DAMASK_EICMD/code/thermal_conduction.f90

443 lines
17 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for temperature evolution from heat conduction
!> @details to be done
!--------------------------------------------------------------------------------------------------
module thermal_conduction
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
thermal_conduction_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
thermal_conduction_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
thermal_conduction_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
thermal_conduction_Noutput !< number of outputs per instance of this damage
enum, bind(c)
enumerator :: undefined_ID, &
temperature_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
thermal_conduction_outputID !< ID of each post result output
public :: &
thermal_conduction_init, &
thermal_conduction_getSourceAndItsTangent, &
thermal_conduction_getConductivity33, &
thermal_conduction_getSpecificHeat, &
thermal_conduction_getMassDensity, &
thermal_conduction_putTemperatureAndItsRate, &
thermal_conduction_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
thermal_type, &
thermal_typeInstance, &
homogenization_Noutput, &
THERMAL_conduction_label, &
THERMAL_conduction_ID, &
material_homog, &
mappingHomogenization, &
thermalState, &
thermalMapping, &
thermal_initialT, &
temperature, &
temperatureRate, &
material_partHomogenization
use numerics,only: &
worldrank
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,mySize=0_pInt,section,instance,o
integer(pInt) :: sizeState
integer(pInt) :: NofMyHomog
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_CONDUCTION_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(thermal_type == THERMAL_conduction_ID),pInt)
if (maxNinstance == 0_pInt) return
allocate(thermal_conduction_sizePostResults(maxNinstance), source=0_pInt)
allocate(thermal_conduction_sizePostResult (maxval(homogenization_Noutput),maxNinstance),source=0_pInt)
allocate(thermal_conduction_output (maxval(homogenization_Noutput),maxNinstance))
thermal_conduction_output = ''
allocate(thermal_conduction_outputID (maxval(homogenization_Noutput),maxNinstance),source=undefined_ID)
allocate(thermal_conduction_Noutput (maxNinstance), source=0_pInt)
rewind(fileUnit)
section = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homog part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next homog section
section = section + 1_pInt ! advance homog section counter
cycle ! skip to next line
endif
if (section > 0_pInt ) then; if (thermal_type(section) == THERMAL_conduction_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = thermal_typeInstance(section) ! which instance of my thermal is present homog
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('temperature')
thermal_conduction_Noutput(instance) = thermal_conduction_Noutput(instance) + 1_pInt
thermal_conduction_outputID(thermal_conduction_Noutput(instance),instance) = temperature_ID
thermal_conduction_output(thermal_conduction_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
end select
end select
endif; endif
enddo parsingFile
initializeInstances: do section = 1_pInt, size(thermal_type)
if (thermal_type(section) == THERMAL_conduction_ID) then
NofMyHomog=count(material_homog==section)
instance = thermal_typeInstance(section)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case(temperature_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
thermal_conduction_sizePostResult(o,instance) = mySize
thermal_conduction_sizePostResults(instance) = thermal_conduction_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! allocate state arrays
sizeState = 0_pInt
thermalState(section)%sizeState = sizeState
thermalState(section)%sizePostResults = thermal_conduction_sizePostResults(instance)
allocate(thermalState(section)%state0 (sizeState,NofMyHomog))
allocate(thermalState(section)%subState0(sizeState,NofMyHomog))
allocate(thermalState(section)%state (sizeState,NofMyHomog))
nullify(thermalMapping(section)%p)
thermalMapping(section)%p => mappingHomogenization(1,:,:)
deallocate(temperature (section)%p)
allocate (temperature (section)%p(NofMyHomog), source=thermal_initialT(section))
deallocate(temperatureRate(section)%p)
allocate (temperatureRate(section)%p(NofMyHomog), source=0.0_pReal)
endif
enddo initializeInstances
end subroutine thermal_conduction_init
!--------------------------------------------------------------------------------------------------
!> @brief returns heat generation rate
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
use math, only: &
math_Mandel6to33
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
phaseAt, phasememberAt, &
thermal_typeInstance, &
phase_Nsources, &
phase_source, &
SOURCE_thermal_dissipation_ID, &
SOURCE_thermal_externalheat_ID
use source_thermal_dissipation, only: &
source_thermal_dissipation_getRateAndItsTangent
use source_thermal_externalheat, only: &
source_thermal_externalheat_getRateAndItsTangent
use crystallite, only: &
crystallite_Tstar_v, &
crystallite_Lp
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T
real(pReal), intent(out) :: &
Tdot, dTdot_dT
real(pReal) :: &
my_Tdot, my_dTdot_dT
integer(pInt) :: &
phase, &
homog, &
offset, &
instance, &
grain, &
source
homog = mappingHomogenization(2,ip,el)
offset = mappingHomogenization(1,ip,el)
instance = thermal_typeInstance(homog)
Tdot = 0.0_pReal
dTdot_dT = 0.0_pReal
do grain = 1, homogenization_Ngrains(homog)
phase = phaseAt(grain,ip,el)
do source = 1, phase_Nsources(phase)
select case(phase_source(source,phase))
case (SOURCE_thermal_dissipation_ID)
call source_thermal_dissipation_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
crystallite_Tstar_v(1:6,grain,ip,el), &
crystallite_Lp(1:3,1:3,grain,ip,el), &
grain, ip, el)
case (SOURCE_thermal_externalheat_ID)
call source_thermal_externalheat_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
grain, ip, el)
case default
my_Tdot = 0.0_pReal
my_dTdot_dT = 0.0_pReal
end select
Tdot = Tdot + my_Tdot
dTdot_dT = dTdot_dT + my_dTdot_dT
enddo
enddo
Tdot = Tdot/homogenization_Ngrains(homog)
dTdot_dT = dTdot_dT/homogenization_Ngrains(homog)
end subroutine thermal_conduction_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized thermal conductivity in reference configuration
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getConductivity33(ip,el)
use lattice, only: &
lattice_thermalConductivity33
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
thermal_conduction_getConductivity33
integer(pInt) :: &
homog, &
grain
homog = mappingHomogenization(2,ip,el)
thermal_conduction_getConductivity33 = 0.0_pReal
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
thermal_conduction_getConductivity33 = thermal_conduction_getConductivity33 + &
crystallite_push33ToRef(grain,ip,el,lattice_thermalConductivity33(:,:,material_phase(grain,ip,el)))
enddo
thermal_conduction_getConductivity33 = &
thermal_conduction_getConductivity33/ &
homogenization_Ngrains(mesh_element(3,el))
end function thermal_conduction_getConductivity33
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getSpecificHeat(ip,el)
use lattice, only: &
lattice_specificHeat
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getSpecificHeat
integer(pInt) :: &
homog, grain
thermal_conduction_getSpecificHeat = 0.0_pReal
homog = mappingHomogenization(2,ip,el)
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat + &
lattice_specificHeat(material_phase(grain,ip,el))
enddo
thermal_conduction_getSpecificHeat = &
thermal_conduction_getSpecificHeat/ &
homogenization_Ngrains(mesh_element(3,el))
end function thermal_conduction_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getMassDensity(ip,el)
use lattice, only: &
lattice_massDensity
use material, only: &
homogenization_Ngrains, &
mappingHomogenization, &
material_phase
use mesh, only: &
mesh_element
use crystallite, only: &
crystallite_push33ToRef
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getMassDensity
integer(pInt) :: &
homog, grain
thermal_conduction_getMassDensity = 0.0_pReal
homog = mappingHomogenization(2,ip,el)
do grain = 1, homogenization_Ngrains(mesh_element(3,el))
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity + &
lattice_massDensity(material_phase(grain,ip,el))
enddo
thermal_conduction_getMassDensity = &
thermal_conduction_getMassDensity/ &
homogenization_Ngrains(mesh_element(3,el))
end function thermal_conduction_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief updates thermal state with solution from heat conduction PDE
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_putTemperatureAndItsRate(T,Tdot,ip,el)
use material, only: &
mappingHomogenization, &
temperature, &
temperatureRate, &
thermalMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T, &
Tdot
integer(pInt) :: &
homog, &
offset
homog = mappingHomogenization(2,ip,el)
offset = thermalMapping(homog)%p(ip,el)
temperature (homog)%p(offset) = T
temperatureRate(homog)%p(offset) = Tdot
end subroutine thermal_conduction_putTemperatureAndItsRate
!--------------------------------------------------------------------------------------------------
!> @brief return array of thermal results
!--------------------------------------------------------------------------------------------------
function thermal_conduction_postResults(ip,el)
use material, only: &
mappingHomogenization, &
thermal_typeInstance, &
temperature, &
thermalMapping
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point
el !< element
real(pReal), dimension(thermal_conduction_sizePostResults(thermal_typeInstance(mappingHomogenization(2,ip,el)))) :: &
thermal_conduction_postResults
integer(pInt) :: &
instance, homog, offset, o, c
homog = mappingHomogenization(2,ip,el)
offset = thermalMapping(homog)%p(ip,el)
instance = thermal_typeInstance(homog)
c = 0_pInt
thermal_conduction_postResults = 0.0_pReal
do o = 1_pInt,thermal_conduction_Noutput(instance)
select case(thermal_conduction_outputID(o,instance))
case (temperature_ID)
thermal_conduction_postResults(c+1_pInt) = temperature(homog)%p(offset)
c = c + 1
end select
enddo
end function thermal_conduction_postResults
end module thermal_conduction