 7, 6, 4, 12,13,10,11,10,11, & ! |
|
||
4, 7, 6, 1, 2, 2, 4, 6, 7, 3, 5, 5, 10,11,11,10,13,12, & ! v
|
||
7, 4, 6, 2, 1, 2, 5, 3, 5, 6, 4, 7, 10,11,13,12,11,10, & ! reacting (primary)
|
||
5, 5, 3, 2, 2, 1, 7, 6, 4, 6, 7, 4, 12,13,11,10,11,10, &
|
||
3, 5, 5, 4, 6, 7, 1, 2, 2, 4, 7, 6, 11,10,11,10,12,13, &
|
||
6, 4, 7, 5, 3, 5, 2, 1, 2, 7, 4, 6, 11,10,13,12,10,11, &
|
||
6, 7, 4, 7, 6, 4, 2, 2, 1, 5, 5, 3, 13,12,11,10,10,11, &
|
||
4, 6, 7, 3, 5, 5, 4, 7, 6, 1, 2, 2, 11,10,10,11,13,12, &
|
||
5, 3, 5, 6, 4, 7, 7, 4, 6, 2, 1, 2, 11,10,12,13,11,10, &
|
||
7, 6, 4, 6, 7, 4, 5, 5, 3, 2, 2, 1, 13,12,10,11,11,10, &
|
||
|
||
10,10,12,10,10,12,11,11,13,11,11,13, 1, 8, 9, 9, 9, 9, &
|
||
11,11,13,11,11,13,10,10,12,10,10,12, 8, 1, 9, 9, 9, 9, &
|
||
10,12,10,11,13,11,11,13,11,10,12,10, 9, 9, 1, 8, 9, 9, &
|
||
11,13,11,10,12,10,10,12,10,11,13,11, 9, 9, 8, 1, 9, 9, &
|
||
12,10,10,13,11,11,12,10,10,13,11,11, 9, 9, 9, 9, 1, 8, &
|
||
13,11,11,12,10,10,13,11,11,12,10,10, 9, 9, 9, 9, 8, 1 &
|
||
],shape(CF_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for cF / Madec 2017 (https://doi.org/10.1016/j.actamat.2016.12.040)
|
||
!< 1: self interaction --> alpha 0
|
||
!< 2: coplanar interaction --> alpha copla
|
||
!< 3: collinear interaction --> alpha coli
|
||
!< 4: Hirth locks --> alpha 1
|
||
!< 5: glissile junctions I --> alpha 2
|
||
!< 6: glissile junctions II --> alpha 2*
|
||
!< 7: Lomer locks --> alpha 3
|
||
!< 8: crossing (similar to Hirth locks in <110>{111} for two {110} planes)
|
||
!< 9: similar to Lomer locks in <110>{111} for two {110} planes
|
||
!<10: similar to Lomer locks in <110>{111} btw one {110} and one {111} plane
|
||
!<11: similar to glissile junctions in <110>{111} btw one {110} and one {111} plane
|
||
!<12: crossing btw one {110} and one {111} plane
|
||
!<13: collinear btw one {110} and one {111} plane
|
||
|
||
integer, dimension(CI_NSLIP,CI_NSLIP), parameter :: &
|
||
CI_INTERACTIONSLIPSLIP = reshape( [&
|
||
1, 3, 6, 6, 7, 5, 4, 2, 4, 2, 7, 5, 18,18,11, 8, 9,13,17,14,13, 9,17,14, 28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,28,28,25,28,28,28,25, &! -----> acting (forest)
|
||
3, 1, 6, 6, 4, 2, 7, 5, 7, 5, 4, 2, 18,18, 8,11,13, 9,14,17, 9,13,14,17, 25,28,28,28,28,25,28,28,25,28,28,28,28,25,28,28,28,28,25,28,28,28,25,28, &! |
|
||
6, 6, 1, 3, 5, 7, 2, 4, 5, 7, 2, 4, 11, 8,18,18,17,14, 9,13,17,14,13, 9, 28,28,28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,25,28,28,28,25,28,28, &! |
|
||
6, 6, 3, 1, 2, 4, 5, 7, 2, 4, 5, 7, 8,11,18,18,14,17,13, 9,14,17, 9,13, 28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,25,25,28,28,28,25,28,28,28, &! v
|
||
7, 5, 4, 2, 1, 3, 6, 6, 2, 4, 7, 5, 9,17,13,14,18,11,18, 8,13,17, 9,14, 28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,25,25,28,28,28,25,28,28,28, &! reacting (primary)
|
||
4, 2, 7, 5, 3, 1, 6, 6, 5, 7, 4, 2, 13,14, 9,17,18, 8,18,11, 9,14,13,17, 25,28,28,28,28,25,28,28,25,28,28,28,28,25,28,28,28,28,25,28,28,28,25,28, &
|
||
5, 7, 2, 4, 6, 6, 1, 3, 7, 5, 2, 4, 17, 9,14,13,11,18, 8,18,17,13,14, 9, 28,28,28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,25,28,28,28,25,28,28, &
|
||
2, 4, 5, 7, 6, 6, 3, 1, 4, 2, 5, 7, 14,13,17, 9, 8,18,11,18,14, 9,17,13, 28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,28,28,25,28,28,28,25, &
|
||
5, 7, 4, 2, 2, 4, 7, 5, 1, 3, 6, 6, 9,17,14,13,13,17,14, 9,18,11, 8,18, 28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,25,25,28,28,28,25,28,28,28, &
|
||
2, 4, 7, 5, 5, 7, 4, 2, 3, 1, 6, 6, 13,14,17, 9, 9,14,17,13,18, 8,11,18, 28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,28,28,25,28,28,28,25, &
|
||
7, 5, 2, 4, 7, 5, 2, 4, 6, 6, 1, 3, 17, 9,13,14,17,13, 9,14,11,18,18, 8, 28,28,28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,25,28,28,28,25,28,28, &
|
||
4, 2, 5, 7, 4, 2, 5, 7, 6, 6, 3, 1, 14,13, 9,17,14, 9,13,17, 8,18,18,11, 25,28,28,28,28,25,28,28,25,28,28,28,28,25,28,28,28,28,25,28,28,28,25,28, &
|
||
|
||
19,19,10, 8, 9,12,16,15, 9,12,16,15, 1,20,24,24,23,22,21, 2,23,22, 2,21, 28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,26,26,28,28,28,26,28,28,28, &
|
||
19,19, 8,10,16,15, 9,12,16,15, 9,12, 20, 1,24,24,22,23, 2,21,22,23,21, 2, 28,28,28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,26,28,28,28,26,28,28, &
|
||
10, 8,19,19,12, 9,15,16,15,16,12, 9, 24,24, 1,20,21, 2,23,22, 2,21,23,22, 26,28,28,28,28,26,28,28,26,28,28,28,28,26,28,28,28,28,26,28,28,28,26,28, &
|
||
8,10,19,19,15,16,12, 9,12, 9,15,16, 24,24,20, 1, 2,21,22,23,21, 2,22,23, 28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,28,28,26,28,28,28,26, &
|
||
9,12,16,15,19,19,10, 8,12, 9,16,15, 23,21,22, 2, 1,24,20,24,23, 2,22,21, 28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,28,28,26,28,28,28,26, &
|
||
12, 9,15,16,10, 8,19,19,16,15,12, 9, 21,23, 2,21,24, 1,24,20, 2,23,21,22, 26,28,28,28,28,26,28,28,26,28,28,28,28,26,28,28,28,28,26,28,28,28,26,28, &
|
||
16,15, 9,12,19,19, 8,10,15,16, 9,12, 22, 2,23,22,20,24, 1,24,22,21,23, 2, 28,28,28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,26,28,28,28,26,28,28, &
|
||
15,16,12, 9, 8,10,19,19, 9,12,15,16, 2,22,21,23,24,20,24, 1,21,22, 2,23, 28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,26,26,28,28,28,26,28,28,28, &
|
||
12, 9,16,15,12, 9,16,15,19,19,10, 8, 23,21, 2,22,23, 2,21,22, 1,24,24,20, 26,28,28,28,28,26,28,28,26,28,28,28,28,26,28,28,28,28,26,28,28,28,26,28, &
|
||
9,12,15,16,16,15,12, 9,10, 8,19,19, 21,23,22, 2, 2,23,22,21,24, 1,20,24, 28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,28,28,26,28,28,28,26, &
|
||
16,15,12, 9, 9,12,15,16, 8,10,19,19, 2,22,23,21,21,22,23, 2,24,20, 1,24, 28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,26,26,28,28,28,26,28,28,28, &
|
||
15,16, 9,12,15,16, 9,12,19,19, 8,10, 22, 2,21,23,22,21, 2,23,20,24,24, 1, 28,28,28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,26,28,28,28,26,28,28, &
|
||
|
||
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 1,28,28,28,28,27,28,28,27,28,28,28,28,27,28,28,28,28,27,28,28,28,27,28, &
|
||
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28, 1,28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,28,28,27,28,28,28,27, &
|
||
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28, 1,28,28,28,28,27,28,28,27,28,28,28,28,27,27,28,28,28,27,28,28,28, &
|
||
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28, 1,28,28,27,28,28,28,28,27,28,28,27,28,28,27,28,28,28,27,28,28, &
|
||
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28, 1,28,28,28,28,27,28,28,27,28,28,28,28,28,28,27,28,28,28,27, &
|
||
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28, 1,28,28,27,28,28,28,28,27,28,28,28,28,27,28,28,28,27,28, &
|
||
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28, 1,28,28,28,28,27,28,28,27,28,28,27,28,28,28,27,28,28, &
|
||
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28, 1,28,28,27,28,28,28,28,27,27,28,28,28,27,28,28,28, &
|
||
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28,27,28,28, 1,28,28,28,28,27,28,28,28,28,27,28,28,28,27,28, &
|
||
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28,27,28,28,28,28, 1,28,28,27,28,28,28,28,28,28,27,28,28,28,27, &
|
||
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28,27,28,28, 1,28,28,28,28,27,27,28,28,28,27,28,28,28, &
|
||
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28,27,28,28,28,28, 1,28,28,27,28,28,27,28,28,28,27,28,28, &
|
||
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28,27,28,28,28,28,27,28,28, 1,28,28,28,28,28,28,27,28,28,28,27, &
|
||
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28,27,28,28,27,28,28,28,28, 1,28,28,28,28,27,28,28,28,27,28, &
|
||
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28,27,28,28,28,28,27,28,28, 1,28,28,27,28,28,28,27,28,28, &
|
||
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28,27,28,28,27,28,28,28,28, 1,27,28,28,28,27,28,28,28, &
|
||
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,27, 1,28,28,28,27,28,28,28, &
|
||
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28,27,28,28,28,28,27,28,28,27,28,28, 1,28,28,28,27,28,28, &
|
||
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28,27,28,28,27,28,28,28,28,27,28,28,28,28, 1,28,28,28,27,28, &
|
||
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,28,28, 1,28,28,28,27, &
|
||
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,27,27,28,28,28, 1,28,28,28, &
|
||
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28,27,28,28,28,28,27,28,28,27,28,28,27,28,28,28, 1,28,28, &
|
||
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28,27,28,28,27,28,28,28,28,27,28,28,28,28,27,28,28,28, 1,28, &
|
||
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,28,28,27,28,28,28, 1 &
|
||
],shape(CI_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for cI / Madec 2017 (https://doi.org/10.1016/j.actamat.2016.12.040)
|
||
!< 1: self interaction --> alpha 0
|
||
!< 2: collinear interaction --> alpha 1
|
||
!< 3: coplanar interaction --> alpha 2
|
||
!< 4-7: other coefficients
|
||
!< 8: {110}-{112} collinear and perpendicular planes --> alpha 6
|
||
!< 9: {110}-{112} collinear --> alpha 7
|
||
!< 10-24: other coefficients
|
||
!< 25: {110}-{123} collinear
|
||
!< 26: {112}-{123} collinear
|
||
!< 27: {123}-{123} collinear
|
||
!< 28: other interaction
|
||
|
||
integer, dimension(HP_NSLIP,HP_NSLIP), parameter :: &
|
||
HP_INTERACTIONSLIPSLIP = reshape( [&
|
||
! basal prism 1. pyr<a> 1. pyr<c+a> 2. pyr<c+a>
|
||
1, 2, 2, 3, 4, 4, 9,10, 9, 9,10, 9, 20,21,22,22,21,20,20,21,22,22,21,20, 47,47,48,47,47,48, & ! -----> acting (forest)
|
||
2, 1, 2, 4, 3, 4, 10, 9, 9,10, 9, 9, 22,22,21,20,20,21,22,22,21,20,20,21, 47,48,47,47,48,47, & ! | basal
|
||
2, 2, 1, 4, 4, 3, 9, 9,10, 9, 9,10, 21,20,20,21,22,22,21,20,20,21,22,22, 48,47,47,48,47,47, & ! |
|
||
! v
|
||
7, 8, 8, 5, 6, 6, 11,12,11,11,12,11, 23,24,25,25,24,23,23,24,25,25,24,23, 49,49,50,49,49,50, & ! reacting (primary)
|
||
8, 7, 8, 6, 5, 6, 12,11,11,12,11,11, 25,25,24,23,23,24,25,25,24,23,23,24, 49,50,49,49,50,49, & ! prism
|
||
8, 8, 7, 6, 6, 5, 11,11,12,11,11,12, 24,23,23,24,25,25,24,23,23,24,25,25, 50,49,49,50,49,49, &
|
||
|
||
18,19,18, 16,17,16, 13,14,14,15,14,14, 26,26,27,28,28,27,29,29,27,28,28,27, 51,52,51,51,52,51, &
|
||
19,18,18, 17,16,16, 14,13,14,14,15,14, 28,27,26,26,27,28,28,27,29,29,27,28, 51,51,52,51,51,52, &
|
||
18,18,19, 16,16,17, 14,14,13,14,14,15, 27,28,28,27,26,26,27,28,28,27,29,29, 52,51,51,52,51,51, &
|
||
18,19,18, 16,17,16, 15,14,14,13,14,14, 29,29,27,28,28,27,26,26,27,28,28,27, 51,52,51,51,52,51, & ! 1. pyr<a>
|
||
19,18,18, 17,16,16, 14,15,14,14,13,14, 28,27,29,29,27,28,28,27,26,26,27,28, 51,51,52,51,51,52, &
|
||
18,18,19, 16,16,17, 14,14,15,14,14,13, 27,28,28,27,29,29,27,28,28,27,26,26, 52,51,51,52,51,51, &
|
||
|
||
44,45,46, 41,42,43, 37,38,39,40,38,39, 30,31,32,32,32,33,34,35,32,32,32,36, 53,54,55,53,54,56, &
|
||
46,45,44, 43,42,41, 37,39,38,40,39,38, 31,30,36,32,32,32,35,34,33,32,32,32, 56,54,53,55,54,53, &
|
||
45,46,44, 42,43,41, 39,37,38,39,40,38, 32,36,30,31,32,32,32,33,34,35,32,32, 56,53,54,55,53,54, &
|
||
45,44,46, 42,41,43, 38,37,39,38,40,39, 32,32,31,30,36,32,32,32,35,34,33,32, 53,56,54,53,55,54, &
|
||
46,44,45, 43,41,42, 38,39,37,38,39,40, 32,32,32,36,30,31,32,32,32,33,34,35, 54,56,53,54,55,53, &
|
||
44,46,45, 41,43,42, 39,38,37,39,38,40, 33,32,32,32,31,30,36,32,32,32,35,34, 54,53,56,54,53,55, &
|
||
44,45,46, 41,42,43, 40,38,39,37,38,39, 34,35,32,32,32,36,30,31,32,32,32,33, 53,54,56,53,54,55, & ! 1. pyr<c+a>
|
||
46,45,44, 43,42,41, 40,39,38,37,39,38, 35,34,33,32,32,32,31,30,36,32,32,32, 55,54,53,56,54,53, &
|
||
45,46,44, 42,43,41, 39,40,38,39,37,38, 32,33,34,35,32,32,32,36,30,31,32,32, 55,53,54,56,53,54, &
|
||
45,44,46, 42,41,43, 38,40,39,38,37,39, 32,32,35,34,33,32,32,32,31,30,36,32, 53,55,54,53,56,54, &
|
||
46,44,45, 43,41,42, 38,39,40,38,39,37, 32,32,32,33,34,35,32,32,32,36,30,31, 54,55,53,54,56,53, &
|
||
44,46,45, 41,43,42, 39,38,40,39,38,37, 36,32,32,32,35,34,33,32,32,32,31,30, 54,53,55,54,53,56, &
|
||
|
||
68,68,69, 66,66,67, 64,64,65,64,65,65, 60,61,61,60,62,62,60,63,63,60,62,62, 57,58,58,59,58,58, &
|
||
68,69,68, 66,67,66, 65,64,64,65,64,64, 62,62,60,61,61,60,62,62,60,63,63,60, 58,57,58,58,59,58, &
|
||
69,68,68, 67,66,66, 64,65,64,64,65,64, 63,60,62,62,60,61,61,60,62,62,60,63, 58,58,57,58,58,59, &
|
||
68,68,69, 66,66,67, 64,64,65,64,64,65, 60,63,63,60,62,62,60,61,61,60,62,62, 59,58,58,57,58,58, & ! 2. pyr<c+a>
|
||
68,69,68, 66,67,66, 65,64,64,65,64,64, 62,62,60,63,63,60,62,62,60,61,61,60, 58,59,58,58,57,58, &
|
||
69,68,68, 67,66,66, 64,65,64,64,65,64, 61,60,62,62,60,63,63,60,62,62,60,61, 58,58,59,58,58,57 &
|
||
],shape(HP_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for hP (onion peel naming scheme)
|
||
!< 10.1016/j.ijplas.2014.06.010 table 3
|
||
!< 10.1080/14786435.2012.699689 table 2 and 3
|
||
!< index & label & description
|
||
!< 1 & S1 & basal self-interaction
|
||
!< 2 & 1 & basal/basal coplanar
|
||
!< 3 & 3 & basal/prismatic collinear
|
||
!< 4 & 4 & basal/prismatic non-collinear
|
||
!< 5 & S2 & prismatic self-interaction
|
||
!< 6 & 2 & prismatic/prismatic
|
||
!< 7 & 5 & prismatic/basal collinear
|
||
!< 8 & 6 & prismatic/basal non-collinear
|
||
!< 9 & - & basal/pyramidal <a> non-collinear
|
||
!< 10 & - & basal/pyramidal <a> collinear
|
||
!< 11 & - & prismatic/pyramidal <a> non-collinear
|
||
!< 12 & - & prismatic/pyramidal <a> collinear
|
||
!< 13 & - & pyramidal <a> self-interaction
|
||
!< 14 & - & pyramidal <a> non-collinear
|
||
!< 15 & - & pyramidal <a> collinear
|
||
!< 16 & - & pyramidal <a>/prismatic non-collinear
|
||
!< 17 & - & pyramidal <a>/prismatic collinear
|
||
!< 18 & - & pyramidal <a>/basal non-collinear
|
||
!< 19 & - & pyramidal <a>/basal collinear
|
||
!< 20 & - & basal/1. order pyramidal <c+a> semi-collinear
|
||
!< 21 & - & basal/1. order pyramidal <c+a>
|
||
!< 22 & - & basal/1. order pyramidal <c+a>
|
||
!< 23 & - & prismatic/1. order pyramidal <c+a> semi-collinear
|
||
!< 24 & - & prismatic/1. order pyramidal <c+a>
|
||
!< 25 & - & prismatic/1. order pyramidal <c+a> semi-coplanar?
|
||
!< 26 & - & pyramidal <a>/1. order pyramidal <c+a> coplanar
|
||
!< 27 & - & pyramidal <a>/1. order pyramidal <c+a>
|
||
!< 28 & - & pyramidal <a>/1. order pyramidal <c+a> semi-collinear
|
||
!< 29 & - & pyramidal <a>/1. order pyramidal <c+a> semi-coplanar
|
||
!< 30 & - & 1. order pyramidal <c+a> self-interaction
|
||
!< 31 & - & 1. order pyramidal <c+a> coplanar
|
||
!< 32 & - & 1. order pyramidal <c+a>
|
||
!< 33 & - & 1. order pyramidal <c+a>
|
||
!< 34 & - & 1. order pyramidal <c+a> semi-coplanar
|
||
!< 35 & - & 1. order pyramidal <c+a> semi-coplanar
|
||
!< 36 & - & 1. order pyramidal <c+a> collinear
|
||
!< 37 & - & 1. order pyramidal <c+a>/pyramidal <a> coplanar
|
||
!< 38 & - & 1. order pyramidal <c+a>/pyramidal <a> semi-collinear
|
||
!< 39 & - & 1. order pyramidal <c+a>/pyramidal <a>
|
||
!< 40 & - & 1. order pyramidal <c+a>/pyramidal <a> semi-coplanar
|
||
!< 41 & - & 1. order pyramidal <c+a>/prismatic semi-collinear
|
||
!< 42 & - & 1. order pyramidal <c+a>/prismatic semi-coplanar
|
||
!< 43 & - & 1. order pyramidal <c+a>/prismatic
|
||
!< 44 & - & 1. order pyramidal <c+a>/basal semi-collinear
|
||
!< 45 & - & 1. order pyramidal <c+a>/basal
|
||
!< 46 & - & 1. order pyramidal <c+a>/basal
|
||
!< 47 & 8 & basal/2. order pyramidal <c+a> non-collinear
|
||
!< 48 & 7 & basal/2. order pyramidal <c+a> semi-collinear
|
||
!< 49 & 10 & prismatic/2. order pyramidal <c+a>
|
||
!< 50 & 9 & prismatic/2. order pyramidal <c+a> semi-collinear
|
||
!< 51 & - & pyramidal <a>/2. order pyramidal <c+a>
|
||
!< 52 & - & pyramidal <a>/2. order pyramidal <c+a> semi collinear
|
||
!< 53 & - & 1. order pyramidal <c+a>/2. order pyramidal <c+a>
|
||
!< 54 & - & 1. order pyramidal <c+a>/2. order pyramidal <c+a>
|
||
!< 55 & - & 1. order pyramidal <c+a>/2. order pyramidal <c+a>
|
||
!< 56 & - & 1. order pyramidal <c+a>/2. order pyramidal <c+a> collinear
|
||
!< 57 & S3 & 2. order pyramidal <c+a> self-interaction
|
||
!< 58 & 16 & 2. order pyramidal <c+a> non-collinear
|
||
!< 59 & 15 & 2. order pyramidal <c+a> semi-collinear
|
||
!< 60 & - & 2. order pyramidal <c+a>/1. order pyramidal <c+a>
|
||
!< 61 & - & 2. order pyramidal <c+a>/1. order pyramidal <c+a> collinear
|
||
!< 62 & - & 2. order pyramidal <c+a>/1. order pyramidal <c+a>
|
||
!< 63 & - & 2. order pyramidal <c+a>/1. order pyramidal <c+a>
|
||
!< 64 & - & 2. order pyramidal <c+a>/pyramidal <a> non-collinear
|
||
!< 65 & - & 2. order pyramidal <c+a>/pyramidal <a> semi-collinear
|
||
!< 66 & 14 & 2. order pyramidal <c+a>/prismatic non-collinear
|
||
!< 67 & 13 & 2. order pyramidal <c+a>/prismatic semi-collinear
|
||
!< 68 & 12 & 2. order pyramidal <c+a>/basal non-collinear
|
||
!< 69 & 11 & 2. order pyramidal <c+a>/basal semi-collinear
|
||
|
||
integer, dimension(TI_NSLIP,TI_NSLIP), parameter :: &
|
||
TI_INTERACTIONSLIPSLIP = reshape( [&
|
||
1, 2, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, 111, 111, 111, 111, 133,133,133,133,133,133,133,133, 157,157,157,157,157,157,157,157, & ! -----> acting
|
||
2, 1, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, 111, 111, 111, 111, 133,133,133,133,133,133,133,133, 157,157,157,157,157,157,157,157, & ! |
|
||
! |
|
||
6, 6, 4, 5, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, 112, 112, 112, 112, 134,134,134,134,134,134,134,134, 158,158,158,158,158,158,158,158, & ! v
|
||
6, 6, 5, 4, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, 112, 112, 112, 112, 134,134,134,134,134,134,134,134, 158,158,158,158,158,158,158,158, & ! reacting
|
||
|
||
12, 12, 11, 11, 9, 10, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, 113, 113, 113, 113, 135,135,135,135,135,135,135,135, 159,159,159,159,159,159,159,159, &
|
||
12, 12, 11, 11, 10, 9, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, 113, 113, 113, 113, 135,135,135,135,135,135,135,135, 159,159,159,159,159,159,159,159, &
|
||
|
||
20, 20, 19, 19, 18, 18, 16, 17, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
|
||
20, 20, 19, 19, 18, 18, 17, 16, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
|
||
20, 20, 19, 19, 18, 18, 17, 17, 16, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
|
||
20, 20, 19, 19, 18, 18, 17, 17, 17, 16, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
|
||
|
||
30, 30, 29, 29, 28, 28, 27, 27, 27, 27, 25, 26, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, 115, 115, 115, 115, 137,137,137,137,137,137,137,137, 161,161,161,161,161,161,161,161, &
|
||
30, 30, 29, 29, 28, 28, 27, 27, 27, 27, 26, 25, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, 115, 115, 115, 115, 137,137,137,137,137,137,137,137, 161,161,161,161,161,161,161,161, &
|
||
|
||
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 36, 37, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
|
||
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 36, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
|
||
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 37, 36, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
|
||
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 37, 37, 36, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
|
||
|
||
56, 56, 55, 55, 54, 54, 53, 53, 53, 53, 52, 52, 51, 51, 51, 51, 49, 50, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, 117, 117, 117, 117, 139,139,139,139,139,139,139,139, 163,163,163,163,163,163,163,163, &
|
||
56, 56, 55, 55, 54, 54, 53, 53, 53, 53, 52, 52, 51, 51, 51, 51, 50, 49, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, 117, 117, 117, 117, 139,139,139,139,139,139,139,139, 163,163,163,163,163,163,163,163, &
|
||
|
||
72, 72, 71, 71, 70, 70, 69, 69, 69, 69, 68, 68, 67, 67, 67, 67, 66, 66, 64, 65, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, 118, 118, 118, 118, 140,140,140,140,140,140,140,140, 164,164,164,164,164,164,164,164, &
|
||
72, 72, 71, 71, 70, 70, 69, 69, 69, 69, 68, 68, 67, 67, 67, 67, 66, 66, 65, 64, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, 118, 118, 118, 118, 140,140,140,140,140,140,140,140, 164,164,164,164,164,164,164,164, &
|
||
|
||
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 81, 82, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
|
||
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 81, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
|
||
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 81, 82, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
|
||
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
|
||
|
||
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 100,101,101,101,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
|
||
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,100,101,101,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
|
||
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,100,101,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
|
||
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,100,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
|
||
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,100,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
|
||
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,100,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
|
||
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,101,100,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
|
||
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,101,101,100, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
|
||
|
||
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 122, 122, 122, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
|
||
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 121, 122, 122, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
|
||
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 122, 121, 122, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
|
||
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 122, 122, 121, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
|
||
|
||
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 144,145,145,145,145,145,145,145, 168,168,168,168,168,168,168,168, &
|
||
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,144,145,145,145,145,145,145, 168,168,168,168,168,168,168,168, &
|
||
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,144,145,145,145,145,145, 168,168,168,168,168,168,168,168, &
|
||
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,144,145,145,145,145, 168,168,168,168,168,168,168,168, &
|
||
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,144,145,145,145, 168,168,168,168,168,168,168,168, &
|
||
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,145,144,145,145, 168,168,168,168,168,168,168,168, &
|
||
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,145,145,144,145, 168,168,168,168,168,168,168,168, &
|
||
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,145,145,145,144, 168,168,168,168,168,168,168,168, &
|
||
|
||
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,170,170,170, &
|
||
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,169,170,170,170,170,170,170, &
|
||
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,170,169,170,170,170,170,170, &
|
||
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,170,170,169,170,170,170,170, &
|
||
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,170,170,170,169,170,170,170, &
|
||
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,169,170,170, &
|
||
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,170,169,170, &
|
||
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,170,170,169 &
|
||
],shape(TI_INTERACTIONSLIPSLIP))
|
||
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
interactionTypes = CF_INTERACTIONSLIPSLIP
|
||
NslipMax = CF_NSLIPSYSTEM
|
||
case('cI')
|
||
interactionTypes = CI_INTERACTIONSLIPSLIP
|
||
NslipMax = CI_NSLIPSYSTEM
|
||
case('hP')
|
||
interactionTypes = HP_INTERACTIONSLIPSLIP
|
||
NslipMax = HP_NSLIPSYSTEM
|
||
case('tI')
|
||
interactionTypes = TI_INTERACTIONSLIPSLIP
|
||
NslipMax = TI_NSLIPSYSTEM
|
||
case default
|
||
call IO_error(137,ext_msg='lattice_interaction_SlipBySlip: '//trim(lattice))
|
||
end select
|
||
|
||
interactionMatrix = buildInteraction(Nslip,Nslip,NslipMax,NslipMax,interactionValues,interactionTypes)
|
||
|
||
end function lattice_interaction_SlipBySlip
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Twin-twin interaction matrix
|
||
!> details only active twin systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_interaction_TwinByTwin(Ntwin,interactionValues,lattice) result(interactionMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for twin-twin interaction
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), dimension(sum(Ntwin),sum(Ntwin)) :: interactionMatrix
|
||
|
||
integer, dimension(:), allocatable :: NtwinMax
|
||
integer, dimension(:,:), allocatable :: interactionTypes
|
||
|
||
integer, dimension(CF_NTWIN,CF_NTWIN), parameter :: &
|
||
CF_INTERACTIONTWINTWIN = reshape( [&
|
||
1,1,1,2,2,2,2,2,2,2,2,2, & ! -----> acting
|
||
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
|
||
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
|
||
2,2,2,1,1,1,2,2,2,2,2,2, & ! v
|
||
2,2,2,1,1,1,2,2,2,2,2,2, & ! reacting
|
||
2,2,2,1,1,1,2,2,2,2,2,2, &
|
||
2,2,2,2,2,2,1,1,1,2,2,2, &
|
||
2,2,2,2,2,2,1,1,1,2,2,2, &
|
||
2,2,2,2,2,2,1,1,1,2,2,2, &
|
||
2,2,2,2,2,2,2,2,2,1,1,1, &
|
||
2,2,2,2,2,2,2,2,2,1,1,1, &
|
||
2,2,2,2,2,2,2,2,2,1,1,1 &
|
||
],shape(CF_INTERACTIONTWINTWIN)) !< Twin-twin interaction types for cF
|
||
|
||
integer, dimension(CI_NTWIN,CI_NTWIN), parameter :: &
|
||
CI_INTERACTIONTWINTWIN = reshape( [&
|
||
1,3,3,3,3,3,3,2,3,3,2,3, & ! -----> acting
|
||
3,1,3,3,3,3,2,3,3,3,3,2, & ! |
|
||
3,3,1,3,3,2,3,3,2,3,3,3, & ! |
|
||
3,3,3,1,2,3,3,3,3,2,3,3, & ! v
|
||
3,3,3,2,1,3,3,3,3,2,3,3, & ! reacting
|
||
3,3,2,3,3,1,3,3,2,3,3,3, &
|
||
3,2,3,3,3,3,1,3,3,3,3,2, &
|
||
2,3,3,3,3,3,3,1,3,3,2,3, &
|
||
3,3,2,3,3,2,3,3,1,3,3,3, &
|
||
3,3,3,2,2,3,3,3,3,1,3,3, &
|
||
2,3,3,3,3,3,3,2,3,3,1,3, &
|
||
3,2,3,3,3,3,2,3,3,3,3,1 &
|
||
],shape(CI_INTERACTIONTWINTWIN)) !< Twin-twin interaction types for cI
|
||
!< 1: self interaction
|
||
!< 2: collinear interaction
|
||
!< 3: other interaction
|
||
integer, dimension(HP_NTWIN,HP_NTWIN), parameter :: &
|
||
HP_INTERACTIONTWINTWIN = reshape( [&
|
||
! <-10.1>{10.2} <11.6>{-1-1.1} <10.-2>{10.1} <11.-3>{11.2}
|
||
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! -----> acting
|
||
2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
|
||
2, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
|
||
2, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! v <-10.1>{10.2}
|
||
2, 2, 2, 2, 1, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! reacting
|
||
2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, &
|
||
|
||
6, 6, 6, 6, 6, 6, 4, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
6, 6, 6, 6, 6, 6, 5, 4, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
6, 6, 6, 6, 6, 6, 5, 5, 4, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, & ! <11.6>{-1-1.1}
|
||
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 9,10,10,10,10,10, 15,15,15,15,15,15, &
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10, 9,10,10,10,10, 15,15,15,15,15,15, &
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10, 9,10,10,10, 15,15,15,15,15,15, &
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10, 9,10,10, 15,15,15,15,15,15, & ! <10.-2>{10.1}
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10, 9,10, 15,15,15,15,15,15, &
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10,10, 9, 15,15,15,15,15,15, &
|
||
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 16,17,17,17,17,17, &
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,16,17,17,17,17, &
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,16,17,17,17, &
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,16,17,17, & ! <11.-3>{11.2}
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,16,17, &
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,16 &
|
||
],shape(HP_INTERACTIONTWINTWIN)) !< Twin-twin interaction types for hP
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
interactionTypes = CF_INTERACTIONTWINTWIN
|
||
NtwinMax = CF_NTWINSYSTEM
|
||
case('cI')
|
||
interactionTypes = CI_INTERACTIONTWINTWIN
|
||
NtwinMax = CI_NTWINSYSTEM
|
||
case('hP')
|
||
interactionTypes = HP_INTERACTIONTWINTWIN
|
||
NtwinMax = HP_NTWINSYSTEM
|
||
case default
|
||
call IO_error(137,ext_msg='lattice_interaction_TwinByTwin: '//trim(lattice))
|
||
end select
|
||
|
||
interactionMatrix = buildInteraction(Ntwin,Ntwin,NtwinMax,NtwinMax,interactionValues,interactionTypes)
|
||
|
||
end function lattice_interaction_TwinByTwin
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Trans-trans interaction matrix
|
||
!> details only active trans systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_interaction_TransByTrans(Ntrans,interactionValues,lattice) result(interactionMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Ntrans !< number of active trans systems per family
|
||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for trans-trans interaction
|
||
character(len=2), intent(in) :: lattice !<Bravais lattice (Pearson symbol) (parent crystal)
|
||
real(pReal), dimension(sum(Ntrans),sum(Ntrans)) :: interactionMatrix
|
||
|
||
integer, dimension(:), allocatable :: NtransMax
|
||
integer, dimension(:,:), allocatable :: interactionTypes
|
||
|
||
integer, dimension(CF_NTRANS,CF_NTRANS), parameter :: &
|
||
CF_INTERACTIONTRANSTRANS = reshape( [&
|
||
1,1,1,2,2,2,2,2,2,2,2,2, & ! -----> acting
|
||
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
|
||
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
|
||
2,2,2,1,1,1,2,2,2,2,2,2, & ! v
|
||
2,2,2,1,1,1,2,2,2,2,2,2, & ! reacting
|
||
2,2,2,1,1,1,2,2,2,2,2,2, &
|
||
2,2,2,2,2,2,1,1,1,2,2,2, &
|
||
2,2,2,2,2,2,1,1,1,2,2,2, &
|
||
2,2,2,2,2,2,1,1,1,2,2,2, &
|
||
2,2,2,2,2,2,2,2,2,1,1,1, &
|
||
2,2,2,2,2,2,2,2,2,1,1,1, &
|
||
2,2,2,2,2,2,2,2,2,1,1,1 &
|
||
],shape(CF_INTERACTIONTRANSTRANS)) !< Trans-trans interaction types for cF
|
||
|
||
if (lattice == 'cF') then
|
||
interactionTypes = CF_INTERACTIONTRANSTRANS
|
||
NtransMax = CF_NTRANSSYSTEM
|
||
else
|
||
call IO_error(137,ext_msg='lattice_interaction_TransByTrans: '//trim(lattice))
|
||
end if
|
||
|
||
interactionMatrix = buildInteraction(Ntrans,Ntrans,NtransMax,NtransMax,interactionValues,interactionTypes)
|
||
|
||
end function lattice_interaction_TransByTrans
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Slip-twin interaction matrix
|
||
!> details only active slip and twin systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_interaction_SlipByTwin(Nslip,Ntwin,interactionValues,lattice) result(interactionMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family
|
||
Ntwin !< number of active twin systems per family
|
||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for slip-twin interaction
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), dimension(sum(Nslip),sum(Ntwin)) :: interactionMatrix
|
||
|
||
integer, dimension(:), allocatable :: NslipMax, &
|
||
NtwinMax
|
||
integer, dimension(:,:), allocatable :: interactionTypes
|
||
|
||
integer, dimension(CF_NTWIN,CF_NSLIP), parameter :: &
|
||
CF_INTERACTIONSLIPTWIN = reshape( [&
|
||
1,1,1,3,3,3,2,2,2,3,3,3, & ! -----> twin (acting)
|
||
1,1,1,3,3,3,3,3,3,2,2,2, & ! |
|
||
1,1,1,2,2,2,3,3,3,3,3,3, & ! |
|
||
3,3,3,1,1,1,3,3,3,2,2,2, & ! v
|
||
3,3,3,1,1,1,2,2,2,3,3,3, & ! slip (reacting)
|
||
2,2,2,1,1,1,3,3,3,3,3,3, &
|
||
2,2,2,3,3,3,1,1,1,3,3,3, &
|
||
3,3,3,2,2,2,1,1,1,3,3,3, &
|
||
3,3,3,3,3,3,1,1,1,2,2,2, &
|
||
3,3,3,2,2,2,3,3,3,1,1,1, &
|
||
2,2,2,3,3,3,3,3,3,1,1,1, &
|
||
3,3,3,3,3,3,2,2,2,1,1,1, &
|
||
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4 &
|
||
],shape(CF_INTERACTIONSLIPTWIN)) !< Slip-twin interaction types for cF
|
||
!< 1: coplanar interaction
|
||
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
|
||
!< 3: other interaction
|
||
integer, dimension(CI_NTWIN,CI_NSLIP), parameter :: &
|
||
CI_INTERACTIONSLIPTWIN = reshape( [&
|
||
3,3,3,2,2,3,3,3,3,2,3,3, & ! -----> twin (acting)
|
||
3,3,2,3,3,2,3,3,2,3,3,3, & ! |
|
||
3,2,3,3,3,3,2,3,3,3,3,2, & ! |
|
||
2,3,3,3,3,3,3,2,3,3,2,3, & ! v
|
||
2,3,3,3,3,3,3,2,3,3,2,3, & ! slip (reacting)
|
||
3,3,2,3,3,2,3,3,2,3,3,3, &
|
||
3,2,3,3,3,3,2,3,3,3,3,2, &
|
||
3,3,3,2,2,3,3,3,3,2,3,3, &
|
||
2,3,3,3,3,3,3,2,3,3,2,3, &
|
||
3,3,3,2,2,3,3,3,3,2,3,3, &
|
||
3,2,3,3,3,3,2,3,3,3,3,2, &
|
||
3,3,2,3,3,2,3,3,2,3,3,3, &
|
||
|
||
1,3,3,3,3,3,3,2,3,3,2,3, &
|
||
3,1,3,3,3,3,2,3,3,3,3,2, &
|
||
3,3,1,3,3,2,3,3,2,3,3,3, &
|
||
3,3,3,1,2,3,3,3,3,2,3,3, &
|
||
3,3,3,2,1,3,3,3,3,2,3,3, &
|
||
3,3,2,3,3,1,3,3,2,3,3,3, &
|
||
3,2,3,3,3,3,1,3,3,3,3,2, &
|
||
2,3,3,3,3,3,3,1,3,3,2,3, &
|
||
3,3,2,3,3,2,3,3,1,3,3,3, &
|
||
3,3,3,2,2,3,3,3,3,1,3,3, &
|
||
2,3,3,3,3,3,3,2,3,3,1,3, &
|
||
3,2,3,3,3,3,2,3,3,3,3,1, &
|
||
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4 &
|
||
],shape(CI_INTERACTIONSLIPTWIN)) !< Slip-twin interaction types for cI
|
||
!< 1: coplanar interaction
|
||
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
|
||
!< 3: other interaction
|
||
!< 4: other interaction with slip family {123}
|
||
|
||
integer, dimension(HP_NTWIN,HP_NSLIP), parameter :: &
|
||
HP_INTERACTIONSLIPTWIN = reshape( [&
|
||
! <-10.1>{10.2} <11.6>{-1-1.1} <10.-2>{10.1} <11.-3>{11.2}
|
||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! ----> twin (acting)
|
||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! | basal
|
||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! |
|
||
! v
|
||
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, & ! slip (reacting)
|
||
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, & ! prism
|
||
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, &
|
||
|
||
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
|
||
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
|
||
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
|
||
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, & ! 1. pyr<a>
|
||
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
|
||
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
|
||
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, & ! 1. pyr<c+a>
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & ! 2. pyr<c+a>
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20 &
|
||
],shape(HP_INTERACTIONSLIPTWIN)) !< Slip-twin interaction types for hP
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
interactionTypes = CF_INTERACTIONSLIPTWIN
|
||
NslipMax = CF_NSLIPSYSTEM
|
||
NtwinMax = CF_NTWINSYSTEM
|
||
case('cI')
|
||
interactionTypes = CI_INTERACTIONSLIPTWIN
|
||
NslipMax = CI_NSLIPSYSTEM
|
||
NtwinMax = CI_NTWINSYSTEM
|
||
case('hP')
|
||
interactionTypes = HP_INTERACTIONSLIPTWIN
|
||
NslipMax = HP_NSLIPSYSTEM
|
||
NtwinMax = HP_NTWINSYSTEM
|
||
case default
|
||
call IO_error(137,ext_msg='lattice_interaction_SlipByTwin: '//trim(lattice))
|
||
end select
|
||
|
||
interactionMatrix = buildInteraction(Nslip,Ntwin,NslipMax,NtwinMax,interactionValues,interactionTypes)
|
||
|
||
end function lattice_interaction_SlipByTwin
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Slip-trans interaction matrix
|
||
!> details only active slip and trans systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_interaction_SlipByTrans(Nslip,Ntrans,interactionValues,lattice) result(interactionMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family
|
||
Ntrans !< number of active trans systems per family
|
||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for slip-trans interaction
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol) (parent crystal)
|
||
real(pReal), dimension(sum(Nslip),sum(Ntrans)) :: interactionMatrix
|
||
|
||
integer, dimension(:), allocatable :: NslipMax, &
|
||
NtransMax
|
||
integer, dimension(:,:), allocatable :: interactionTypes
|
||
|
||
integer, dimension(CF_NTRANS,CF_NSLIP), parameter :: &
|
||
CF_INTERACTIONSLIPTRANS = reshape( [&
|
||
1,1,1,3,3,3,2,2,2,3,3,3, & ! -----> trans (acting)
|
||
1,1,1,3,3,3,3,3,3,2,2,2, & ! |
|
||
1,1,1,2,2,2,3,3,3,3,3,3, & ! |
|
||
3,3,3,1,1,1,3,3,3,2,2,2, & ! v
|
||
3,3,3,1,1,1,2,2,2,3,3,3, & ! slip (reacting)
|
||
2,2,2,1,1,1,3,3,3,3,3,3, &
|
||
2,2,2,3,3,3,1,1,1,3,3,3, &
|
||
3,3,3,2,2,2,1,1,1,3,3,3, &
|
||
3,3,3,3,3,3,1,1,1,2,2,2, &
|
||
3,3,3,2,2,2,3,3,3,1,1,1, &
|
||
2,2,2,3,3,3,3,3,3,1,1,1, &
|
||
3,3,3,3,3,3,2,2,2,1,1,1, &
|
||
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4, &
|
||
4,4,4,4,4,4,4,4,4,4,4,4 &
|
||
],shape(CF_INTERACTIONSLIPTRANS)) !< Slip-trans interaction types for cF
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
interactionTypes = CF_INTERACTIONSLIPTRANS
|
||
NslipMax = CF_NSLIPSYSTEM
|
||
NtransMax = CF_NTRANSSYSTEM
|
||
case default
|
||
call IO_error(137,ext_msg='lattice_interaction_SlipByTrans: '//trim(lattice))
|
||
end select
|
||
|
||
interactionMatrix = buildInteraction(Nslip,Ntrans,NslipMax,NtransMax,interactionValues,interactionTypes)
|
||
|
||
end function lattice_interaction_SlipByTrans
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Twin-slip interaction matrix
|
||
!> details only active twin and slip systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_interaction_TwinBySlip(Ntwin,Nslip,interactionValues,lattice) result(interactionMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Ntwin, & !< number of active twin systems per family
|
||
Nslip !< number of active slip systems per family
|
||
real(pReal), dimension(:), intent(in) :: interactionValues !< values for twin-twin interaction
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), dimension(sum(Ntwin),sum(Nslip)) :: interactionMatrix
|
||
|
||
integer, dimension(:), allocatable :: NtwinMax, &
|
||
NslipMax
|
||
integer, dimension(:,:), allocatable :: interactionTypes
|
||
|
||
integer, dimension(CF_NSLIP,CF_NTWIN), parameter :: &
|
||
CF_INTERACTIONTWINSLIP = 1 !< Twin-slip interaction types for cF
|
||
|
||
integer, dimension(CI_NSLIP,CI_NTWIN), parameter :: &
|
||
CI_INTERACTIONTWINSLIP = 1 !< Twin-slip interaction types for cI
|
||
|
||
integer, dimension(HP_NSLIP,HP_NTWIN), parameter :: &
|
||
HP_INTERACTIONTWINSLIP = reshape( [&
|
||
! basal prism 1. pyr<a> 1. pyr<c+a> 2. pyr<c+a>
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! ----> slip (acting)
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! |
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! |
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! v <-10.1>{10.2}
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, & ! twin (reacting)
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 9, 9, 9, 13,13,13,13,13,13,13,13,13,13,13,13, 17,17,17,17,17,17, &
|
||
|
||
2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
|
||
2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
|
||
2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
|
||
2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, & ! <11.6>{-1-1.1}
|
||
2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
|
||
2, 2, 2, 6, 6, 6, 10,10,10,10,10,10, 14,14,14,14,14,14,14,14,14,14,14,14, 18,18,18,18,18,18, &
|
||
|
||
3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
|
||
3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
|
||
3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
|
||
3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, & ! <10.-2>{10.1}
|
||
3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
|
||
3, 3, 3, 7, 7, 7, 11,11,11,11,11,11, 15,15,15,15,15,15,15,15,15,15,15,15, 19,19,19,19,19,19, &
|
||
|
||
4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
|
||
4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
|
||
4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
|
||
4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, & ! <11.-3>{11.2}
|
||
4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20, &
|
||
4, 4, 4, 8, 8, 8, 12,12,12,12,12,12, 16,16,16,16,16,16,16,16,16,16,16,16, 20,20,20,20,20,20 &
|
||
],shape(HP_INTERACTIONTWINSLIP)) !< Twin-slip interaction types for hP
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
interactionTypes = CF_INTERACTIONTWINSLIP
|
||
NtwinMax = CF_NTWINSYSTEM
|
||
NslipMax = CF_NSLIPSYSTEM
|
||
case('cI')
|
||
interactionTypes = CI_INTERACTIONTWINSLIP
|
||
NtwinMax = CI_NTWINSYSTEM
|
||
NslipMax = CI_NSLIPSYSTEM
|
||
case('hP')
|
||
interactionTypes = HP_INTERACTIONTWINSLIP
|
||
NtwinMax = HP_NTWINSYSTEM
|
||
NslipMax = HP_NSLIPSYSTEM
|
||
case default
|
||
call IO_error(137,ext_msg='lattice_interaction_TwinBySlip: '//trim(lattice))
|
||
end select
|
||
|
||
interactionMatrix = buildInteraction(Ntwin,Nslip,NtwinMax,NslipMax,interactionValues,interactionTypes)
|
||
|
||
end function lattice_interaction_TwinBySlip
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Schmid matrix for slip
|
||
!> details only active slip systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_SchmidMatrix_slip(Nslip,lattice,cOverA) result(SchmidMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA
|
||
real(pReal), dimension(3,3,sum(Nslip)) :: SchmidMatrix
|
||
|
||
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
|
||
real(pReal), dimension(:,:), allocatable :: slipSystems
|
||
integer, dimension(:), allocatable :: NslipMax
|
||
integer :: i
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
NslipMax = CF_NSLIPSYSTEM
|
||
slipSystems = CF_SYSTEMSLIP
|
||
case('cI')
|
||
NslipMax = CI_NSLIPSYSTEM
|
||
slipSystems = CI_SYSTEMSLIP
|
||
case('hP')
|
||
NslipMax = HP_NSLIPSYSTEM
|
||
slipSystems = HP_SYSTEMSLIP
|
||
case('tI')
|
||
NslipMax = TI_NSLIPSYSTEM
|
||
slipSystems = TI_SYSTEMSLIP
|
||
case default
|
||
allocate(NslipMax(0))
|
||
call IO_error(137,ext_msg='lattice_SchmidMatrix_slip: '//trim(lattice))
|
||
end select
|
||
|
||
if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) &
|
||
call IO_error(145,ext_msg='Nslip '//trim(lattice))
|
||
if (any(Nslip < 0)) &
|
||
call IO_error(144,ext_msg='Nslip '//trim(lattice))
|
||
|
||
coordinateSystem = buildCoordinateSystem(Nslip,NslipMax,slipSystems,lattice,cOverA)
|
||
|
||
do i = 1, sum(Nslip)
|
||
SchmidMatrix(1:3,1:3,i) = math_outer(coordinateSystem(1:3,1,i),coordinateSystem(1:3,2,i))
|
||
if (abs(math_trace33(SchmidMatrix(1:3,1:3,i))) > tol_math_check) &
|
||
error stop 'dilatational Schmid matrix for slip'
|
||
enddo
|
||
|
||
end function lattice_SchmidMatrix_slip
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Schmid matrix for twinning
|
||
!> details only active twin systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_SchmidMatrix_twin(Ntwin,lattice,cOverA) result(SchmidMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(3,3,sum(Ntwin)) :: SchmidMatrix
|
||
|
||
real(pReal), dimension(3,3,sum(Ntwin)) :: coordinateSystem
|
||
real(pReal), dimension(:,:), allocatable :: twinSystems
|
||
integer, dimension(:), allocatable :: NtwinMax
|
||
integer :: i
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
NtwinMax = CF_NTWINSYSTEM
|
||
twinSystems = CF_SYSTEMTWIN
|
||
case('cI')
|
||
NtwinMax = CI_NTWINSYSTEM
|
||
twinSystems = CI_SYSTEMTWIN
|
||
case('hP')
|
||
NtwinMax = HP_NTWINSYSTEM
|
||
twinSystems = HP_SYSTEMTWIN
|
||
case default
|
||
allocate(NtwinMax(0))
|
||
call IO_error(137,ext_msg='lattice_SchmidMatrix_twin: '//trim(lattice))
|
||
end select
|
||
|
||
if (any(NtwinMax(1:size(Ntwin)) - Ntwin < 0)) &
|
||
call IO_error(145,ext_msg='Ntwin '//trim(lattice))
|
||
if (any(Ntwin < 0)) &
|
||
call IO_error(144,ext_msg='Ntwin '//trim(lattice))
|
||
|
||
coordinateSystem = buildCoordinateSystem(Ntwin,NtwinMax,twinSystems,lattice,cOverA)
|
||
|
||
do i = 1, sum(Ntwin)
|
||
SchmidMatrix(1:3,1:3,i) = math_outer(coordinateSystem(1:3,1,i),coordinateSystem(1:3,2,i))
|
||
if (abs(math_trace33(SchmidMatrix(1:3,1:3,i))) > tol_math_check) &
|
||
error stop 'dilatational Schmid matrix for twin'
|
||
enddo
|
||
|
||
end function lattice_SchmidMatrix_twin
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Schmid matrix for transformation
|
||
!> details only active twin systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_SchmidMatrix_trans(Ntrans,lattice_target,cOverA,a_cF,a_cI) result(SchmidMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family
|
||
character(len=2), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol)
|
||
real(pReal), optional, intent(in) :: cOverA, a_cI, a_cF
|
||
real(pReal), dimension(3,3,sum(Ntrans)) :: SchmidMatrix
|
||
|
||
real(pReal), dimension(3,3,sum(Ntrans)) :: devNull
|
||
|
||
|
||
if (lattice_target == 'hP' .and. present(cOverA)) then
|
||
if (cOverA < 1.0_pReal .or. cOverA > 2.0_pReal) &
|
||
call IO_error(131,ext_msg='lattice_SchmidMatrix_trans: '//trim(lattice_target))
|
||
call buildTransformationSystem(devNull,SchmidMatrix,Ntrans,cOverA=cOverA)
|
||
else if (lattice_target == 'cI' .and. present(a_cF) .and. present(a_cI)) then
|
||
if (a_cI <= 0.0_pReal .or. a_cF <= 0.0_pReal) &
|
||
call IO_error(134,ext_msg='lattice_SchmidMatrix_trans: '//trim(lattice_target))
|
||
call buildTransformationSystem(devNull,SchmidMatrix,Ntrans,a_cF=a_cF,a_cI=a_cI)
|
||
else
|
||
call IO_error(131,ext_msg='lattice_SchmidMatrix_trans: '//trim(lattice_target))
|
||
end if
|
||
|
||
end function lattice_SchmidMatrix_trans
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Schmid matrix for cleavage
|
||
!> details only active cleavage systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_SchmidMatrix_cleavage(Ncleavage,lattice,cOverA) result(SchmidMatrix)
|
||
|
||
integer, dimension(:), intent(in) :: Ncleavage !< number of active cleavage systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(3,3,3,sum(Ncleavage)) :: SchmidMatrix
|
||
|
||
real(pReal), dimension(3,3,sum(Ncleavage)) :: coordinateSystem
|
||
real(pReal), dimension(:,:), allocatable :: cleavageSystems
|
||
integer, dimension(:), allocatable :: NcleavageMax
|
||
integer :: i
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
NcleavageMax = CF_NCLEAVAGESYSTEM
|
||
cleavageSystems = CF_SYSTEMCLEAVAGE
|
||
case('cI')
|
||
NcleavageMax = CI_NCLEAVAGESYSTEM
|
||
cleavageSystems = CI_SYSTEMCLEAVAGE
|
||
case default
|
||
allocate(NcleavageMax(0))
|
||
call IO_error(137,ext_msg='lattice_SchmidMatrix_cleavage: '//trim(lattice))
|
||
end select
|
||
|
||
if (any(NcleavageMax(1:size(Ncleavage)) - Ncleavage < 0)) &
|
||
call IO_error(145,ext_msg='Ncleavage '//trim(lattice))
|
||
if (any(Ncleavage < 0)) &
|
||
call IO_error(144,ext_msg='Ncleavage '//trim(lattice))
|
||
|
||
coordinateSystem = buildCoordinateSystem(Ncleavage,NcleavageMax,cleavageSystems,lattice,cOverA)
|
||
|
||
do i = 1, sum(Ncleavage)
|
||
SchmidMatrix(1:3,1:3,1,i) = math_outer(coordinateSystem(1:3,1,i),coordinateSystem(1:3,2,i))
|
||
SchmidMatrix(1:3,1:3,2,i) = math_outer(coordinateSystem(1:3,3,i),coordinateSystem(1:3,2,i))
|
||
SchmidMatrix(1:3,1:3,3,i) = math_outer(coordinateSystem(1:3,2,i),coordinateSystem(1:3,2,i))
|
||
enddo
|
||
|
||
end function lattice_SchmidMatrix_cleavage
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Slip direction of slip systems (|| b)
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_slip_direction(Nslip,lattice,cOverA) result(d)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(3,sum(Nslip)) :: d
|
||
|
||
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
|
||
|
||
coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA)
|
||
d = coordinateSystem(1:3,1,1:sum(Nslip))
|
||
|
||
end function lattice_slip_direction
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Normal direction of slip systems (|| n)
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_slip_normal(Nslip,lattice,cOverA) result(n)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(3,sum(Nslip)) :: n
|
||
|
||
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
|
||
|
||
coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA)
|
||
n = coordinateSystem(1:3,2,1:sum(Nslip))
|
||
|
||
end function lattice_slip_normal
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Transverse direction of slip systems (|| t = b x n)
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_slip_transverse(Nslip,lattice,cOverA) result(t)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(3,sum(Nslip)) :: t
|
||
|
||
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
|
||
|
||
coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA)
|
||
t = coordinateSystem(1:3,3,1:sum(Nslip))
|
||
|
||
end function lattice_slip_transverse
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Labels of slip systems
|
||
!> details only active slip systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_labels_slip(Nslip,lattice) result(labels)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
|
||
character(len=:), dimension(:), allocatable :: labels
|
||
|
||
real(pReal), dimension(:,:), allocatable :: slipSystems
|
||
integer, dimension(:), allocatable :: NslipMax
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
NslipMax = CF_NSLIPSYSTEM
|
||
slipSystems = CF_SYSTEMSLIP
|
||
case('cI')
|
||
NslipMax = CI_NSLIPSYSTEM
|
||
slipSystems = CI_SYSTEMSLIP
|
||
case('hP')
|
||
NslipMax = HP_NSLIPSYSTEM
|
||
slipSystems = HP_SYSTEMSLIP
|
||
case('tI')
|
||
NslipMax = TI_NSLIPSYSTEM
|
||
slipSystems = TI_SYSTEMSLIP
|
||
case default
|
||
call IO_error(137,ext_msg='lattice_labels_slip: '//trim(lattice))
|
||
end select
|
||
|
||
if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) &
|
||
call IO_error(145,ext_msg='Nslip '//trim(lattice))
|
||
if (any(Nslip < 0)) &
|
||
call IO_error(144,ext_msg='Nslip '//trim(lattice))
|
||
|
||
labels = getLabels(Nslip,NslipMax,slipSystems)
|
||
|
||
end function lattice_labels_slip
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Return 3x3 tensor with symmetry according to given Bravais lattice
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function lattice_symmetrize_33(T,lattice) result(T_sym)
|
||
|
||
real(pReal), dimension(3,3) :: T_sym
|
||
|
||
real(pReal), dimension(3,3), intent(in) :: T
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
|
||
|
||
T_sym = 0.0_pReal
|
||
|
||
select case(lattice)
|
||
case('cF','cI')
|
||
T_sym(1,1) = T(1,1)
|
||
T_sym(2,2) = T(1,1)
|
||
T_sym(3,3) = T(1,1)
|
||
case('hP','tI')
|
||
T_sym(1,1) = T(1,1)
|
||
T_sym(2,2) = T(1,1)
|
||
T_sym(3,3) = T(3,3)
|
||
end select
|
||
|
||
end function lattice_symmetrize_33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Return stiffness matrix in 6x6 notation with symmetry according to given Bravais lattice
|
||
!> @details J. A. Rayne and B. S. Chandrasekhar Phys. Rev. 120, 1658 Erratum Phys. Rev. 122, 1962
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function lattice_symmetrize_C66(C66,lattice) result(C66_sym)
|
||
|
||
real(pReal), dimension(6,6) :: C66_sym
|
||
|
||
real(pReal), dimension(6,6), intent(in) :: C66
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
|
||
integer :: i,j
|
||
|
||
|
||
C66_sym = 0.0_pReal
|
||
|
||
select case(lattice)
|
||
case ('cF','cI')
|
||
C66_sym(1,1) = C66(1,1); C66_sym(2,2) = C66(1,1); C66_sym(3,3) = C66(1,1)
|
||
C66_sym(1,2) = C66(1,2); C66_sym(1,3) = C66(1,2); C66_sym(2,3) = C66(1,2)
|
||
C66_sym(4,4) = C66(4,4); C66_sym(5,5) = C66(4,4); C66_sym(6,6) = C66(4,4) ! isotropic C_44 = (C_11-C_12)/2
|
||
case ('hP')
|
||
C66_sym(1,1) = C66(1,1); C66_sym(2,2) = C66(1,1)
|
||
C66_sym(3,3) = C66(3,3)
|
||
C66_sym(1,2) = C66(1,2)
|
||
C66_sym(1,3) = C66(1,3); C66_sym(2,3) = C66(1,3)
|
||
C66_sym(4,4) = C66(4,4); C66_sym(5,5) = C66(4,4)
|
||
C66_sym(6,6) = 0.5_pReal*(C66(1,1)-C66(1,2))
|
||
case ('tI')
|
||
C66_sym(1,1) = C66(1,1); C66_sym(2,2) = C66(1,1)
|
||
C66_sym(3,3) = C66(3,3)
|
||
C66_sym(1,2) = C66(1,2)
|
||
C66_sym(1,3) = C66(1,3); C66_sym(2,3) = C66(1,3)
|
||
C66_sym(4,4) = C66(4,4); C66_sym(5,5) = C66(4,4)
|
||
C66_sym(6,6) = C66(6,6)
|
||
end select
|
||
|
||
do i = 1, 6
|
||
do j = i+1, 6
|
||
C66_sym(j,i) = C66_sym(i,j)
|
||
enddo
|
||
enddo
|
||
|
||
end function lattice_symmetrize_C66
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Labels for twin systems
|
||
!> details only active twin systems are considered
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_labels_twin(Ntwin,lattice) result(labels)
|
||
|
||
integer, dimension(:), intent(in) :: Ntwin !< number of active slip systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
|
||
character(len=:), dimension(:), allocatable :: labels
|
||
|
||
real(pReal), dimension(:,:), allocatable :: twinSystems
|
||
integer, dimension(:), allocatable :: NtwinMax
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
NtwinMax = CF_NTWINSYSTEM
|
||
twinSystems = CF_SYSTEMTWIN
|
||
case('cI')
|
||
NtwinMax = CI_NTWINSYSTEM
|
||
twinSystems = CI_SYSTEMTWIN
|
||
case('hP')
|
||
NtwinMax = HP_NTWINSYSTEM
|
||
twinSystems = HP_SYSTEMTWIN
|
||
case default
|
||
call IO_error(137,ext_msg='lattice_labels_twin: '//trim(lattice))
|
||
end select
|
||
|
||
if (any(NtwinMax(1:size(Ntwin)) - Ntwin < 0)) &
|
||
call IO_error(145,ext_msg='Ntwin '//trim(lattice))
|
||
if (any(Ntwin < 0)) &
|
||
call IO_error(144,ext_msg='Ntwin '//trim(lattice))
|
||
|
||
labels = getLabels(Ntwin,NtwinMax,twinSystems)
|
||
|
||
end function lattice_labels_twin
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Projection of the transverse direction onto the slip plane
|
||
!> @details: This projection is used to calculate forest hardening for edge dislocations
|
||
!--------------------------------------------------------------------------------------------------
|
||
function slipProjection_transverse(Nslip,lattice,cOverA) result(projection)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: projection
|
||
|
||
real(pReal), dimension(3,sum(Nslip)) :: n, t
|
||
integer :: i, j
|
||
|
||
n = lattice_slip_normal (Nslip,lattice,cOverA)
|
||
t = lattice_slip_transverse(Nslip,lattice,cOverA)
|
||
|
||
do i=1, sum(Nslip); do j=1, sum(Nslip)
|
||
projection(i,j) = abs(math_inner(n(:,i),t(:,j)))
|
||
enddo; enddo
|
||
|
||
end function slipProjection_transverse
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Projection of the slip direction onto the slip plane
|
||
!> @details: This projection is used to calculate forest hardening for screw dislocations
|
||
!--------------------------------------------------------------------------------------------------
|
||
function slipProjection_direction(Nslip,lattice,cOverA) result(projection)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: projection
|
||
|
||
real(pReal), dimension(3,sum(Nslip)) :: n, d
|
||
integer :: i, j
|
||
|
||
n = lattice_slip_normal (Nslip,lattice,cOverA)
|
||
d = lattice_slip_direction(Nslip,lattice,cOverA)
|
||
|
||
do i=1, sum(Nslip); do j=1, sum(Nslip)
|
||
projection(i,j) = abs(math_inner(n(:,i),d(:,j)))
|
||
enddo; enddo
|
||
|
||
end function slipProjection_direction
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief build a local coordinate system on slip systems
|
||
!> @details Order: Direction, plane (normal), and common perpendicular
|
||
!--------------------------------------------------------------------------------------------------
|
||
function coordinateSystem_slip(Nslip,lattice,cOverA) result(coordinateSystem)
|
||
|
||
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
|
||
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: cOverA !< c/a ratio
|
||
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
|
||
|
||
real(pReal), dimension(:,:), allocatable :: slipSystems
|
||
integer, dimension(:), allocatable :: NslipMax
|
||
|
||
select case(lattice)
|
||
case('cF')
|
||
NslipMax = CF_NSLIPSYSTEM
|
||
slipSystems = CF_SYSTEMSLIP
|
||
case('cI')
|
||
NslipMax = CI_NSLIPSYSTEM
|
||
slipSystems = CI_SYSTEMSLIP
|
||
case('hP')
|
||
NslipMax = HP_NSLIPSYSTEM
|
||
slipSystems = HP_SYSTEMSLIP
|
||
case('tI')
|
||
NslipMax = TI_NSLIPSYSTEM
|
||
slipSystems = TI_SYSTEMSLIP
|
||
case default
|
||
allocate(NslipMax(0))
|
||
call IO_error(137,ext_msg='coordinateSystem_slip: '//trim(lattice))
|
||
end select
|
||
|
||
if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) &
|
||
call IO_error(145,ext_msg='Nslip '//trim(lattice))
|
||
if (any(Nslip < 0)) &
|
||
call IO_error(144,ext_msg='Nslip '//trim(lattice))
|
||
|
||
coordinateSystem = buildCoordinateSystem(Nslip,NslipMax,slipSystems,lattice,cOverA)
|
||
|
||
end function coordinateSystem_slip
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Populate reduced interaction matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
function buildInteraction(reacting_used,acting_used,reacting_max,acting_max,values,matrix)
|
||
|
||
integer, dimension(:), intent(in) :: &
|
||
reacting_used, & !< # of reacting systems per family as specified in material.config
|
||
acting_used, & !< # of acting systems per family as specified in material.config
|
||
reacting_max, & !< max # of reacting systems per family for given lattice
|
||
acting_max !< max # of acting systems per family for given lattice
|
||
real(pReal), dimension(:), intent(in) :: values !< interaction values
|
||
integer, dimension(:,:), intent(in) :: matrix !< interaction types
|
||
real(pReal), dimension(sum(reacting_used),sum(acting_used)) :: buildInteraction
|
||
|
||
integer :: &
|
||
acting_family_index, acting_family, acting_system, &
|
||
reacting_family_index, reacting_family, reacting_system, &
|
||
i,j,k,l
|
||
|
||
do acting_family = 1,size(acting_used,1)
|
||
acting_family_index = sum(acting_used(1:acting_family-1))
|
||
do acting_system = 1,acting_used(acting_family)
|
||
|
||
do reacting_family = 1,size(reacting_used,1)
|
||
reacting_family_index = sum(reacting_used(1:reacting_family-1))
|
||
do reacting_system = 1,reacting_used(reacting_family)
|
||
|
||
i = sum( acting_max(1: acting_family-1)) + acting_system
|
||
j = sum(reacting_max(1:reacting_family-1)) + reacting_system
|
||
|
||
k = acting_family_index + acting_system
|
||
l = reacting_family_index + reacting_system
|
||
|
||
if (matrix(i,j) > size(values)) call IO_error(138,ext_msg='buildInteraction')
|
||
|
||
buildInteraction(l,k) = values(matrix(i,j))
|
||
|
||
enddo; enddo
|
||
enddo; enddo
|
||
|
||
end function buildInteraction
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Build a local coordinate system on slip, twin, trans, cleavage systems
|
||
!> @details Order: Direction, plane (normal), and common perpendicular
|
||
!--------------------------------------------------------------------------------------------------
|
||
function buildCoordinateSystem(active,potential,system,lattice,cOverA)
|
||
|
||
integer, dimension(:), intent(in) :: &
|
||
active, & !< # of active systems per family
|
||
potential !< # of potential systems per family
|
||
real(pReal), dimension(:,:), intent(in) :: &
|
||
system
|
||
character(len=2), intent(in) :: &
|
||
lattice !< Bravais lattice (Pearson symbol)
|
||
real(pReal), intent(in) :: &
|
||
cOverA
|
||
real(pReal), dimension(3,3,sum(active)) :: &
|
||
buildCoordinateSystem
|
||
|
||
real(pReal), dimension(3) :: &
|
||
direction, normal
|
||
integer :: &
|
||
a, & !< index of active system
|
||
p, & !< index in potential system matrix
|
||
f, & !< index of my family
|
||
s !< index of my system in current family
|
||
|
||
if (lattice == 'tI' .and. cOverA > 2.0_pReal) &
|
||
call IO_error(131,ext_msg='buildCoordinateSystem:'//trim(lattice))
|
||
if (lattice == 'hP' .and. (cOverA < 1.0_pReal .or. cOverA > 2.0_pReal)) &
|
||
call IO_error(131,ext_msg='buildCoordinateSystem:'//trim(lattice))
|
||
|
||
a = 0
|
||
activeFamilies: do f = 1,size(active,1)
|
||
activeSystems: do s = 1,active(f)
|
||
a = a + 1
|
||
p = sum(potential(1:f-1))+s
|
||
|
||
select case(lattice)
|
||
|
||
case ('cF','cI','tI')
|
||
direction = system(1:3,p)
|
||
normal = system(4:6,p)
|
||
|
||
case ('hP')
|
||
direction = [ system(1,p)*1.5_pReal, &
|
||
(system(1,p)+2.0_pReal*system(2,p))*sqrt(0.75_pReal), &
|
||
system(4,p)*cOverA ] ! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(p/a)])
|
||
normal = [ system(5,p), &
|
||
(system(5,p)+2.0_pReal*system(6,p))/sqrt(3.0_pReal), &
|
||
system(8,p)/cOverA ] ! plane (hkil)->(h (h+2k)/sqrt(3) l/(p/a))
|
||
|
||
case default
|
||
call IO_error(137,ext_msg='buildCoordinateSystem: '//trim(lattice))
|
||
|
||
end select
|
||
|
||
buildCoordinateSystem(1:3,1,a) = direction/norm2(direction)
|
||
buildCoordinateSystem(1:3,2,a) = normal /norm2(normal)
|
||
buildCoordinateSystem(1:3,3,a) = math_cross(direction/norm2(direction),&
|
||
normal /norm2(normal))
|
||
|
||
enddo activeSystems
|
||
enddo activeFamilies
|
||
|
||
end function buildCoordinateSystem
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Helper function to define transformation systems
|
||
! Needed to calculate Schmid matrix and rotated stiffness matrices.
|
||
! @details: use c/a for cF -> hP transformation
|
||
! use a_cX for cF -> cI transformation
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine buildTransformationSystem(Q,S,Ntrans,cOverA,a_cF,a_cI)
|
||
|
||
integer, dimension(:), intent(in) :: &
|
||
Ntrans
|
||
real(pReal), dimension(3,3,sum(Ntrans)), intent(out) :: &
|
||
Q, & !< Total rotation: Q = R*B
|
||
S !< Eigendeformation tensor for phase transformation
|
||
real(pReal), optional, intent(in) :: &
|
||
cOverA, & !< c/a for target hP lattice
|
||
a_cF, & !< lattice parameter a for cF target lattice
|
||
a_cI !< lattice parameter a for cI parent lattice
|
||
|
||
type(tRotation) :: &
|
||
R, & !< Pitsch rotation
|
||
B !< Rotation of cF to Bain coordinate system
|
||
real(pReal), dimension(3,3) :: &
|
||
U, & !< Bain deformation
|
||
ss, sd
|
||
real(pReal), dimension(3) :: &
|
||
x, y, z
|
||
integer :: &
|
||
i
|
||
real(pReal), dimension(3+3,CF_NTRANS), parameter :: &
|
||
CFTOHP_SYSTEMTRANS = reshape(real( [&
|
||
-2, 1, 1, 1, 1, 1, &
|
||
1,-2, 1, 1, 1, 1, &
|
||
1, 1,-2, 1, 1, 1, &
|
||
2,-1, 1, -1,-1, 1, &
|
||
-1, 2, 1, -1,-1, 1, &
|
||
-1,-1,-2, -1,-1, 1, &
|
||
-2,-1,-1, 1,-1,-1, &
|
||
1, 2,-1, 1,-1,-1, &
|
||
1,-1, 2, 1,-1,-1, &
|
||
2, 1,-1, -1, 1,-1, &
|
||
-1,-2,-1, -1, 1,-1, &
|
||
-1, 1, 2, -1, 1,-1 &
|
||
],pReal),shape(CFTOHP_SYSTEMTRANS))
|
||
|
||
real(pReal), dimension(4,cF_Ntrans), parameter :: &
|
||
CFTOCI_SYSTEMTRANS = reshape([&
|
||
0.0, 1.0, 0.0, 10.26, & ! Pitsch OR (Ma & Hartmaier 2014, Table 3)
|
||
0.0,-1.0, 0.0, 10.26, &
|
||
0.0, 0.0, 1.0, 10.26, &
|
||
0.0, 0.0,-1.0, 10.26, &
|
||
1.0, 0.0, 0.0, 10.26, &
|
||
-1.0, 0.0, 0.0, 10.26, &
|
||
0.0, 0.0, 1.0, 10.26, &
|
||
0.0, 0.0,-1.0, 10.26, &
|
||
1.0, 0.0, 0.0, 10.26, &
|
||
-1.0, 0.0, 0.0, 10.26, &
|
||
0.0, 1.0, 0.0, 10.26, &
|
||
0.0,-1.0, 0.0, 10.26 &
|
||
],shape(CFTOCI_SYSTEMTRANS))
|
||
|
||
integer, dimension(9,cF_Ntrans), parameter :: &
|
||
CFTOCI_BAINVARIANT = reshape( [&
|
||
1, 0, 0, 0, 1, 0, 0, 0, 1, & ! Pitsch OR (Ma & Hartmaier 2014, Table 3)
|
||
1, 0, 0, 0, 1, 0, 0, 0, 1, &
|
||
1, 0, 0, 0, 1, 0, 0, 0, 1, &
|
||
1, 0, 0, 0, 1, 0, 0, 0, 1, &
|
||
0, 1, 0, 1, 0, 0, 0, 0, 1, &
|
||
0, 1, 0, 1, 0, 0, 0, 0, 1, &
|
||
0, 1, 0, 1, 0, 0, 0, 0, 1, &
|
||
0, 1, 0, 1, 0, 0, 0, 0, 1, &
|
||
0, 0, 1, 1, 0, 0, 0, 1, 0, &
|
||
0, 0, 1, 1, 0, 0, 0, 1, 0, &
|
||
0, 0, 1, 1, 0, 0, 0, 1, 0, &
|
||
0, 0, 1, 1, 0, 0, 0, 1, 0 &
|
||
],shape(CFTOCI_BAINVARIANT))
|
||
|
||
real(pReal), dimension(4,cF_Ntrans), parameter :: &
|
||
CFTOCI_BAINROT = reshape([&
|
||
1.0, 0.0, 0.0, 45.0, & ! Rotate cF austensite to bain variant
|
||
1.0, 0.0, 0.0, 45.0, &
|
||
1.0, 0.0, 0.0, 45.0, &
|
||
1.0, 0.0, 0.0, 45.0, &
|
||
0.0, 1.0, 0.0, 45.0, &
|
||
0.0, 1.0, 0.0, 45.0, &
|
||
0.0, 1.0, 0.0, 45.0, &
|
||
0.0, 1.0, 0.0, 45.0, &
|
||
0.0, 0.0, 1.0, 45.0, &
|
||
0.0, 0.0, 1.0, 45.0, &
|
||
0.0, 0.0, 1.0, 45.0, &
|
||
0.0, 0.0, 1.0, 45.0 &
|
||
],shape(CFTOCI_BAINROT))
|
||
|
||
if (present(a_cI) .and. present(a_cF)) then
|
||
do i = 1,sum(Ntrans)
|
||
call R%fromAxisAngle(CFTOCI_SYSTEMTRANS(:,i),degrees=.true.,P=1)
|
||
call B%fromAxisAngle(CFTOCI_BAINROT(:,i), degrees=.true.,P=1)
|
||
x = real(CFTOCI_BAINVARIANT(1:3,i),pReal)
|
||
y = real(CFTOCI_BAINVARIANT(4:6,i),pReal)
|
||
z = real(CFTOCI_BAINVARIANT(7:9,i),pReal)
|
||
|
||
U = (a_cI/a_cF) * (math_outer(x,x) + (math_outer(y,y)+math_outer(z,z)) * sqrt(2.0_pReal))
|
||
Q(1:3,1:3,i) = matmul(R%asMatrix(),B%asMatrix())
|
||
S(1:3,1:3,i) = matmul(R%asMatrix(),U) - MATH_I3
|
||
enddo
|
||
else if (present(cOverA)) then
|
||
ss = MATH_I3
|
||
sd = MATH_I3
|
||
ss(1,3) = sqrt(2.0_pReal)/4.0_pReal
|
||
sd(3,3) = cOverA/sqrt(8.0_pReal/3.0_pReal)
|
||
|
||
do i = 1,sum(Ntrans)
|
||
x = CFTOHP_SYSTEMTRANS(1:3,i)/norm2(CFTOHP_SYSTEMTRANS(1:3,i))
|
||
z = CFTOHP_SYSTEMTRANS(4:6,i)/norm2(CFTOHP_SYSTEMTRANS(4:6,i))
|
||
y = -math_cross(x,z)
|
||
Q(1:3,1,i) = x
|
||
Q(1:3,2,i) = y
|
||
Q(1:3,3,i) = z
|
||
S(1:3,1:3,i) = matmul(Q(1:3,1:3,i), matmul(matmul(sd,ss), transpose(Q(1:3,1:3,i)))) - MATH_I3 ! ToDo: This is of interest for the Schmid matrix only
|
||
end do
|
||
else
|
||
call IO_error(132,ext_msg='buildTransformationSystem')
|
||
end if
|
||
|
||
end subroutine buildTransformationSystem
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief select active systems as strings
|
||
!--------------------------------------------------------------------------------------------------
|
||
function getlabels(active,potential,system) result(labels)
|
||
|
||
integer, dimension(:), intent(in) :: &
|
||
active, & !< # of active systems per family
|
||
potential !< # of potential systems per family
|
||
real(pReal), dimension(:,:), intent(in) :: &
|
||
system
|
||
|
||
character(len=:), dimension(:), allocatable :: labels
|
||
character(len=:), allocatable :: label
|
||
|
||
integer :: i,j
|
||
integer :: &
|
||
a, & !< index of active system
|
||
p, & !< index in potential system matrix
|
||
f, & !< index of my family
|
||
s !< index of my system in current family
|
||
|
||
i = 2*size(system,1) + (size(system,1) - 2) + 4 ! 2 letters per index + spaces + brackets
|
||
allocate(character(len=i) :: labels(sum(active)), label)
|
||
|
||
a = 0
|
||
activeFamilies: do f = 1,size(active,1)
|
||
activeSystems: do s = 1,active(f)
|
||
a = a + 1
|
||
p = sum(potential(1:f-1))+s
|
||
|
||
i = 1
|
||
label(i:i) = '['
|
||
direction: do j = 1, size(system,1)/2
|
||
write(label(i+1:i+2),'(I2.1)') int(system(j,p))
|
||
label(i+3:i+3) = ' '
|
||
i = i + 3
|
||
enddo direction
|
||
label(i:i) = ']'
|
||
|
||
i = i +1
|
||
label(i:i) = '('
|
||
normal: do j = size(system,1)/2+1, size(system,1)
|
||
write(label(i+1:i+2),'(I2.1)') int(system(j,p))
|
||
label(i+3:i+3) = ' '
|
||
i = i + 3
|
||
enddo normal
|
||
label(i:i) = ')'
|
||
|
||
labels(a) = label
|
||
|
||
enddo activeSystems
|
||
enddo activeFamilies
|
||
|
||
end function getlabels
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Equivalent Poisson's ratio (ν)
|
||
!> @details https://doi.org/10.1143/JPSJ.20.635
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function lattice_equivalent_nu(C,assumption) result(nu)
|
||
|
||
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
|
||
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
|
||
real(pReal) :: nu
|
||
|
||
real(pReal) :: K, mu
|
||
logical :: error
|
||
real(pReal), dimension(6,6) :: S
|
||
|
||
|
||
if (IO_lc(assumption) == 'voigt') then
|
||
K = (C(1,1)+C(2,2)+C(3,3) +2.0_pReal*(C(1,2)+C(2,3)+C(1,3))) &
|
||
/ 9.0_pReal
|
||
elseif (IO_lc(assumption) == 'reuss') then
|
||
call math_invert(S,error,C)
|
||
if (error) error stop 'matrix inversion failed'
|
||
K = 1.0_pReal &
|
||
/ (S(1,1)+S(2,2)+S(3,3) +2.0_pReal*(S(1,2)+S(2,3)+S(1,3)))
|
||
else
|
||
error stop 'invalid assumption'
|
||
endif
|
||
|
||
mu = lattice_equivalent_mu(C,assumption)
|
||
nu = (1.5_pReal*K-mu)/(3.0_pReal*K+mu)
|
||
|
||
end function lattice_equivalent_nu
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Equivalent shear modulus (μ)
|
||
!> @details https://doi.org/10.1143/JPSJ.20.635
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function lattice_equivalent_mu(C,assumption) result(mu)
|
||
|
||
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
|
||
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
|
||
real(pReal) :: mu
|
||
|
||
logical :: error
|
||
real(pReal), dimension(6,6) :: S
|
||
|
||
|
||
if (IO_lc(assumption) == 'voigt') then
|
||
mu = (1.0_pReal*(C(1,1)+C(2,2)+C(3,3)) -1.0_pReal*(C(1,2)+C(2,3)+C(1,3)) +3.0_pReal*(C(4,4)+C(5,5)+C(6,6))) &
|
||
/ 15.0_pReal
|
||
elseif (IO_lc(assumption) == 'reuss') then
|
||
call math_invert(S,error,C)
|
||
if (error) error stop 'matrix inversion failed'
|
||
mu = 15.0_pReal &
|
||
/ (4.0_pReal*(S(1,1)+S(2,2)+S(3,3)) -4.0_pReal*(S(1,2)+S(2,3)+S(1,3)) +3.0_pReal*(S(4,4)+S(5,5)+S(6,6)))
|
||
else
|
||
error stop 'invalid assumption'
|
||
endif
|
||
|
||
end function lattice_equivalent_mu
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Check correctness of some lattice functions.
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine selfTest
|
||
|
||
real(pReal), dimension(:,:,:), allocatable :: CoSy
|
||
real(pReal), dimension(:,:), allocatable :: system
|
||
|
||
real(pReal), dimension(6,6) :: C, C_cF, C_cI, C_hP, C_tI
|
||
real(pReal), dimension(3,3) :: T, T_cF, T_cI, T_hP, T_tI
|
||
real(pReal), dimension(2) :: r
|
||
real(pReal) :: lambda
|
||
integer :: i
|
||
|
||
|
||
call random_number(r)
|
||
|
||
system = reshape([1.0_pReal+r(1),0.0_pReal,0.0_pReal, 0.0_pReal,1.0_pReal+r(2),0.0_pReal],[6,1])
|
||
CoSy = buildCoordinateSystem([1],[1],system,'cF',0.0_pReal)
|
||
if (any(dNeq(CoSy(1:3,1:3,1),math_I3))) error stop 'buildCoordinateSystem'
|
||
|
||
do i = 1, 10
|
||
call random_number(C)
|
||
C_cF = lattice_symmetrize_C66(C,'cI')
|
||
C_cI = lattice_symmetrize_C66(C,'cF')
|
||
C_hP = lattice_symmetrize_C66(C,'hP')
|
||
C_tI = lattice_symmetrize_C66(C,'tI')
|
||
|
||
if (any(dNeq(C_cI,transpose(C_cF)))) error stop 'SymmetryC66/cI-cF'
|
||
if (any(dNeq(C_cF,transpose(C_cI)))) error stop 'SymmetryC66/cF-cI'
|
||
if (any(dNeq(C_hP,transpose(C_hP)))) error stop 'SymmetryC66/hP'
|
||
if (any(dNeq(C_tI,transpose(C_tI)))) error stop 'SymmetryC66/tI'
|
||
|
||
if (any(dNeq(C(1,1),[C_cF(1,1),C_cF(2,2),C_cF(3,3)]))) error stop 'SymmetryC_11-22-33/c'
|
||
if (any(dNeq(C(1,2),[C_cF(1,2),C_cF(1,3),C_cF(2,3)]))) error stop 'SymmetryC_12-13-23/c'
|
||
if (any(dNeq(C(4,4),[C_cF(4,4),C_cF(5,5),C_cF(6,6)]))) error stop 'SymmetryC_44-55-66/c'
|
||
|
||
if (any(dNeq(C(1,1),[C_hP(1,1),C_hP(2,2)]))) error stop 'SymmetryC_11-22/hP'
|
||
if (any(dNeq(C(1,3),[C_hP(1,3),C_hP(2,3)]))) error stop 'SymmetryC_13-23/hP'
|
||
if (any(dNeq(C(4,4),[C_hP(4,4),C_hP(5,5)]))) error stop 'SymmetryC_44-55/hP'
|
||
|
||
if (any(dNeq(C(1,1),[C_tI(1,1),C_tI(2,2)]))) error stop 'SymmetryC_11-22/tI'
|
||
if (any(dNeq(C(1,3),[C_tI(1,3),C_tI(2,3)]))) error stop 'SymmetryC_13-23/tI'
|
||
if (any(dNeq(C(4,4),[C_tI(4,4),C_tI(5,5)]))) error stop 'SymmetryC_44-55/tI'
|
||
|
||
call random_number(T)
|
||
T_cF = lattice_symmetrize_33(T,'cI')
|
||
T_cI = lattice_symmetrize_33(T,'cF')
|
||
T_hP = lattice_symmetrize_33(T,'hP')
|
||
T_tI = lattice_symmetrize_33(T,'tI')
|
||
|
||
if (any(dNeq0(T_cF) .and. math_I3<1.0_pReal)) error stop 'Symmetry33/c'
|
||
if (any(dNeq0(T_hP) .and. math_I3<1.0_pReal)) error stop 'Symmetry33/hP'
|
||
if (any(dNeq0(T_tI) .and. math_I3<1.0_pReal)) error stop 'Symmetry33/tI'
|
||
|
||
if (any(dNeq(T(1,1),[T_cI(1,1),T_cI(2,2),T_cI(3,3)]))) error stop 'Symmetry33_11-22-33/c'
|
||
if (any(dNeq(T(1,1),[T_hP(1,1),T_hP(2,2)]))) error stop 'Symmetry33_11-22/hP'
|
||
if (any(dNeq(T(1,1),[T_tI(1,1),T_tI(2,2)]))) error stop 'Symmetry33_11-22/tI'
|
||
|
||
enddo
|
||
|
||
call random_number(C)
|
||
C(1,1) = C(1,1) + C(1,2) + 0.1_pReal
|
||
C(4,4) = 0.5_pReal * (C(1,1) - C(1,2))
|
||
C = lattice_symmetrize_C66(C,'cI')
|
||
if (dNeq(C(4,4),lattice_equivalent_mu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_mu/voigt'
|
||
if (dNeq(C(4,4),lattice_equivalent_mu(C,'reuss'),1.0e-12_pReal)) error stop 'equivalent_mu/reuss'
|
||
|
||
lambda = C(1,2)
|
||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'voigt')), &
|
||
lattice_equivalent_nu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_nu/voigt'
|
||
if (dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'reuss')), &
|
||
lattice_equivalent_nu(C,'reuss'),1.0e-12_pReal)) error stop 'equivalent_nu/reuss'
|
||
|
||
end subroutine selfTest
|
||
|
||
end module lattice
|