2637 lines
107 KiB
Fortran
2637 lines
107 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
||
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @brief Mathematical library, including random number generation and tensor representations
|
||
!--------------------------------------------------------------------------------------------------
|
||
module math
|
||
use prec, only: &
|
||
pReal, &
|
||
pInt
|
||
|
||
implicit none
|
||
private
|
||
real(pReal), parameter, public :: PI = 3.141592653589793_pReal !< ratio of a circle's circumference to its diameter
|
||
real(pReal), parameter, public :: INDEG = 180.0_pReal/PI !< conversion from radian into degree
|
||
real(pReal), parameter, public :: INRAD = PI/180.0_pReal !< conversion from degree into radian
|
||
complex(pReal), parameter, public :: TWOPIIMG = (0.0_pReal,2.0_pReal)*(PI,0.0_pReal) !< Re(0.0), Im(2xPi)
|
||
|
||
real(pReal), dimension(3,3), parameter, public :: &
|
||
MATH_I3 = reshape([&
|
||
1.0_pReal,0.0_pReal,0.0_pReal, &
|
||
0.0_pReal,1.0_pReal,0.0_pReal, &
|
||
0.0_pReal,0.0_pReal,1.0_pReal &
|
||
],[3,3]) !< 3x3 Identity
|
||
|
||
integer(pInt), dimension (2,6), parameter, private :: &
|
||
mapMandel = reshape([&
|
||
1_pInt,1_pInt, &
|
||
2_pInt,2_pInt, &
|
||
3_pInt,3_pInt, &
|
||
1_pInt,2_pInt, &
|
||
2_pInt,3_pInt, &
|
||
1_pInt,3_pInt &
|
||
],[2,6]) !< arrangement in Mandel notation
|
||
|
||
real(pReal), dimension(6), parameter, private :: &
|
||
nrmMandel = [&
|
||
1.0_pReal, 1.0_pReal, 1.0_pReal,&
|
||
1.414213562373095_pReal, 1.414213562373095_pReal, 1.414213562373095_pReal ] !< weighting for Mandel notation (forward)
|
||
|
||
real(pReal), dimension(6), parameter , public :: &
|
||
invnrmMandel = [&
|
||
1.0_pReal, 1.0_pReal, 1.0_pReal,&
|
||
0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal ] !< weighting for Mandel notation (backward)
|
||
|
||
integer(pInt), dimension (2,6), parameter, private :: &
|
||
mapVoigt = reshape([&
|
||
1_pInt,1_pInt, &
|
||
2_pInt,2_pInt, &
|
||
3_pInt,3_pInt, &
|
||
2_pInt,3_pInt, &
|
||
1_pInt,3_pInt, &
|
||
1_pInt,2_pInt &
|
||
],[2,6]) !< arrangement in Voigt notation
|
||
|
||
real(pReal), dimension(6), parameter, private :: &
|
||
nrmVoigt = 1.0_pReal, & !< weighting for Voigt notation (forward)
|
||
invnrmVoigt = 1.0_pReal !< weighting for Voigt notation (backward)
|
||
|
||
integer(pInt), dimension (2,9), parameter, private :: &
|
||
mapPlain = reshape([&
|
||
1_pInt,1_pInt, &
|
||
1_pInt,2_pInt, &
|
||
1_pInt,3_pInt, &
|
||
2_pInt,1_pInt, &
|
||
2_pInt,2_pInt, &
|
||
2_pInt,3_pInt, &
|
||
3_pInt,1_pInt, &
|
||
3_pInt,2_pInt, &
|
||
3_pInt,3_pInt &
|
||
],[2,9]) !< arrangement in Plain notation
|
||
|
||
public :: &
|
||
math_init, &
|
||
math_qsort, &
|
||
math_expand, &
|
||
math_range, &
|
||
math_identity2nd, &
|
||
math_identity4th, &
|
||
math_civita, &
|
||
math_delta, &
|
||
math_crossproduct, &
|
||
math_tensorproduct33, &
|
||
math_mul3x3, &
|
||
math_mul6x6, &
|
||
math_mul33xx33, &
|
||
math_mul3333xx33, &
|
||
math_mul3333xx3333, &
|
||
math_mul33x33, &
|
||
math_mul66x66, &
|
||
math_mul99x99, &
|
||
math_mul33x3, &
|
||
math_mul33x3_complex, &
|
||
math_mul66x6 , &
|
||
math_exp33 , &
|
||
math_transpose33, &
|
||
math_inv33, &
|
||
math_invert33, &
|
||
math_invSym3333, &
|
||
math_invert, &
|
||
math_symmetric33, &
|
||
math_symmetric66, &
|
||
math_skew33, &
|
||
math_spherical33, &
|
||
math_deviatoric33, &
|
||
math_equivStrain33, &
|
||
math_equivStress33, &
|
||
math_trace33, &
|
||
math_det33, &
|
||
math_Plain33to9, &
|
||
math_Plain9to33, &
|
||
math_Mandel33to6, &
|
||
math_Mandel6to33, &
|
||
math_Plain3333to99, &
|
||
math_Plain99to3333, &
|
||
math_Mandel66toPlain66, &
|
||
math_Plain66toMandel66, &
|
||
math_Mandel3333to66, &
|
||
math_Mandel66to3333, &
|
||
math_Voigt66to3333, &
|
||
math_qRand, &
|
||
math_qMul, &
|
||
math_qDot, &
|
||
math_qConj, &
|
||
math_qInv, &
|
||
math_qRot, &
|
||
math_RtoEuler, &
|
||
math_RtoQ, &
|
||
math_EulerToR, &
|
||
math_EulerToQ, &
|
||
math_EulerAxisAngleToR, &
|
||
math_axisAngleToR, &
|
||
math_EulerAxisAngleToQ, &
|
||
math_axisAngleToQ, &
|
||
math_qToRodrig, &
|
||
math_qToEuler, &
|
||
math_qToEulerAxisAngle, &
|
||
math_qToAxisAngle, &
|
||
math_qToR, &
|
||
math_EulerMisorientation, &
|
||
math_sampleRandomOri, &
|
||
math_sampleGaussOri, &
|
||
math_sampleFiberOri, &
|
||
math_sampleGaussVar, &
|
||
math_symmetricEulers, &
|
||
math_eigenvectorBasisSym33, &
|
||
math_eigenvectorBasisSym33_log, &
|
||
math_eigenvectorBasisSym, &
|
||
math_eigenValuesVectorsSym33, &
|
||
math_eigenValuesVectorsSym, &
|
||
math_rotationalPart33, &
|
||
math_invariantsSym33, &
|
||
math_eigenvaluesSym33, &
|
||
math_factorial, &
|
||
math_binomial, &
|
||
math_multinomial, &
|
||
math_volTetrahedron, &
|
||
math_areaTriangle, &
|
||
math_rotate_forward33, &
|
||
math_rotate_backward33, &
|
||
math_rotate_forward3333, &
|
||
math_clip
|
||
private :: &
|
||
math_check, &
|
||
halton
|
||
|
||
contains
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief initialization of random seed generator
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine math_init
|
||
|
||
#if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800
|
||
use, intrinsic :: iso_fortran_env, only: &
|
||
compiler_version, &
|
||
compiler_options
|
||
#endif
|
||
use numerics, only: randomSeed
|
||
use IO, only: IO_timeStamp
|
||
|
||
implicit none
|
||
integer(pInt) :: i
|
||
real(pReal), dimension(4) :: randTest
|
||
! the following variables are system dependend and shound NOT be pInt
|
||
integer :: randSize ! gfortran requires a variable length to compile
|
||
integer, dimension(:), allocatable :: randInit ! if recalculations of former randomness (with given seed) is necessary
|
||
! comment the first random_seed call out, set randSize to 1, and use ifort
|
||
write(6,'(/,a)') ' <<<+- math init -+>>>'
|
||
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
||
#include "compilation_info.f90"
|
||
|
||
call random_seed(size=randSize)
|
||
if (allocated(randInit)) deallocate(randInit)
|
||
allocate(randInit(randSize))
|
||
if (randomSeed > 0_pInt) then
|
||
randInit(1:randSize) = int(randomSeed) ! randomSeed is of type pInt, randInit not
|
||
call random_seed(put=randInit)
|
||
else
|
||
call random_seed()
|
||
call random_seed(get = randInit)
|
||
randInit(2:randSize) = randInit(1)
|
||
call random_seed(put = randInit)
|
||
endif
|
||
|
||
do i = 1_pInt, 4_pInt
|
||
call random_number(randTest(i))
|
||
enddo
|
||
|
||
write(6,'(a,I2)') ' size of random seed: ', randSize
|
||
do i = 1_pInt,randSize
|
||
write(6,'(a,I2,I14)') ' value of random seed: ', i, randInit(i)
|
||
enddo
|
||
write(6,'(a,4(/,26x,f17.14),/)') ' start of random sequence: ', randTest
|
||
|
||
call random_seed(put = randInit)
|
||
call math_check()
|
||
|
||
end subroutine math_init
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief check correctness of (some) math functions
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine math_check
|
||
use prec, only: tol_math_check
|
||
use IO, only: IO_error
|
||
|
||
implicit none
|
||
character(len=64) :: error_msg
|
||
|
||
real(pReal), dimension(3,3) :: R,R2
|
||
real(pReal), dimension(3) :: Eulers,v
|
||
real(pReal), dimension(4) :: q,q2,axisangle
|
||
|
||
! --- check rotation dictionary ---
|
||
|
||
q = math_qRand() ! random quaternion
|
||
|
||
! +++ q -> a -> q +++
|
||
axisangle = math_qToAxisAngle(q)
|
||
q2 = math_axisAngleToQ(axisangle(1:3),axisangle(4))
|
||
if ( any(abs( q-q2) > tol_math_check) .and. &
|
||
any(abs(-q-q2) > tol_math_check) ) then
|
||
write (error_msg, '(a,e14.6)' ) &
|
||
'quat -> axisAngle -> quat maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||
call IO_error(401_pInt,ext_msg=error_msg)
|
||
endif
|
||
|
||
! +++ q -> R -> q +++
|
||
R = math_qToR(q)
|
||
q2 = math_RtoQ(R)
|
||
if ( any(abs( q-q2) > tol_math_check) .and. &
|
||
any(abs(-q-q2) > tol_math_check) ) then
|
||
write (error_msg, '(a,e14.6)' ) &
|
||
'quat -> R -> quat maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||
call IO_error(401_pInt,ext_msg=error_msg)
|
||
endif
|
||
|
||
! +++ q -> euler -> q +++
|
||
Eulers = math_qToEuler(q)
|
||
q2 = math_EulerToQ(Eulers)
|
||
if ( any(abs( q-q2) > tol_math_check) .and. &
|
||
any(abs(-q-q2) > tol_math_check) ) then
|
||
write (error_msg, '(a,e14.6)' ) &
|
||
'quat -> euler -> quat maximum deviation ',min(maxval(abs( q-q2)),maxval(abs(-q-q2)))
|
||
call IO_error(401_pInt,ext_msg=error_msg)
|
||
endif
|
||
|
||
! +++ R -> euler -> R +++
|
||
Eulers = math_RtoEuler(R)
|
||
R2 = math_EulerToR(Eulers)
|
||
if ( any(abs( R-R2) > tol_math_check) ) then
|
||
write (error_msg, '(a,e14.6)' ) &
|
||
'R -> euler -> R maximum deviation ',maxval(abs( R-R2))
|
||
call IO_error(401_pInt,ext_msg=error_msg)
|
||
endif
|
||
|
||
! +++ check rotation sense of q and R +++
|
||
v = halton([2_pInt,8_pInt,5_pInt]) ! random vector
|
||
R = math_qToR(q)
|
||
if (any(abs(math_mul33x3(R,v) - math_qRot(q,v)) > tol_math_check)) then
|
||
write (error_msg, '(a)' ) 'R(q)*v has different sense than q*v'
|
||
call IO_error(401_pInt,ext_msg=error_msg)
|
||
endif
|
||
|
||
! +++ check vector expansion +++
|
||
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,3.0_pReal,3.0_pReal,3.0_pReal] - &
|
||
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1_pInt,2_pInt,3_pInt,0_pInt])) > tol_math_check)) then
|
||
write (error_msg, '(a)' ) 'math_expand [1,2,3] by [1,2,3,0] => [1,2,2,3,3,3]'
|
||
call IO_error(401_pInt,ext_msg=error_msg)
|
||
endif
|
||
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal] - &
|
||
math_expand([1.0_pReal,2.0_pReal,3.0_pReal],[1_pInt,2_pInt])) > tol_math_check)) then
|
||
write (error_msg, '(a)' ) 'math_expand [1,2,3] by [1,2] => [1,2,2]'
|
||
call IO_error(401_pInt,ext_msg=error_msg)
|
||
endif
|
||
if (any(abs([1.0_pReal,2.0_pReal,2.0_pReal,1.0_pReal,1.0_pReal,1.0_pReal] - &
|
||
math_expand([1.0_pReal,2.0_pReal],[1_pInt,2_pInt,3_pInt])) > tol_math_check)) then
|
||
write (error_msg, '(a)' ) 'math_expand [1,2] by [1,2,3] => [1,2,2,1,1,1]'
|
||
call IO_error(401_pInt,ext_msg=error_msg)
|
||
endif
|
||
|
||
end subroutine math_check
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Quicksort algorithm for two-dimensional integer arrays
|
||
! Sorting is done with respect to array(1,:)
|
||
! and keeps array(2:N,:) linked to it.
|
||
!--------------------------------------------------------------------------------------------------
|
||
recursive subroutine math_qsort(a, istart, iend)
|
||
|
||
implicit none
|
||
integer(pInt), dimension(:,:), intent(inout) :: a
|
||
integer(pInt), intent(in) :: istart,iend
|
||
integer(pInt) :: ipivot
|
||
|
||
if (istart < iend) then
|
||
ipivot = qsort_partition(a,istart, iend)
|
||
call math_qsort(a, istart, ipivot-1_pInt)
|
||
call math_qsort(a, ipivot+1_pInt, iend)
|
||
endif
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
contains
|
||
|
||
!-------------------------------------------------------------------------------------------------
|
||
!> @brief Partitioning required for quicksort
|
||
!-------------------------------------------------------------------------------------------------
|
||
integer(pInt) function qsort_partition(a, istart, iend)
|
||
|
||
implicit none
|
||
integer(pInt), dimension(:,:), intent(inout) :: a
|
||
integer(pInt), intent(in) :: istart,iend
|
||
integer(pInt) :: i,j,k,tmp
|
||
|
||
do
|
||
! find the first element on the right side less than or equal to the pivot point
|
||
do j = iend, istart, -1_pInt
|
||
if (a(1,j) <= a(1,istart)) exit
|
||
enddo
|
||
! find the first element on the left side greater than the pivot point
|
||
do i = istart, iend
|
||
if (a(1,i) > a(1,istart)) exit
|
||
enddo
|
||
if (i < j) then ! if the indexes do not cross, exchange values
|
||
do k = 1_pInt, int(size(a,1_pInt), pInt)
|
||
tmp = a(k,i)
|
||
a(k,i) = a(k,j)
|
||
a(k,j) = tmp
|
||
enddo
|
||
else ! if they do cross, exchange left value with pivot and return with the partition index
|
||
do k = 1_pInt, int(size(a,1_pInt), pInt)
|
||
tmp = a(k,istart)
|
||
a(k,istart) = a(k,j)
|
||
a(k,j) = tmp
|
||
enddo
|
||
qsort_partition = j
|
||
return
|
||
endif
|
||
enddo
|
||
|
||
end function qsort_partition
|
||
|
||
end subroutine math_qsort
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief vector expansion
|
||
!> @details takes a set of numbers (a,b,c,...) and corresponding multiples (x,y,z,...)
|
||
!> to return a vector of x times a, y times b, z times c, ...
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_expand(what,how)
|
||
|
||
implicit none
|
||
real(pReal), dimension(:), intent(in) :: what
|
||
integer(pInt), dimension(:), intent(in) :: how
|
||
real(pReal), dimension(sum(how)) :: math_expand
|
||
integer(pInt) :: i
|
||
|
||
do i = 1_pInt, size(how)
|
||
math_expand(sum(how(1:i-1))+1:sum(how(1:i))) = what(mod(i-1_pInt,size(what))+1_pInt)
|
||
enddo
|
||
|
||
end function math_expand
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief range of integers starting at one
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_range(N)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: N !< length of range
|
||
integer(pInt) :: i
|
||
integer(pInt), dimension(N) :: math_range
|
||
|
||
math_range = [(i,i=1_pInt,N)]
|
||
|
||
end function math_range
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief second rank identity tensor of specified dimension
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_identity2nd(dimen)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: dimen !< tensor dimension
|
||
integer(pInt) :: i
|
||
real(pReal), dimension(dimen,dimen) :: math_identity2nd
|
||
|
||
math_identity2nd = 0.0_pReal
|
||
forall (i=1_pInt:dimen) math_identity2nd(i,i) = 1.0_pReal
|
||
|
||
end function math_identity2nd
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief symmetric fourth rank identity tensor of specified dimension
|
||
! from http://en.wikipedia.org/wiki/Tensor_derivative_(continuum_mechanics)#Derivative_of_a_second-order_tensor_with_respect_to_itself
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_identity4th(dimen)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: dimen !< tensor dimension
|
||
integer(pInt) :: i,j,k,l
|
||
real(pReal), dimension(dimen,dimen,dimen,dimen) :: math_identity4th
|
||
|
||
forall (i=1_pInt:dimen,j=1_pInt:dimen,k=1_pInt:dimen,l=1_pInt:dimen) math_identity4th(i,j,k,l) = &
|
||
0.5_pReal*(math_I3(i,k)*math_I3(j,l)+math_I3(i,l)*math_I3(j,k))
|
||
|
||
end function math_identity4th
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief permutation tensor e_ijk used for computing cross product of two tensors
|
||
! e_ijk = 1 if even permutation of ijk
|
||
! e_ijk = -1 if odd permutation of ijk
|
||
! e_ijk = 0 otherwise
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_civita(i,j,k)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: i,j,k
|
||
|
||
math_civita = 0.0_pReal
|
||
if (((i == 1_pInt).and.(j == 2_pInt).and.(k == 3_pInt)) .or. &
|
||
((i == 2_pInt).and.(j == 3_pInt).and.(k == 1_pInt)) .or. &
|
||
((i == 3_pInt).and.(j == 1_pInt).and.(k == 2_pInt))) math_civita = 1.0_pReal
|
||
if (((i == 1_pInt).and.(j == 3_pInt).and.(k == 2_pInt)) .or. &
|
||
((i == 2_pInt).and.(j == 1_pInt).and.(k == 3_pInt)) .or. &
|
||
((i == 3_pInt).and.(j == 2_pInt).and.(k == 1_pInt))) math_civita = -1.0_pReal
|
||
|
||
end function math_civita
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief kronecker delta function d_ij
|
||
! d_ij = 1 if i = j
|
||
! d_ij = 0 otherwise
|
||
! inspired by http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_delta(i,j)
|
||
|
||
implicit none
|
||
integer(pInt), intent (in) :: i,j
|
||
|
||
math_delta = merge(0.0_pReal, 1.0_pReal, i /= j)
|
||
|
||
end function math_delta
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief cross product a x b
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_crossproduct(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3), intent(in) :: A,B
|
||
real(pReal), dimension(3) :: math_crossproduct
|
||
|
||
math_crossproduct = [ A(2)*B(3) -A(3)*B(2), &
|
||
A(3)*B(1) -A(1)*B(3), &
|
||
A(1)*B(2) -A(2)*B(1) ]
|
||
|
||
end function math_crossproduct
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief tensor product A \otimes B of arbitrary sized vectors A and B
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_tensorproduct(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(:), intent(in) :: A,B
|
||
real(pReal), dimension(size(A,1),size(B,1)) :: math_tensorproduct
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:size(A,1),j=1_pInt:size(B,1)) math_tensorproduct(i,j) = A(i)*B(j)
|
||
|
||
end function math_tensorproduct
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief tensor product A \otimes B of leght-3 vectors A and B
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_tensorproduct33(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_tensorproduct33
|
||
real(pReal), dimension(3), intent(in) :: A,B
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) math_tensorproduct33(i,j) = A(i)*B(j)
|
||
|
||
end function math_tensorproduct33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 3x3 = 1
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_mul3x3(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3), intent(in) :: A,B
|
||
|
||
math_mul3x3 = sum(A*B)
|
||
|
||
end function math_mul3x3
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 6x6 = 1
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_mul6x6(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(6), intent(in) :: A,B
|
||
|
||
math_mul6x6 = sum(A*B)
|
||
|
||
end function math_mul6x6
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 33xx33 = 1 (double contraction --> ij * ij)
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_mul33xx33(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: A,B
|
||
integer(pInt) :: i,j
|
||
real(pReal), dimension(3,3) :: C
|
||
|
||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) C(i,j) = A(i,j) * B(i,j)
|
||
math_mul33xx33 = sum(C)
|
||
|
||
end function math_mul33xx33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 3333x33 = 33 (double contraction --> ijkl *kl = ij)
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_mul3333xx33(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_mul3333xx33
|
||
real(pReal), dimension(3,3,3,3), intent(in) :: A
|
||
real(pReal), dimension(3,3), intent(in) :: B
|
||
integer(pInt) :: i,j
|
||
|
||
forall(i = 1_pInt:3_pInt,j = 1_pInt:3_pInt) &
|
||
math_mul3333xx33(i,j) = sum(A(i,j,1:3,1:3)*B(1:3,1:3))
|
||
|
||
end function math_mul3333xx33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 3333x3333 = 3333 (ijkl *klmn = ijmn)
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_mul3333xx3333(A,B)
|
||
|
||
implicit none
|
||
integer(pInt) :: i,j,k,l
|
||
real(pReal), dimension(3,3,3,3), intent(in) :: A
|
||
real(pReal), dimension(3,3,3,3), intent(in) :: B
|
||
real(pReal), dimension(3,3,3,3) :: math_mul3333xx3333
|
||
|
||
forall(i = 1_pInt:3_pInt,j = 1_pInt:3_pInt, k = 1_pInt:3_pInt, l= 1_pInt:3_pInt) &
|
||
math_mul3333xx3333(i,j,k,l) = sum(A(i,j,1:3,1:3)*B(1:3,1:3,k,l))
|
||
|
||
end function math_mul3333xx3333
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 33x33 = 33
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_mul33x33(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_mul33x33
|
||
real(pReal), dimension(3,3), intent(in) :: A,B
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt) &
|
||
math_mul33x33(i,j) = A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
||
|
||
end function math_mul33x33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 66x66 = 66
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_mul66x66(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(6,6) :: math_mul66x66
|
||
real(pReal), dimension(6,6), intent(in) :: A,B
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_mul66x66(i,j) = &
|
||
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
||
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j)
|
||
|
||
end function math_mul66x66
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 99x99 = 99
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_mul99x99(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(9,9) :: math_mul99x99
|
||
real(pReal), dimension(9,9), intent(in) :: A,B
|
||
integer(pInt) i,j
|
||
|
||
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_mul99x99(i,j) = &
|
||
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j) + &
|
||
A(i,4)*B(4,j) + A(i,5)*B(5,j) + A(i,6)*B(6,j) + &
|
||
A(i,7)*B(7,j) + A(i,8)*B(8,j) + A(i,9)*B(9,j)
|
||
|
||
end function math_mul99x99
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 33x3 = 3
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_mul33x3(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3) :: math_mul33x3
|
||
real(pReal), dimension(3,3), intent(in) :: A
|
||
real(pReal), dimension(3), intent(in) :: B
|
||
integer(pInt) :: i
|
||
|
||
forall (i=1_pInt:3_pInt) math_mul33x3(i) = sum(A(i,1:3)*B)
|
||
|
||
end function math_mul33x3
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication complex(33) x real(3) = complex(3)
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_mul33x3_complex(A,B)
|
||
|
||
implicit none
|
||
complex(pReal), dimension(3) :: math_mul33x3_complex
|
||
complex(pReal), dimension(3,3), intent(in) :: A
|
||
real(pReal), dimension(3), intent(in) :: B
|
||
integer(pInt) :: i
|
||
|
||
forall (i=1_pInt:3_pInt) math_mul33x3_complex(i) = sum(A(i,1:3)*cmplx(B,0.0_pReal,pReal))
|
||
|
||
end function math_mul33x3_complex
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief matrix multiplication 66x6 = 6
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_mul66x6(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(6) :: math_mul66x6
|
||
real(pReal), dimension(6,6), intent(in) :: A
|
||
real(pReal), dimension(6), intent(in) :: B
|
||
integer(pInt) :: i
|
||
|
||
forall (i=1_pInt:6_pInt) math_mul66x6(i) = &
|
||
A(i,1)*B(1) + A(i,2)*B(2) + A(i,3)*B(3) + &
|
||
A(i,4)*B(4) + A(i,5)*B(5) + A(i,6)*B(6)
|
||
|
||
end function math_mul66x6
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief 3x3 matrix exponential up to series approximation order n (default 5)
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_exp33(A,n)
|
||
|
||
implicit none
|
||
integer(pInt) :: i
|
||
integer(pInt), intent(in), optional :: n
|
||
real(pReal), dimension(3,3), intent(in) :: A
|
||
real(pReal), dimension(3,3) :: B, math_exp33
|
||
real(pReal) :: invFac
|
||
|
||
B = math_I3 ! init
|
||
invFac = 1.0_pReal ! 0!
|
||
math_exp33 = B ! A^0 = eye2
|
||
|
||
do i = 1_pInt, merge(n,5_pInt,present(n))
|
||
invFac = invFac/real(i,pReal) ! invfac = 1/i!
|
||
B = math_mul33x33(B,A)
|
||
math_exp33 = math_exp33 + invFac*B ! exp = SUM (A^i)/i!
|
||
enddo
|
||
|
||
end function math_exp33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief transposition of a 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_transpose33(A)
|
||
|
||
implicit none
|
||
real(pReal),dimension(3,3) :: math_transpose33
|
||
real(pReal),dimension(3,3),intent(in) :: A
|
||
integer(pInt) :: i,j
|
||
|
||
forall(i=1_pInt:3_pInt, j=1_pInt:3_pInt) math_transpose33(i,j) = A(j,i)
|
||
|
||
end function math_transpose33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Cramer inversion of 33 matrix (function)
|
||
! direct Cramer inversion of matrix A.
|
||
! returns all zeroes if not possible, i.e. if det close to zero
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_inv33(A)
|
||
use prec, only: &
|
||
dNeq0
|
||
|
||
implicit none
|
||
real(pReal),dimension(3,3),intent(in) :: A
|
||
real(pReal) :: DetA
|
||
real(pReal),dimension(3,3) :: math_inv33
|
||
|
||
math_inv33(1,1) = A(2,2) * A(3,3) - A(2,3) * A(3,2)
|
||
math_inv33(2,1) = -A(2,1) * A(3,3) + A(2,3) * A(3,1)
|
||
math_inv33(3,1) = A(2,1) * A(3,2) - A(2,2) * A(3,1)
|
||
|
||
DetA = A(1,1) * math_inv33(1,1) + A(1,2) * math_inv33(2,1) + A(1,3) * math_inv33(3,1)
|
||
|
||
if (dNeq0(DetA)) then
|
||
math_inv33(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2)
|
||
math_inv33(2,2) = A(1,1) * A(3,3) - A(1,3) * A(3,1)
|
||
math_inv33(3,2) = -A(1,1) * A(3,2) + A(1,2) * A(3,1)
|
||
|
||
math_inv33(1,3) = A(1,2) * A(2,3) - A(1,3) * A(2,2)
|
||
math_inv33(2,3) = -A(1,1) * A(2,3) + A(1,3) * A(2,1)
|
||
math_inv33(3,3) = A(1,1) * A(2,2) - A(1,2) * A(2,1)
|
||
|
||
math_inv33 = math_inv33/DetA
|
||
else
|
||
math_inv33 = 0.0_pReal
|
||
endif
|
||
|
||
end function math_inv33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Cramer inversion of 33 matrix (subroutine)
|
||
! direct Cramer inversion of matrix A.
|
||
! also returns determinant
|
||
! returns error if not possible, i.e. if det close to zero
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure subroutine math_invert33(A, InvA, DetA, error)
|
||
use prec, only: &
|
||
dEq0
|
||
|
||
implicit none
|
||
logical, intent(out) :: error
|
||
real(pReal),dimension(3,3),intent(in) :: A
|
||
real(pReal),dimension(3,3),intent(out) :: InvA
|
||
real(pReal), intent(out) :: DetA
|
||
|
||
InvA(1,1) = A(2,2) * A(3,3) - A(2,3) * A(3,2)
|
||
InvA(2,1) = -A(2,1) * A(3,3) + A(2,3) * A(3,1)
|
||
InvA(3,1) = A(2,1) * A(3,2) - A(2,2) * A(3,1)
|
||
|
||
DetA = A(1,1) * InvA(1,1) + A(1,2) * InvA(2,1) + A(1,3) * InvA(3,1)
|
||
|
||
if (dEq0(DetA)) then
|
||
InvA = 0.0_pReal
|
||
error = .true.
|
||
else
|
||
InvA(1,2) = -A(1,2) * A(3,3) + A(1,3) * A(3,2)
|
||
InvA(2,2) = A(1,1) * A(3,3) - A(1,3) * A(3,1)
|
||
InvA(3,2) = -A(1,1) * A(3,2) + A(1,2) * A(3,1)
|
||
|
||
InvA(1,3) = A(1,2) * A(2,3) - A(1,3) * A(2,2)
|
||
InvA(2,3) = -A(1,1) * A(2,3) + A(1,3) * A(2,1)
|
||
InvA(3,3) = A(1,1) * A(2,2) - A(1,2) * A(2,1)
|
||
|
||
InvA = InvA/DetA
|
||
error = .false.
|
||
endif
|
||
|
||
end subroutine math_invert33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Inversion of symmetriced 3x3x3x3 tensor.
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_invSym3333(A)
|
||
use IO, only: &
|
||
IO_error
|
||
|
||
implicit none
|
||
real(pReal),dimension(3,3,3,3) :: math_invSym3333
|
||
|
||
real(pReal),dimension(3,3,3,3),intent(in) :: A
|
||
|
||
integer(pInt) :: ierr
|
||
integer(pInt), dimension(6) :: ipiv6
|
||
real(pReal), dimension(6,6) :: temp66_Real
|
||
real(pReal), dimension(6) :: work6
|
||
external :: &
|
||
dgetrf, &
|
||
dgetri
|
||
|
||
temp66_real = math_Mandel3333to66(A)
|
||
call dgetrf(6,6,temp66_real,6,ipiv6,ierr)
|
||
call dgetri(6,temp66_real,6,ipiv6,work6,6,ierr)
|
||
if (ierr == 0_pInt) then
|
||
math_invSym3333 = math_Mandel66to3333(temp66_real)
|
||
else
|
||
call IO_error(400_pInt, ext_msg = 'math_invSym3333')
|
||
endif
|
||
|
||
end function math_invSym3333
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief invert matrix of arbitrary dimension
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine math_invert(myDim,A, InvA, error)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: myDim
|
||
real(pReal), dimension(myDim,myDim), intent(in) :: A
|
||
|
||
|
||
integer(pInt) :: ierr
|
||
integer(pInt), dimension(myDim) :: ipiv
|
||
real(pReal), dimension(myDim) :: work
|
||
|
||
real(pReal), dimension(myDim,myDim), intent(out) :: invA
|
||
logical, intent(out) :: error
|
||
external :: &
|
||
dgetrf, &
|
||
dgetri
|
||
|
||
invA = A
|
||
call dgetrf(myDim,myDim,invA,myDim,ipiv,ierr)
|
||
call dgetri(myDim,InvA,myDim,ipiv,work,myDim,ierr)
|
||
error = merge(.true.,.false., ierr /= 0_pInt) ! http://fortraninacworld.blogspot.de/2012/12/ternary-operator.html
|
||
|
||
end subroutine math_invert
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief symmetrize a 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_symmetric33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_symmetric33
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
|
||
math_symmetric33 = 0.5_pReal * (m + transpose(m))
|
||
|
||
end function math_symmetric33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief symmetrize a 66 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_symmetric66(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(6,6) :: math_symmetric66
|
||
real(pReal), dimension(6,6), intent(in) :: m
|
||
|
||
math_symmetric66 = 0.5_pReal * (m + transpose(m))
|
||
|
||
end function math_symmetric66
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief skew part of a 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_skew33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_skew33
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
|
||
math_skew33 = m - math_symmetric33(m)
|
||
|
||
end function math_skew33
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief hydrostatic part of a 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_spherical33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_spherical33
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
|
||
math_spherical33 = math_I3 * math_trace33(m)/3.0_pReal
|
||
|
||
end function math_spherical33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief deviatoric part of a 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_deviatoric33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_deviatoric33
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
|
||
math_deviatoric33 = m - math_spherical33(m)
|
||
|
||
end function math_deviatoric33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief equivalent scalar quantity of a full symmetric strain tensor
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_equivStrain33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
real(pReal), dimension(3) :: e,s
|
||
real(pReal) :: math_equivStrain33
|
||
real(pReal), parameter :: TWOTHIRD = 2.0_pReal/3.0_pReal
|
||
|
||
e = [2.0_pReal*m(1,1)-m(2,2)-m(3,3), &
|
||
2.0_pReal*m(2,2)-m(3,3)-m(1,1), &
|
||
2.0_pReal*m(3,3)-m(1,1)-m(2,2)]/3.0_pReal
|
||
s = [m(1,2),m(2,3),m(1,3)]*2.0_pReal
|
||
|
||
math_equivStrain33 = TWOTHIRD*(1.50_pReal*(sum(e**2.0_pReal)) + &
|
||
0.75_pReal*(sum(s**2.0_pReal)))**(0.5_pReal)
|
||
|
||
end function math_equivStrain33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief von Mises equivalent of a full symmetric stress tensor
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_equivStress33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
real(pReal) :: math_equivStress33
|
||
|
||
math_equivStress33 =( ( (m(1,1)-m(2,2))**2.0_pReal + &
|
||
(m(2,2)-m(3,3))**2.0_pReal + &
|
||
(m(3,3)-m(1,1))**2.0_pReal + &
|
||
6.0_pReal*( m(1,2)**2.0_pReal + &
|
||
m(2,3)**2.0_pReal + &
|
||
m(1,3)**2.0_pReal &
|
||
) &
|
||
)**0.5_pReal &
|
||
)/sqrt(2.0_pReal)
|
||
|
||
end function math_equivStress33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief trace of a 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_trace33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
|
||
math_trace33 = m(1,1) + m(2,2) + m(3,3)
|
||
|
||
end function math_trace33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief determinant of a 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_det33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
|
||
math_det33 = m(1,1)* (m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
|
||
- m(1,2)* (m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
|
||
+ m(1,3)* (m(2,1)*m(3,2)-m(2,2)*m(3,1))
|
||
|
||
end function math_det33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief determinant of a symmetric 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_detSym33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
|
||
math_detSym33 = -(m(1,1)*m(2,3)**2_pInt + m(2,2)*m(1,3)**2_pInt + m(3,3)*m(1,2)**2_pInt) &
|
||
+ m(1,1)*m(2,2)*m(3,3) + 2.0_pReal * m(1,2)*m(1,3)*m(2,3)
|
||
|
||
end function math_detSym33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert 33 matrix into vector 9
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Plain33to9(m33)
|
||
|
||
implicit none
|
||
real(pReal), dimension(9) :: math_Plain33to9
|
||
real(pReal), dimension(3,3), intent(in) :: m33
|
||
integer(pInt) :: i
|
||
|
||
forall (i=1_pInt:9_pInt) math_Plain33to9(i) = m33(mapPlain(1,i),mapPlain(2,i))
|
||
|
||
end function math_Plain33to9
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert Plain 9 back to 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Plain9to33(v9)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_Plain9to33
|
||
real(pReal), dimension(9), intent(in) :: v9
|
||
integer(pInt) :: i
|
||
|
||
forall (i=1_pInt:9_pInt) math_Plain9to33(mapPlain(1,i),mapPlain(2,i)) = v9(i)
|
||
|
||
end function math_Plain9to33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert symmetric 33 matrix into Mandel vector 6
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Mandel33to6(m33)
|
||
|
||
implicit none
|
||
real(pReal), dimension(6) :: math_Mandel33to6
|
||
real(pReal), dimension(3,3), intent(in) :: m33
|
||
|
||
integer(pInt) :: i
|
||
|
||
forall (i=1_pInt:6_pInt) math_Mandel33to6(i) = nrmMandel(i)*m33(mapMandel(1,i),mapMandel(2,i))
|
||
|
||
end function math_Mandel33to6
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert Mandel 6 back to symmetric 33 matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Mandel6to33(v6)
|
||
|
||
implicit none
|
||
real(pReal), dimension(6), intent(in) :: v6
|
||
real(pReal), dimension(3,3) :: math_Mandel6to33
|
||
integer(pInt) :: i
|
||
|
||
forall (i=1_pInt:6_pInt)
|
||
math_Mandel6to33(mapMandel(1,i),mapMandel(2,i)) = invnrmMandel(i)*v6(i)
|
||
math_Mandel6to33(mapMandel(2,i),mapMandel(1,i)) = invnrmMandel(i)*v6(i)
|
||
end forall
|
||
|
||
end function math_Mandel6to33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert 3333 tensor into plain matrix 99
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Plain3333to99(m3333)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
||
real(pReal), dimension(9,9) :: math_Plain3333to99
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain3333to99(i,j) = &
|
||
m3333(mapPlain(1,i),mapPlain(2,i),mapPlain(1,j),mapPlain(2,j))
|
||
|
||
end function math_Plain3333to99
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief plain matrix 99 into 3333 tensor
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Plain99to3333(m99)
|
||
|
||
implicit none
|
||
real(pReal), dimension(9,9), intent(in) :: m99
|
||
real(pReal), dimension(3,3,3,3) :: math_Plain99to3333
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:9_pInt,j=1_pInt:9_pInt) math_Plain99to3333(mapPlain(1,i),mapPlain(2,i),&
|
||
mapPlain(1,j),mapPlain(2,j)) = m99(i,j)
|
||
|
||
end function math_Plain99to3333
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert Mandel matrix 66 into Plain matrix 66
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Mandel66toPlain66(m66)
|
||
|
||
implicit none
|
||
real(pReal), dimension(6,6), intent(in) :: m66
|
||
real(pReal), dimension(6,6) :: math_Mandel66toPlain66
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
||
math_Mandel66toPlain66(i,j) = invnrmMandel(i) * invnrmMandel(j) * m66(i,j)
|
||
|
||
end function math_Mandel66toPlain66
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert Plain matrix 66 into Mandel matrix 66
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Plain66toMandel66(m66)
|
||
|
||
implicit none
|
||
real(pReal), dimension(6,6), intent(in) :: m66
|
||
real(pReal), dimension(6,6) :: math_Plain66toMandel66
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) &
|
||
math_Plain66toMandel66(i,j) = nrmMandel(i) * nrmMandel(j) * m66(i,j)
|
||
|
||
end function math_Plain66toMandel66
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert symmetric 3333 tensor into Mandel matrix 66
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Mandel3333to66(m3333)
|
||
|
||
implicit none
|
||
|
||
real(pReal), dimension(3,3,3,3), intent(in) :: m3333
|
||
real(pReal), dimension(6,6) :: math_Mandel3333to66
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt) math_Mandel3333to66(i,j) = &
|
||
nrmMandel(i)*nrmMandel(j)*m3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j))
|
||
|
||
end function math_Mandel3333to66
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert Mandel matrix 66 back to symmetric 3333 tensor
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Mandel66to3333(m66)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3,3,3) :: math_Mandel66to3333
|
||
real(pReal), dimension(6,6), intent(in) :: m66
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
|
||
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(1,j),mapMandel(2,j)) = &
|
||
invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
||
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(1,j),mapMandel(2,j)) = &
|
||
invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
||
math_Mandel66to3333(mapMandel(1,i),mapMandel(2,i),mapMandel(2,j),mapMandel(1,j)) = &
|
||
invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
||
math_Mandel66to3333(mapMandel(2,i),mapMandel(1,i),mapMandel(2,j),mapMandel(1,j)) = &
|
||
invnrmMandel(i)*invnrmMandel(j)*m66(i,j)
|
||
end forall
|
||
|
||
end function math_Mandel66to3333
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief convert Voigt matrix 66 back to symmetric 3333 tensor
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_Voigt66to3333(m66)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3,3,3) :: math_Voigt66to3333
|
||
real(pReal), dimension(6,6), intent(in) :: m66
|
||
integer(pInt) :: i,j
|
||
|
||
forall (i=1_pInt:6_pInt,j=1_pInt:6_pInt)
|
||
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(1,j),mapVoigt(2,j)) = &
|
||
invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
||
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(1,j),mapVoigt(2,j)) = &
|
||
invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
||
math_Voigt66to3333(mapVoigt(1,i),mapVoigt(2,i),mapVoigt(2,j),mapVoigt(1,j)) = &
|
||
invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
||
math_Voigt66to3333(mapVoigt(2,i),mapVoigt(1,i),mapVoigt(2,j),mapVoigt(1,j)) = &
|
||
invnrmVoigt(i)*invnrmVoigt(j)*m66(i,j)
|
||
end forall
|
||
|
||
end function math_Voigt66to3333
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief random quaternion
|
||
! http://math.stackexchange.com/questions/131336/uniform-random-quaternion-in-a-restricted-angle-range
|
||
! K. Shoemake. Uniform random rotations. In D. Kirk, editor, Graphics Gems III, pages 124-132.
|
||
! Academic, New York, 1992.
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_qRand()
|
||
|
||
implicit none
|
||
real(pReal), dimension(4) :: math_qRand
|
||
real(pReal), dimension(3) :: rnd
|
||
|
||
rnd = halton([8_pInt,4_pInt,9_pInt])
|
||
math_qRand = [cos(2.0_pReal*PI*rnd(1))*sqrt(rnd(3)), &
|
||
sin(2.0_pReal*PI*rnd(2))*sqrt(1.0_pReal-rnd(3)), &
|
||
cos(2.0_pReal*PI*rnd(2))*sqrt(1.0_pReal-rnd(3)), &
|
||
sin(2.0_pReal*PI*rnd(1))*sqrt(rnd(3))]
|
||
|
||
end function math_qRand
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief quaternion multiplication q1xq2 = q12
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_qMul(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4) :: math_qMul
|
||
real(pReal), dimension(4), intent(in) :: A, B
|
||
|
||
math_qMul = [ A(1)*B(1) - A(2)*B(2) - A(3)*B(3) - A(4)*B(4), &
|
||
A(1)*B(2) + A(2)*B(1) + A(3)*B(4) - A(4)*B(3), &
|
||
A(1)*B(3) - A(2)*B(4) + A(3)*B(1) + A(4)*B(2), &
|
||
A(1)*B(4) + A(2)*B(3) - A(3)*B(2) + A(4)*B(1) ]
|
||
|
||
end function math_qMul
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief quaternion dotproduct
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_qDot(A,B)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4), intent(in) :: A, B
|
||
|
||
math_qDot = sum(A*B)
|
||
|
||
end function math_qDot
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief quaternion conjugation
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_qConj(Q)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4) :: math_qConj
|
||
real(pReal), dimension(4), intent(in) :: Q
|
||
|
||
math_qConj = [Q(1), -Q(2:4)]
|
||
|
||
end function math_qConj
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief quaternion norm
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_qNorm(Q)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4), intent(in) :: Q
|
||
|
||
math_qNorm = norm2(Q)
|
||
|
||
end function math_qNorm
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief quaternion inversion
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_qInv(Q)
|
||
use prec, only: &
|
||
dNeq0
|
||
|
||
implicit none
|
||
real(pReal), dimension(4), intent(in) :: Q
|
||
real(pReal), dimension(4) :: math_qInv
|
||
real(pReal) :: squareNorm
|
||
|
||
math_qInv = 0.0_pReal
|
||
|
||
squareNorm = math_qDot(Q,Q)
|
||
if (dNeq0(squareNorm)) math_qInv = math_qConj(Q) / squareNorm
|
||
|
||
end function math_qInv
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief action of a quaternion on a vector (rotate vector v with Q)
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_qRot(Q,v)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4), intent(in) :: Q
|
||
real(pReal), dimension(3), intent(in) :: v
|
||
real(pReal), dimension(3) :: math_qRot
|
||
real(pReal), dimension(4,4) :: T
|
||
integer(pInt) :: i, j
|
||
|
||
do i = 1_pInt,4_pInt
|
||
do j = 1_pInt,i
|
||
T(i,j) = Q(i) * Q(j)
|
||
enddo
|
||
enddo
|
||
|
||
math_qRot = [-v(1)*(T(3,3)+T(4,4)) + v(2)*(T(3,2)-T(4,1)) + v(3)*(T(4,2)+T(3,1)), &
|
||
v(1)*(T(3,2)+T(4,1)) - v(2)*(T(2,2)+T(4,4)) + v(3)*(T(4,3)-T(2,1)), &
|
||
v(1)*(T(4,2)-T(3,1)) + v(2)*(T(4,3)+T(2,1)) - v(3)*(T(2,2)+T(3,3))]
|
||
|
||
math_qRot = 2.0_pReal * math_qRot + v
|
||
|
||
end function math_qRot
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Euler angles (in radians) from rotation matrix
|
||
!> @details rotation matrix is meant to represent a PASSIVE rotation,
|
||
!> composed of INTRINSIC rotations around the axes of the
|
||
!> rotating reference frame
|
||
!> (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_RtoEuler(R)
|
||
|
||
implicit none
|
||
real(pReal), dimension (3,3), intent(in) :: R
|
||
real(pReal), dimension(3) :: math_RtoEuler
|
||
real(pReal) :: sqhkl, squvw, sqhk
|
||
|
||
sqhkl=sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3)+R(3,3)*R(3,3))
|
||
squvw=sqrt(R(1,1)*R(1,1)+R(2,1)*R(2,1)+R(3,1)*R(3,1))
|
||
sqhk =sqrt(R(1,3)*R(1,3)+R(2,3)*R(2,3))
|
||
|
||
! calculate PHI
|
||
math_RtoEuler(2) = acos(math_clip(R(3,3)/sqhkl,-1.0_pReal, 1.0_pReal))
|
||
|
||
if((math_RtoEuler(2) < 1.0e-8_pReal) .or. (pi-math_RtoEuler(2) < 1.0e-8_pReal)) then
|
||
math_RtoEuler(3) = 0.0_pReal
|
||
math_RtoEuler(1) = acos(math_clip(R(1,1)/squvw, -1.0_pReal, 1.0_pReal))
|
||
if(R(2,1) > 0.0_pReal) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
||
else
|
||
math_RtoEuler(3) = acos(math_clip(R(2,3)/sqhk, -1.0_pReal, 1.0_pReal))
|
||
if(R(1,3) < 0.0) math_RtoEuler(3) = 2.0_pReal*pi-math_RtoEuler(3)
|
||
math_RtoEuler(1) = acos(math_clip(-R(3,2)/sin(math_RtoEuler(2)), -1.0_pReal, 1.0_pReal))
|
||
if(R(3,1) < 0.0) math_RtoEuler(1) = 2.0_pReal*pi-math_RtoEuler(1)
|
||
end if
|
||
|
||
end function math_RtoEuler
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief converts a rotation matrix into a quaternion (w+ix+jy+kz)
|
||
!> @details math adopted from http://arxiv.org/pdf/math/0701759v1.pdf
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_RtoQ(R)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: R
|
||
real(pReal), dimension(4) :: absQ, math_RtoQ
|
||
real(pReal) :: max_absQ
|
||
integer, dimension(1) :: largest !no pInt, maxloc returns integer default
|
||
|
||
math_RtoQ = 0.0_pReal
|
||
|
||
absQ = [+ R(1,1) + R(2,2) + R(3,3), &
|
||
+ R(1,1) - R(2,2) - R(3,3), &
|
||
- R(1,1) + R(2,2) - R(3,3), &
|
||
- R(1,1) - R(2,2) + R(3,3)] + 1.0_pReal
|
||
|
||
largest = maxloc(absQ)
|
||
|
||
largestComponent: select case(largest(1))
|
||
case (1) largestComponent
|
||
!1----------------------------------
|
||
math_RtoQ(2) = R(3,2) - R(2,3)
|
||
math_RtoQ(3) = R(1,3) - R(3,1)
|
||
math_RtoQ(4) = R(2,1) - R(1,2)
|
||
|
||
case (2) largestComponent
|
||
math_RtoQ(1) = R(3,2) - R(2,3)
|
||
!2----------------------------------
|
||
math_RtoQ(3) = R(2,1) + R(1,2)
|
||
math_RtoQ(4) = R(1,3) + R(3,1)
|
||
|
||
case (3) largestComponent
|
||
math_RtoQ(1) = R(1,3) - R(3,1)
|
||
math_RtoQ(2) = R(2,1) + R(1,2)
|
||
!3----------------------------------
|
||
math_RtoQ(4) = R(3,2) + R(2,3)
|
||
|
||
case (4) largestComponent
|
||
math_RtoQ(1) = R(2,1) - R(1,2)
|
||
math_RtoQ(2) = R(1,3) + R(3,1)
|
||
math_RtoQ(3) = R(2,3) + R(3,2)
|
||
!4----------------------------------
|
||
end select largestComponent
|
||
|
||
max_absQ = 0.5_pReal * sqrt(absQ(largest(1)))
|
||
math_RtoQ = math_RtoQ * 0.25_pReal / max_absQ
|
||
math_RtoQ(largest(1)) = max_absQ
|
||
|
||
end function math_RtoQ
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief rotation matrix from Bunge-Euler (3-1-3) angles (in radians)
|
||
!> @details rotation matrix is meant to represent a PASSIVE rotation, composed of INTRINSIC
|
||
!> @details rotations around the axes of the details rotating reference frame.
|
||
!> @details similar to eu2om from "D Rowenhorst et al. Consistent representations of and conversions
|
||
!> @details between 3D rotations, Model. Simul. Mater. Sci. Eng. 23-8 (2015)", but R is transposed
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_EulerToR(Euler)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3), intent(in) :: Euler
|
||
real(pReal), dimension(3,3) :: math_EulerToR
|
||
real(pReal) :: c1, C, c2, s1, S, s2
|
||
|
||
c1 = cos(Euler(1))
|
||
C = cos(Euler(2))
|
||
c2 = cos(Euler(3))
|
||
s1 = sin(Euler(1))
|
||
S = sin(Euler(2))
|
||
s2 = sin(Euler(3))
|
||
|
||
math_EulerToR(1,1) = c1*c2 -s1*C*s2
|
||
math_EulerToR(1,2) = -c1*s2 -s1*C*c2
|
||
math_EulerToR(1,3) = s1*S
|
||
|
||
math_EulerToR(2,1) = s1*c2 +c1*C*s2
|
||
math_EulerToR(2,2) = -s1*s2 +c1*C*c2
|
||
math_EulerToR(2,3) = -c1*S
|
||
|
||
math_EulerToR(3,1) = S*s2
|
||
math_EulerToR(3,2) = S*c2
|
||
math_EulerToR(3,3) = C
|
||
|
||
math_EulerToR = transpose(math_EulerToR) ! convert to passive rotation
|
||
|
||
end function math_EulerToR
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief quaternion (w+ix+jy+kz) from Bunge-Euler (3-1-3) angles (in radians)
|
||
!> @details rotation matrix is meant to represent a PASSIVE rotation, composed of INTRINSIC
|
||
!> @details rotations around the axes of the details rotating reference frame.
|
||
!> @details similar to eu2qu from "D Rowenhorst et al. Consistent representations of and
|
||
!> @details conversions between 3D rotations, Model. Simul. Mater. Sci. Eng. 23-8 (2015)", but
|
||
!> @details Q is conjucated and Q is not reversed for Q(0) < 0.
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_EulerToQ(eulerangles)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3), intent(in) :: eulerangles
|
||
real(pReal), dimension(4) :: math_EulerToQ
|
||
real(pReal) :: c, s, sigma, delta
|
||
|
||
c = cos(0.5_pReal * eulerangles(2))
|
||
s = sin(0.5_pReal * eulerangles(2))
|
||
sigma = 0.5_pReal * (eulerangles(1)+eulerangles(3))
|
||
delta = 0.5_pReal * (eulerangles(1)-eulerangles(3))
|
||
|
||
math_EulerToQ= [c * cos(sigma), &
|
||
s * cos(delta), &
|
||
s * sin(delta), &
|
||
c * sin(sigma) ]
|
||
math_EulerToQ = math_qConj(math_EulerToQ) ! convert to passive rotation
|
||
|
||
end function math_EulerToQ
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief rotation matrix from axis and angle (in radians)
|
||
!> @details rotation matrix is meant to represent a ACTIVE rotation
|
||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||
!> @details formula for active rotation taken from http://mathworld.wolfram.com/RodriguesRotationFormula.html
|
||
!> @details equivalent to eu2om (P=-1) from "D Rowenhorst et al. Consistent representations of and
|
||
!> @details conversions between 3D rotations, Model. Simul. Mater. Sci. Eng. 23-8 (2015)"
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_axisAngleToR(axis,omega)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_axisAngleToR
|
||
real(pReal), dimension(3), intent(in) :: axis
|
||
real(pReal), intent(in) :: omega
|
||
real(pReal), dimension(3) :: n
|
||
real(pReal) :: norm,s,c,c1
|
||
|
||
norm = norm2(axis)
|
||
wellDefined: if (norm > 1.0e-8_pReal) then
|
||
n = axis/norm ! normalize axis to be sure
|
||
|
||
s = sin(omega)
|
||
c = cos(omega)
|
||
c1 = 1.0_pReal - c
|
||
|
||
math_axisAngleToR(1,1) = c + c1*n(1)**2.0_pReal
|
||
math_axisAngleToR(1,2) = c1*n(1)*n(2) - s*n(3)
|
||
math_axisAngleToR(1,3) = c1*n(1)*n(3) + s*n(2)
|
||
|
||
math_axisAngleToR(2,1) = c1*n(1)*n(2) + s*n(3)
|
||
math_axisAngleToR(2,2) = c + c1*n(2)**2.0_pReal
|
||
math_axisAngleToR(2,3) = c1*n(2)*n(3) - s*n(1)
|
||
|
||
math_axisAngleToR(3,1) = c1*n(1)*n(3) - s*n(2)
|
||
math_axisAngleToR(3,2) = c1*n(2)*n(3) + s*n(1)
|
||
math_axisAngleToR(3,3) = c + c1*n(3)**2.0_pReal
|
||
else wellDefined
|
||
math_axisAngleToR = math_I3
|
||
endif wellDefined
|
||
|
||
end function math_axisAngleToR
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief rotation matrix from axis and angle (in radians)
|
||
!> @details rotation matrix is meant to represent a PASSIVE rotation
|
||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||
!> @details eq-uivalent to eu2qu (P=+1) from "D Rowenhorst et al. Consistent representations of and
|
||
!> @details conversions between 3D rotations, Model. Simul. Mater. Sci. Eng. 23-8 (2015)"
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_EulerAxisAngleToR(axis,omega)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_EulerAxisAngleToR
|
||
real(pReal), dimension(3), intent(in) :: axis
|
||
real(pReal), intent(in) :: omega
|
||
|
||
math_EulerAxisAngleToR = transpose(math_axisAngleToR(axis,omega)) ! convert to passive rotation
|
||
|
||
end function math_EulerAxisAngleToR
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief quaternion (w+ix+jy+kz) from Euler axis and angle (in radians)
|
||
!> @details quaternion is meant to represent a PASSIVE rotation
|
||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||
!> @details formula for active rotation taken from
|
||
!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_EulerAxisAngleToQ(axis,omega)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4) :: math_EulerAxisAngleToQ
|
||
real(pReal), dimension(3), intent(in) :: axis
|
||
real(pReal), intent(in) :: omega
|
||
|
||
math_EulerAxisAngleToQ = math_qConj(math_axisAngleToQ(axis,omega)) ! convert to passive rotation
|
||
|
||
end function math_EulerAxisAngleToQ
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief quaternion (w+ix+jy+kz) from axis and angle (in radians)
|
||
!> @details quaternion is meant to represent an ACTIVE rotation
|
||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||
!> @details formula for active rotation taken from
|
||
!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
||
!> @details equivalent to eu2qu (P=+1) from "D Rowenhorst et al. Consistent representations of and
|
||
!> @details conversions between 3D rotations, Model. Simul. Mater. Sci. Eng. 23-8 (2015)"
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_axisAngleToQ(axis,omega)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4) :: math_axisAngleToQ
|
||
real(pReal), dimension(3), intent(in) :: axis
|
||
real(pReal), intent(in) :: omega
|
||
real(pReal), dimension(3) :: axisNrm
|
||
real(pReal) :: norm
|
||
|
||
norm = norm2(axis)
|
||
wellDefined: if (norm > 1.0e-8_pReal) then
|
||
axisNrm = axis/norm ! normalize axis to be sure
|
||
math_axisAngleToQ = [cos(0.5_pReal*omega), sin(0.5_pReal*omega) * axisNrm(1:3)]
|
||
else wellDefined
|
||
math_axisAngleToQ = [1.0_pReal,0.0_pReal,0.0_pReal,0.0_pReal]
|
||
endif wellDefined
|
||
|
||
end function math_axisAngleToQ
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief orientation matrix from quaternion (w+ix+jy+kz)
|
||
!> @details taken from http://arxiv.org/pdf/math/0701759v1.pdf
|
||
!> @details see also http://en.wikipedia.org/wiki/Rotation_formalisms_in_three_dimensions
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_qToR(q)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4), intent(in) :: q
|
||
real(pReal), dimension(3,3) :: math_qToR, T,S
|
||
integer(pInt) :: i, j
|
||
|
||
forall (i = 1_pInt:3_pInt, j = 1_pInt:3_pInt) &
|
||
T(i,j) = q(i+1_pInt) * q(j+1_pInt)
|
||
|
||
S = reshape( [0.0_pReal, -q(4), q(3), &
|
||
q(4), 0.0_pReal, -q(2), &
|
||
-q(3), q(2), 0.0_pReal],[3,3]) ! notation is transposed
|
||
|
||
math_qToR = (2.0_pReal * q(1)*q(1) - 1.0_pReal) * math_I3 &
|
||
+ 2.0_pReal * T - 2.0_pReal * q(1) * S
|
||
|
||
end function math_qToR
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief 3-1-3 Euler angles (in radians) from quaternion (w+ix+jy+kz)
|
||
!> @details quaternion is meant to represent a PASSIVE rotation,
|
||
!> @details composed of INTRINSIC rotations around the axes of the
|
||
!> @details rotating reference frame
|
||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_qToEuler(qPassive)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4), intent(in) :: qPassive
|
||
real(pReal), dimension(4) :: q
|
||
real(pReal), dimension(3) :: math_qToEuler
|
||
|
||
q = math_qConj(qPassive) ! convert to active rotation, since formulas are defined for active rotations
|
||
|
||
math_qToEuler(2) = acos(1.0_pReal-2.0_pReal*(q(2)**2+q(3)**2))
|
||
|
||
if (abs(math_qToEuler(2)) < 1.0e-6_pReal) then
|
||
math_qToEuler(1) = sign(2.0_pReal*acos(math_clip(q(1),-1.0_pReal, 1.0_pReal)),q(4))
|
||
math_qToEuler(3) = 0.0_pReal
|
||
else
|
||
math_qToEuler(1) = atan2(+q(1)*q(3)+q(2)*q(4), q(1)*q(2)-q(3)*q(4))
|
||
math_qToEuler(3) = atan2(-q(1)*q(3)+q(2)*q(4), q(1)*q(2)+q(3)*q(4))
|
||
endif
|
||
|
||
math_qToEuler = merge(math_qToEuler + [2.0_pReal*PI, PI, 2.0_pReal*PI], & ! ensure correct range
|
||
math_qToEuler, math_qToEuler<0.0_pReal)
|
||
|
||
end function math_qToEuler
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
|
||
!> @details quaternion is meant to represent an ACTIVE rotation
|
||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||
!> @details formula for active rotation taken from
|
||
!> @details http://en.wikipedia.org/wiki/Rotation_representation_%28mathematics%29#Rodrigues_parameters
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_qToAxisAngle(Q)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4), intent(in) :: Q
|
||
real(pReal) :: halfAngle, sinHalfAngle
|
||
real(pReal), dimension(4) :: math_qToAxisAngle
|
||
|
||
halfAngle = acos(math_clip(Q(1),-1.0_pReal,1.0_pReal))
|
||
sinHalfAngle = sin(halfAngle)
|
||
|
||
smallRotation: if (sinHalfAngle <= 1.0e-4_pReal) then
|
||
math_qToAxisAngle = 0.0_pReal
|
||
else smallRotation
|
||
math_qToAxisAngle= [ Q(2:4)/sinHalfAngle, halfAngle*2.0_pReal]
|
||
endif smallRotation
|
||
|
||
end function math_qToAxisAngle
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Euler axis-angle (x, y, z, ang in radians) from quaternion (w+ix+jy+kz)
|
||
!> @details quaternion is meant to represent a PASSIVE rotation
|
||
!> @details (see http://en.wikipedia.org/wiki/Euler_angles for definitions)
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_qToEulerAxisAngle(qPassive)
|
||
|
||
implicit none
|
||
real(pReal), dimension(4), intent(in) :: qPassive
|
||
real(pReal), dimension(4) :: q
|
||
real(pReal), dimension(4) :: math_qToEulerAxisAngle
|
||
|
||
q = math_qConj(qPassive) ! convert to active rotation
|
||
math_qToEulerAxisAngle = math_qToAxisAngle(q)
|
||
|
||
end function math_qToEulerAxisAngle
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Rodrigues vector (x, y, z) from unit quaternion (w+ix+jy+kz)
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_qToRodrig(Q)
|
||
use, intrinsic :: &
|
||
IEEE_arithmetic
|
||
use prec, only: &
|
||
tol_math_check
|
||
|
||
implicit none
|
||
real(pReal), dimension(4), intent(in) :: Q
|
||
real(pReal), dimension(3) :: math_qToRodrig
|
||
|
||
math_qToRodrig = merge(Q(2:4)/Q(1),IEEE_value(1.0_pReal,IEEE_quiet_NaN),abs(Q(1)) > tol_math_check)! NaN for 180 deg since Rodrig is unbound
|
||
|
||
end function math_qToRodrig
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief misorientation angle between two sets of Euler angles
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_EulerMisorientation(EulerA,EulerB)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3), intent(in) :: EulerA,EulerB
|
||
real(pReal) :: cosTheta
|
||
|
||
cosTheta = (math_trace33(math_mul33x33(math_EulerToR(EulerB), &
|
||
transpose(math_EulerToR(EulerA)))) - 1.0_pReal) * 0.5_pReal
|
||
|
||
math_EulerMisorientation = acos(math_clip(cosTheta,-1.0_pReal,1.0_pReal))
|
||
|
||
end function math_EulerMisorientation
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief draw a random sample from Euler space
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_sampleRandomOri()
|
||
|
||
implicit none
|
||
real(pReal), dimension(3) :: math_sampleRandomOri, rnd
|
||
|
||
rnd = halton([1_pInt,7_pInt,3_pInt])
|
||
math_sampleRandomOri = [rnd(1)*2.0_pReal*PI, &
|
||
acos(2.0_pReal*rnd(2)-1.0_pReal), &
|
||
rnd(3)*2.0_pReal*PI]
|
||
|
||
end function math_sampleRandomOri
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief draw a sample from an Gaussian distribution around given orientation and Full Width
|
||
! at Half Maximum (FWHM)
|
||
!> @details: A uniform misorientation (limited to 2*FWHM) is sampled followed by convolution with
|
||
! a Gausian distribution
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_sampleGaussOri(center,FWHM)
|
||
|
||
implicit none
|
||
real(pReal), intent(in) :: FWHM
|
||
real(pReal), dimension(3), intent(in) :: center
|
||
real(pReal) :: angle
|
||
real(pReal), dimension(3) :: math_sampleGaussOri, axis
|
||
real(pReal), dimension(4) :: rnd
|
||
real(pReal), dimension(3,3) :: R
|
||
|
||
if (FWHM < 0.1_pReal*INRAD) then
|
||
math_sampleGaussOri = center
|
||
else
|
||
GaussConvolution: do
|
||
rnd = halton([8_pInt,3_pInt,6_pInt,11_pInt])
|
||
axis(1) = rnd(1)*2.0_pReal-1.0_pReal ! uniform on [-1,1]
|
||
axis(2:3) = [sqrt(1.0-axis(1)**2.0_pReal)*cos(rnd(2)*2.0*PI),&
|
||
sqrt(1.0-axis(1)**2.0_pReal)*sin(rnd(2)*2.0*PI)] ! random axis
|
||
angle = (rnd(3)-0.5_pReal)*4.0_pReal*FWHM ! rotation by [0, +-2 FWHM]
|
||
R = math_axisAngleToR(axis,angle)
|
||
angle = math_EulerMisorientation([0.0_pReal,0.0_pReal,0.0_pReal],math_RtoEuler(R))
|
||
if (rnd(4) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2_pReal)) exit ! rejection sampling (Gaussian)
|
||
enddo GaussConvolution
|
||
math_sampleGaussOri = math_RtoEuler(math_mul33x33(R,math_EulerToR(center)))
|
||
endif
|
||
|
||
|
||
end function math_sampleGaussOri
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief draw a sample from an Gaussian distribution around given fiber texture and Full Width
|
||
! at Half Maximum (FWHM)
|
||
!-------------------------------------------------------------------------------------------------
|
||
function math_sampleFiberOri(alpha,beta,FWHM)
|
||
|
||
implicit none
|
||
real(pReal), dimension(2), intent(in) :: alpha,beta
|
||
real(pReal), intent(in) :: FWHM
|
||
real(pReal), dimension(3) :: math_sampleFiberOri, &
|
||
fInC,& !< fiber axis in crystal coordinate system
|
||
fInS,& !< fiber axis in sample coordinate system
|
||
u
|
||
real(pReal), dimension(3) :: rnd
|
||
real(pReal), dimension(:),allocatable :: a !< 2D vector to tilt
|
||
integer(pInt), dimension(:),allocatable :: idx !< components of 2D vector
|
||
real(pReal), dimension(3,3) :: R !< Rotation matrix (composed of three components)
|
||
real(pReal):: angle,c
|
||
integer(pInt):: j,& !< index of smallest component
|
||
i
|
||
|
||
allocate(a(0))
|
||
allocate(idx(0))
|
||
fInC = [sin(alpha(1))*cos(alpha(2)), sin(alpha(1))*sin(alpha(2)), cos(alpha(1))]
|
||
fInS = [sin(beta(1))*cos(beta(2)), sin(beta(1))*sin(beta(2)), cos(beta(1))]
|
||
|
||
R = math_EulerAxisAngleToR(math_crossproduct(fInC,fInS),-acos(dot_product(fInC,fInS))) !< rotation to align fiber axis in crystal and sample system
|
||
|
||
rnd = halton([7_pInt,10_pInt,3_pInt])
|
||
R = math_mul33x33(R,math_EulerAxisAngleToR(fInS,rnd(1)*2.0_pReal*PI)) !< additional rotation (0..360deg) perpendicular to fiber axis
|
||
|
||
if (FWHM > 0.1_pReal*INRAD) then
|
||
reducedTo2D: do i=1_pInt,3_pInt
|
||
if (i /= minloc(abs(fInS),1)) then
|
||
a=[a,fInS(i)]
|
||
idx=[idx,i]
|
||
else
|
||
j = i
|
||
endif
|
||
enddo reducedTo2D
|
||
GaussConvolution: do
|
||
angle = (rnd(2)-0.5_pReal)*4.0_pReal*FWHM ! rotation by [0, +-2 FWHM]
|
||
! solve cos(angle) = dot_product(fInS,u) under the assumption that their smallest component is the same
|
||
c = cos(angle)-fInS(j)**2
|
||
u(idx(2)) = -(2.0_pReal*c*a(2) + sqrt(4*((c*a(2))**2-sum(a**2)*(c**2-a(1)**2*(1-fInS(j)**2)))))/&
|
||
(2*sum(a**2))
|
||
u(idx(1)) = sqrt(1-u(idx(2))**2-fInS(j)**2)
|
||
u(j) = fInS(j)
|
||
|
||
rejectionSampling: if (rnd(3) <= exp(-4.0_pReal*log(2.0_pReal)*(angle/FWHM)**2_pReal)) then
|
||
R = math_mul33x33(R,math_EulerAxisAngleToR(math_crossproduct(u,fInS),angle)) ! tilt around direction of smallest component
|
||
exit
|
||
endif rejectionSampling
|
||
rnd = halton([7_pInt,10_pInt,3_pInt])
|
||
enddo GaussConvolution
|
||
endif
|
||
math_sampleFiberOri = math_RtoEuler(R)
|
||
|
||
end function math_sampleFiberOri
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief draw a random sample from Gauss variable
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) function math_sampleGaussVar(meanvalue, stddev, width)
|
||
use prec, only: &
|
||
tol_math_check
|
||
|
||
implicit none
|
||
real(pReal), intent(in) :: meanvalue, & ! meanvalue of gauss distribution
|
||
stddev ! standard deviation of gauss distribution
|
||
real(pReal), intent(in), optional :: width ! width of considered values as multiples of standard deviation
|
||
real(pReal), dimension(2) :: rnd ! random numbers
|
||
real(pReal) :: scatter, & ! normalized scatter around meanvalue
|
||
myWidth
|
||
|
||
if (abs(stddev) < tol_math_check) then
|
||
math_sampleGaussVar = meanvalue
|
||
else
|
||
myWidth = merge(width,3.0_pReal,present(width)) ! use +-3*sigma as default value for scatter if not given
|
||
|
||
do
|
||
rnd = halton([6_pInt,2_pInt])
|
||
scatter = myWidth * (2.0_pReal * rnd(1) - 1.0_pReal)
|
||
if (rnd(2) <= exp(-0.5_pReal * scatter ** 2.0_pReal)) exit ! test if scattered value is drawn
|
||
enddo
|
||
|
||
math_sampleGaussVar = scatter * stddev
|
||
endif
|
||
|
||
end function math_sampleGaussVar
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief symmetrically equivalent Euler angles for given sample symmetry
|
||
!> @detail 1 (equivalent to != 2 and !=4):triclinic, 2:monoclinic, 4:orthotropic
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_symmetricEulers(sym,Euler)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: sym !< symmetry Class
|
||
real(pReal), dimension(3), intent(in) :: Euler
|
||
real(pReal), dimension(3,3) :: math_symmetricEulers
|
||
|
||
math_symmetricEulers = transpose(reshape([PI+Euler(1), PI-Euler(1), 2.0_pReal*PI-Euler(1), &
|
||
Euler(2), PI-Euler(2), PI -Euler(2), &
|
||
Euler(3), PI+Euler(3), PI +Euler(3)],[3,3])) ! transpose is needed to have symbolic notation instead of column-major
|
||
|
||
math_symmetricEulers = modulo(math_symmetricEulers,2.0_pReal*pi)
|
||
|
||
select case (sym)
|
||
case (4_pInt) ! orthotropic: all done
|
||
|
||
case (2_pInt) ! monoclinic: return only first
|
||
math_symmetricEulers(1:3,2:3) = 0.0_pReal
|
||
|
||
case default ! triclinic: return blank
|
||
math_symmetricEulers = 0.0_pReal
|
||
end select
|
||
|
||
end function math_symmetricEulers
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief eigenvalues and eigenvectors of symmetric matrix m
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine math_eigenValuesVectorsSym(m,values,vectors,error)
|
||
|
||
implicit none
|
||
real(pReal), dimension(:,:), intent(in) :: m
|
||
real(pReal), dimension(size(m,1)), intent(out) :: values
|
||
real(pReal), dimension(size(m,1),size(m,1)), intent(out) :: vectors
|
||
logical, intent(out) :: error
|
||
integer(pInt) :: info
|
||
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||
external :: &
|
||
dsyev
|
||
|
||
vectors = m ! copy matrix to input (doubles as output) array
|
||
call dsyev('V','U',size(m,1),vectors,size(m,1),values,work,(64+2)*size(m,1),info)
|
||
error = (info == 0_pInt)
|
||
|
||
end subroutine math_eigenValuesVectorsSym
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief eigenvalues and eigenvectors of symmetric 33 matrix m using an analytical expression
|
||
!> and the general LAPACK powered version for arbritrary sized matrices as fallback
|
||
!> @author Joachim Kopp, Max–Planck–Institut für Kernphysik, Heidelberg (Copyright (C) 2006)
|
||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @details See http://arxiv.org/abs/physics/0610206 (DSYEVH3)
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine math_eigenValuesVectorsSym33(m,values,vectors)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3),intent(in) :: m
|
||
real(pReal), dimension(3), intent(out) :: values
|
||
real(pReal), dimension(3,3),intent(out) :: vectors
|
||
real(pReal) :: T, U, norm, threshold
|
||
logical :: error
|
||
|
||
values = math_eigenvaluesSym33(m)
|
||
|
||
vectors(1:3,2) = [ m(1, 2) * m(2, 3) - m(1, 3) * m(2, 2), &
|
||
m(1, 3) * m(1, 2) - m(2, 3) * m(1, 1), &
|
||
m(1, 2)**2_pInt]
|
||
|
||
T = maxval(abs(values))
|
||
U = max(T, T**2_pInt)
|
||
threshold = sqrt(5.68e-14_pReal * U**2_pInt)
|
||
|
||
! Calculate first eigenvector by the formula v[0] = (m - lambda[0]).e1 x (m - lambda[0]).e2
|
||
vectors(1:3,1) = [ vectors(1,2) + m(1, 3) * values(1), &
|
||
vectors(2,2) + m(2, 3) * values(1), &
|
||
(m(1,1) - values(1)) * (m(2,2) - values(1)) - vectors(3,2)]
|
||
norm = norm2(vectors(1:3, 1))
|
||
|
||
fallback1: if(norm < threshold) then
|
||
call math_eigenValuesVectorsSym(m,values,vectors,error)
|
||
return
|
||
endif fallback1
|
||
|
||
vectors(1:3,1) = vectors(1:3, 1) / norm
|
||
|
||
! Calculate second eigenvector by the formula v[1] = (m - lambda[1]).e1 x (m - lambda[1]).e2
|
||
vectors(1:3,2) = [ vectors(1,2) + m(1, 3) * values(2), &
|
||
vectors(2,2) + m(2, 3) * values(2), &
|
||
(m(1,1) - values(2)) * (m(2,2) - values(2)) - vectors(3,2)]
|
||
norm = norm2(vectors(1:3, 2))
|
||
|
||
fallback2: if(norm < threshold) then
|
||
call math_eigenValuesVectorsSym(m,values,vectors,error)
|
||
return
|
||
endif fallback2
|
||
vectors(1:3,2) = vectors(1:3, 2) / norm
|
||
|
||
! Calculate third eigenvector according to v[2] = v[0] x v[1]
|
||
vectors(1:3,3) = math_crossproduct(vectors(1:3,1),vectors(1:3,2))
|
||
|
||
end subroutine math_eigenValuesVectorsSym33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief eigenvector basis of symmetric matrix m
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_eigenvectorBasisSym(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(:,:), intent(in) :: m
|
||
real(pReal), dimension(size(m,1)) :: values
|
||
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
|
||
real(pReal), dimension(size(m,1),size(m,1)) :: math_eigenvectorBasisSym
|
||
logical :: error
|
||
integer(pInt) :: i
|
||
|
||
math_eigenvectorBasisSym = 0.0_pReal
|
||
call math_eigenValuesVectorsSym(m,values,vectors,error)
|
||
if(error) return
|
||
|
||
do i=1_pInt, size(m,1)
|
||
math_eigenvectorBasisSym = math_eigenvectorBasisSym &
|
||
+ sqrt(values(i)) * math_tensorproduct(vectors(:,i),vectors(:,i))
|
||
enddo
|
||
|
||
end function math_eigenvectorBasisSym
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief eigenvector basis of symmetric 33 matrix m
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_eigenvectorBasisSym33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33
|
||
real(pReal), dimension(3) :: invariants, values
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
real(pReal) :: P, Q, rho, phi
|
||
real(pReal), parameter :: TOL=1.e-14_pReal
|
||
real(pReal), dimension(3,3,3) :: N, EB
|
||
|
||
invariants = math_invariantsSym33(m)
|
||
EB = 0.0_pReal
|
||
|
||
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal
|
||
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)
|
||
|
||
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
|
||
values = invariants(1)/3.0_pReal
|
||
! this is not really correct, but at least the basis is correct
|
||
EB(1,1,1)=1.0_pReal
|
||
EB(2,2,2)=1.0_pReal
|
||
EB(3,3,3)=1.0_pReal
|
||
else threeSimilarEigenvalues
|
||
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
||
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
||
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
||
[cos(phi/3.0_pReal), &
|
||
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
||
cos((phi+4.0_pReal*PI)/3.0_pReal) &
|
||
] + invariants(1)/3.0_pReal
|
||
N(1:3,1:3,1) = m-values(1)*math_I3
|
||
N(1:3,1:3,2) = m-values(2)*math_I3
|
||
N(1:3,1:3,3) = m-values(3)*math_I3
|
||
twoSimilarEigenvalues: if(abs(values(1)-values(2)) < TOL) then
|
||
EB(1:3,1:3,3)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,2))/ &
|
||
((values(3)-values(1))*(values(3)-values(2)))
|
||
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,3)
|
||
elseif(abs(values(2)-values(3)) < TOL) then twoSimilarEigenvalues
|
||
EB(1:3,1:3,1)=math_mul33x33(N(1:3,1:3,2),N(1:3,1:3,3))/ &
|
||
((values(1)-values(2))*(values(1)-values(3)))
|
||
EB(1:3,1:3,2)=math_I3-EB(1:3,1:3,1)
|
||
elseif(abs(values(3)-values(1)) < TOL) then twoSimilarEigenvalues
|
||
EB(1:3,1:3,2)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,3))/ &
|
||
((values(2)-values(1))*(values(2)-values(3)))
|
||
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,2)
|
||
else twoSimilarEigenvalues
|
||
EB(1:3,1:3,1)=math_mul33x33(N(1:3,1:3,2),N(1:3,1:3,3))/ &
|
||
((values(1)-values(2))*(values(1)-values(3)))
|
||
EB(1:3,1:3,2)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,3))/ &
|
||
((values(2)-values(1))*(values(2)-values(3)))
|
||
EB(1:3,1:3,3)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,2))/ &
|
||
((values(3)-values(1))*(values(3)-values(2)))
|
||
endif twoSimilarEigenvalues
|
||
endif threeSimilarEigenvalues
|
||
|
||
math_eigenvectorBasisSym33 = sqrt(values(1)) * EB(1:3,1:3,1) &
|
||
+ sqrt(values(2)) * EB(1:3,1:3,2) &
|
||
+ sqrt(values(3)) * EB(1:3,1:3,3)
|
||
|
||
end function math_eigenvectorBasisSym33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief logarithm eigenvector basis of symmetric 33 matrix m
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_eigenvectorBasisSym33_log(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_eigenvectorBasisSym33_log
|
||
real(pReal), dimension(3) :: invariants, values
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
real(pReal) :: P, Q, rho, phi
|
||
real(pReal), parameter :: TOL=1.e-14_pReal
|
||
real(pReal), dimension(3,3,3) :: N, EB
|
||
|
||
invariants = math_invariantsSym33(m)
|
||
EB = 0.0_pReal
|
||
|
||
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal
|
||
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)
|
||
|
||
threeSimilarEigenvalues: if(all(abs([P,Q]) < TOL)) then
|
||
values = invariants(1)/3.0_pReal
|
||
! this is not really correct, but at least the basis is correct
|
||
EB(1,1,1)=1.0_pReal
|
||
EB(2,2,2)=1.0_pReal
|
||
EB(3,3,3)=1.0_pReal
|
||
else threeSimilarEigenvalues
|
||
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
||
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
||
values = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
||
[cos(phi/3.0_pReal), &
|
||
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
||
cos((phi+4.0_pReal*PI)/3.0_pReal) &
|
||
] + invariants(1)/3.0_pReal
|
||
N(1:3,1:3,1) = m-values(1)*math_I3
|
||
N(1:3,1:3,2) = m-values(2)*math_I3
|
||
N(1:3,1:3,3) = m-values(3)*math_I3
|
||
twoSimilarEigenvalues: if(abs(values(1)-values(2)) < TOL) then
|
||
EB(1:3,1:3,3)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,2))/ &
|
||
((values(3)-values(1))*(values(3)-values(2)))
|
||
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,3)
|
||
elseif(abs(values(2)-values(3)) < TOL) then twoSimilarEigenvalues
|
||
EB(1:3,1:3,1)=math_mul33x33(N(1:3,1:3,2),N(1:3,1:3,3))/ &
|
||
((values(1)-values(2))*(values(1)-values(3)))
|
||
EB(1:3,1:3,2)=math_I3-EB(1:3,1:3,1)
|
||
elseif(abs(values(3)-values(1)) < TOL) then twoSimilarEigenvalues
|
||
EB(1:3,1:3,2)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,3))/ &
|
||
((values(2)-values(1))*(values(2)-values(3)))
|
||
EB(1:3,1:3,1)=math_I3-EB(1:3,1:3,2)
|
||
else twoSimilarEigenvalues
|
||
EB(1:3,1:3,1)=math_mul33x33(N(1:3,1:3,2),N(1:3,1:3,3))/ &
|
||
((values(1)-values(2))*(values(1)-values(3)))
|
||
EB(1:3,1:3,2)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,3))/ &
|
||
((values(2)-values(1))*(values(2)-values(3)))
|
||
EB(1:3,1:3,3)=math_mul33x33(N(1:3,1:3,1),N(1:3,1:3,2))/ &
|
||
((values(3)-values(1))*(values(3)-values(2)))
|
||
endif twoSimilarEigenvalues
|
||
endif threeSimilarEigenvalues
|
||
|
||
math_eigenvectorBasisSym33_log = log(sqrt(values(1))) * EB(1:3,1:3,1) &
|
||
+ log(sqrt(values(2))) * EB(1:3,1:3,2) &
|
||
+ log(sqrt(values(3))) * EB(1:3,1:3,3)
|
||
|
||
end function math_eigenvectorBasisSym33_log
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief rotational part from polar decomposition of 33 tensor m
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_rotationalPart33(m)
|
||
use prec, only: &
|
||
dEq0
|
||
use IO, only: &
|
||
IO_warning
|
||
|
||
implicit none
|
||
real(pReal), intent(in), dimension(3,3) :: m
|
||
real(pReal), dimension(3,3) :: math_rotationalPart33
|
||
real(pReal), dimension(3,3) :: U , Uinv
|
||
|
||
U = math_eigenvectorBasisSym33(math_mul33x33(transpose(m),m))
|
||
Uinv = math_inv33(U)
|
||
|
||
inversionFailed: if (all(dEq0(Uinv))) then
|
||
math_rotationalPart33 = math_I3
|
||
call IO_warning(650_pInt)
|
||
else inversionFailed
|
||
math_rotationalPart33 = math_mul33x33(m,Uinv)
|
||
endif inversionFailed
|
||
|
||
end function math_rotationalPart33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Eigenvalues of symmetric matrix m
|
||
! will return NaN on error
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_eigenvaluesSym(m)
|
||
use, intrinsic :: &
|
||
IEEE_arithmetic
|
||
|
||
implicit none
|
||
real(pReal), dimension(:,:), intent(in) :: m
|
||
real(pReal), dimension(size(m,1)) :: math_eigenvaluesSym
|
||
real(pReal), dimension(size(m,1),size(m,1)) :: vectors
|
||
integer(pInt) :: info
|
||
real(pReal), dimension((64+2)*size(m,1)) :: work ! block size of 64 taken from http://www.netlib.org/lapack/double/dsyev.f
|
||
external :: &
|
||
dsyev
|
||
|
||
vectors = m ! copy matrix to input (doubles as output) array
|
||
call dsyev('N','U',size(m,1),vectors,size(m,1),math_eigenvaluesSym,work,(64+2)*size(m,1),info)
|
||
if (info /= 0_pInt) math_eigenvaluesSym = IEEE_value(1.0_pReal,IEEE_quiet_NaN)
|
||
|
||
end function math_eigenvaluesSym
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief eigenvalues of symmetric 33 matrix m using an analytical expression
|
||
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @details similar to http://arxiv.org/abs/physics/0610206 (DSYEVC3)
|
||
!> but apparently more stable solution and has general LAPACK powered version for arbritrary sized
|
||
!> matrices as fallback
|
||
!--------------------------------------------------------------------------------------------------
|
||
function math_eigenvaluesSym33(m)
|
||
|
||
implicit none
|
||
real(pReal), intent(in), dimension(3,3) :: m
|
||
real(pReal), dimension(3) :: math_eigenvaluesSym33,invariants
|
||
real(pReal) :: P, Q, rho, phi
|
||
real(pReal), parameter :: TOL=1.e-14_pReal
|
||
|
||
invariants = math_invariantsSym33(m) ! invariants are coefficients in characteristic polynomial apart for the sign of c0 and c2 in http://arxiv.org/abs/physics/0610206
|
||
|
||
P = invariants(2)-invariants(1)**2.0_pReal/3.0_pReal ! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
|
||
Q = -2.0_pReal/27.0_pReal*invariants(1)**3.0_pReal+product(invariants(1:2))/3.0_pReal-invariants(3)! different from http://arxiv.org/abs/physics/0610206 (this formulation was in DAMASK)
|
||
|
||
if(all(abs([P,Q]) < TOL)) then
|
||
math_eigenvaluesSym33 = math_eigenvaluesSym(m)
|
||
else
|
||
rho=sqrt(-3.0_pReal*P**3.0_pReal)/9.0_pReal
|
||
phi=acos(math_clip(-Q/rho*0.5_pReal,-1.0_pReal,1.0_pReal))
|
||
math_eigenvaluesSym33 = 2.0_pReal*rho**(1.0_pReal/3.0_pReal)* &
|
||
[cos(phi/3.0_pReal), &
|
||
cos((phi+2.0_pReal*PI)/3.0_pReal), &
|
||
cos((phi+4.0_pReal*PI)/3.0_pReal) &
|
||
] + invariants(1)/3.0_pReal
|
||
endif
|
||
|
||
end function math_eigenvaluesSym33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief invariants of symmetrix 33 matrix m
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_invariantsSym33(m)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3), intent(in) :: m
|
||
real(pReal), dimension(3) :: math_invariantsSym33
|
||
|
||
math_invariantsSym33(1) = math_trace33(m)
|
||
math_invariantsSym33(2) = m(1,1)*m(2,2) + m(1,1)*m(3,3) + m(2,2)*m(3,3) &
|
||
-(m(1,2)**2 + m(1,3)**2 + m(2,3)**2)
|
||
math_invariantsSym33(3) = math_detSym33(m)
|
||
|
||
end function math_invariantsSym33
|
||
|
||
|
||
!-------------------------------------------------------------------------------------------------
|
||
!> @brief computes an element of a Halton sequence.
|
||
!> @author John Burkardt
|
||
!> @author Martin Diehl
|
||
!> @details Incrementally increasing elements of the Halton sequence for given bases (> 0)
|
||
!> @details Reference:
|
||
!> @details J.H. Halton: On the efficiency of certain quasi-random sequences of points in evaluating
|
||
!> @details multi-dimensional integrals, Numerische Mathematik, Volume 2, pages 84-90, 1960.
|
||
!> @details Reference for prime numbers:
|
||
!> @details Milton Abramowitz and Irene Stegun: Handbook of Mathematical Functions,
|
||
!> @details US Department of Commerce, 1964, pages 870-873.
|
||
!> @details Daniel Zwillinger: CRC Standard Mathematical Tables and Formulae,
|
||
!> @details 30th Edition, CRC Press, 1996, pages 95-98.
|
||
!-------------------------------------------------------------------------------------------------
|
||
function halton(bases)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in), dimension(:):: &
|
||
bases !< bases (prime number ID)
|
||
real(pReal), dimension(size(bases)) :: &
|
||
halton
|
||
integer(pInt), save :: &
|
||
current = 1_pInt
|
||
real(pReal), dimension(size(bases)) :: &
|
||
base_inv
|
||
integer(pInt), dimension(size(bases)) :: &
|
||
base, &
|
||
t
|
||
integer(pInt), dimension(0:1600), parameter :: &
|
||
prime = int([&
|
||
1, &
|
||
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, &
|
||
31, 37, 41, 43, 47, 53, 59, 61, 67, 71, &
|
||
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, &
|
||
127, 131, 137, 139, 149, 151, 157, 163, 167, 173, &
|
||
179, 181, 191, 193, 197, 199, 211, 223, 227, 229, &
|
||
233, 239, 241, 251, 257, 263, 269, 271, 277, 281, &
|
||
283, 293, 307, 311, 313, 317, 331, 337, 347, 349, &
|
||
353, 359, 367, 373, 379, 383, 389, 397, 401, 409, &
|
||
419, 421, 431, 433, 439, 443, 449, 457, 461, 463, &
|
||
467, 479, 487, 491, 499, 503, 509, 521, 523, 541, &
|
||
! 101:200
|
||
547, 557, 563, 569, 571, 577, 587, 593, 599, 601, &
|
||
607, 613, 617, 619, 631, 641, 643, 647, 653, 659, &
|
||
661, 673, 677, 683, 691, 701, 709, 719, 727, 733, &
|
||
739, 743, 751, 757, 761, 769, 773, 787, 797, 809, &
|
||
811, 821, 823, 827, 829, 839, 853, 857, 859, 863, &
|
||
877, 881, 883, 887, 907, 911, 919, 929, 937, 941, &
|
||
947, 953, 967, 971, 977, 983, 991, 997, 1009, 1013, &
|
||
1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, &
|
||
1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, &
|
||
1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, &
|
||
! 201:300
|
||
1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, &
|
||
1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, &
|
||
1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, &
|
||
1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, &
|
||
1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, &
|
||
1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, &
|
||
1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, &
|
||
1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, &
|
||
1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, &
|
||
1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, &
|
||
! 301:400
|
||
1993, 1997, 1999, 2003, 2011, 2017, 2027, 2029, 2039, 2053, &
|
||
2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, &
|
||
2131, 2137, 2141, 2143, 2153, 2161, 2179, 2203, 2207, 2213, &
|
||
2221, 2237, 2239, 2243, 2251, 2267, 2269, 2273, 2281, 2287, &
|
||
2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351, 2357, &
|
||
2371, 2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, &
|
||
2437, 2441, 2447, 2459, 2467, 2473, 2477, 2503, 2521, 2531, &
|
||
2539, 2543, 2549, 2551, 2557, 2579, 2591, 2593, 2609, 2617, &
|
||
2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, &
|
||
2689, 2693, 2699, 2707, 2711, 2713, 2719, 2729, 2731, 2741, &
|
||
! 401:500
|
||
2749, 2753, 2767, 2777, 2789, 2791, 2797, 2801, 2803, 2819, &
|
||
2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897, 2903, &
|
||
2909, 2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, &
|
||
3001, 3011, 3019, 3023, 3037, 3041, 3049, 3061, 3067, 3079, &
|
||
3083, 3089, 3109, 3119, 3121, 3137, 3163, 3167, 3169, 3181, &
|
||
3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, &
|
||
3259, 3271, 3299, 3301, 3307, 3313, 3319, 3323, 3329, 3331, &
|
||
3343, 3347, 3359, 3361, 3371, 3373, 3389, 3391, 3407, 3413, &
|
||
3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499, 3511, &
|
||
3517, 3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, &
|
||
! 501:600
|
||
3581, 3583, 3593, 3607, 3613, 3617, 3623, 3631, 3637, 3643, &
|
||
3659, 3671, 3673, 3677, 3691, 3697, 3701, 3709, 3719, 3727, &
|
||
3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, &
|
||
3823, 3833, 3847, 3851, 3853, 3863, 3877, 3881, 3889, 3907, &
|
||
3911, 3917, 3919, 3923, 3929, 3931, 3943, 3947, 3967, 3989, &
|
||
4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051, 4057, &
|
||
4073, 4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, &
|
||
4153, 4157, 4159, 4177, 4201, 4211, 4217, 4219, 4229, 4231, &
|
||
4241, 4243, 4253, 4259, 4261, 4271, 4273, 4283, 4289, 4297, &
|
||
4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, &
|
||
! 601:700
|
||
4421, 4423, 4441, 4447, 4451, 4457, 4463, 4481, 4483, 4493, &
|
||
4507, 4513, 4517, 4519, 4523, 4547, 4549, 4561, 4567, 4583, &
|
||
4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651, 4657, &
|
||
4663, 4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, &
|
||
4759, 4783, 4787, 4789, 4793, 4799, 4801, 4813, 4817, 4831, &
|
||
4861, 4871, 4877, 4889, 4903, 4909, 4919, 4931, 4933, 4937, &
|
||
4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, &
|
||
5009, 5011, 5021, 5023, 5039, 5051, 5059, 5077, 5081, 5087, &
|
||
5099, 5101, 5107, 5113, 5119, 5147, 5153, 5167, 5171, 5179, &
|
||
5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273, 5279, &
|
||
! 701:800
|
||
5281, 5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, &
|
||
5393, 5399, 5407, 5413, 5417, 5419, 5431, 5437, 5441, 5443, &
|
||
5449, 5471, 5477, 5479, 5483, 5501, 5503, 5507, 5519, 5521, &
|
||
5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, &
|
||
5641, 5647, 5651, 5653, 5657, 5659, 5669, 5683, 5689, 5693, &
|
||
5701, 5711, 5717, 5737, 5741, 5743, 5749, 5779, 5783, 5791, &
|
||
5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851, 5857, &
|
||
5861, 5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, &
|
||
5953, 5981, 5987, 6007, 6011, 6029, 6037, 6043, 6047, 6053, &
|
||
6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, &
|
||
! 801:900
|
||
6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, &
|
||
6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, &
|
||
6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, &
|
||
6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, &
|
||
6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, &
|
||
6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, &
|
||
6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, &
|
||
6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, &
|
||
6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, &
|
||
6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997, &
|
||
! 901:1000
|
||
7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079, 7103, &
|
||
7109, 7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, &
|
||
7211, 7213, 7219, 7229, 7237, 7243, 7247, 7253, 7283, 7297, &
|
||
7307, 7309, 7321, 7331, 7333, 7349, 7351, 7369, 7393, 7411, &
|
||
7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, &
|
||
7507, 7517, 7523, 7529, 7537, 7541, 7547, 7549, 7559, 7561, &
|
||
7573, 7577, 7583, 7589, 7591, 7603, 7607, 7621, 7639, 7643, &
|
||
7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717, 7723, &
|
||
7727, 7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, &
|
||
7841, 7853, 7867, 7873, 7877, 7879, 7883, 7901, 7907, 7919, &
|
||
! 1001:1100
|
||
7927, 7933, 7937, 7949, 7951, 7963, 7993, 8009, 8011, 8017, &
|
||
8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, &
|
||
8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, &
|
||
8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, &
|
||
8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, &
|
||
8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, &
|
||
8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, &
|
||
8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, &
|
||
8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, &
|
||
8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, &
|
||
! 1101:1200
|
||
8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, &
|
||
8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007, 9011, &
|
||
9013, 9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, &
|
||
9127, 9133, 9137, 9151, 9157, 9161, 9173, 9181, 9187, 9199, &
|
||
9203, 9209, 9221, 9227, 9239, 9241, 9257, 9277, 9281, 9283, &
|
||
9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, &
|
||
9391, 9397, 9403, 9413, 9419, 9421, 9431, 9433, 9437, 9439, &
|
||
9461, 9463, 9467, 9473, 9479, 9491, 9497, 9511, 9521, 9533, &
|
||
9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629, 9631, &
|
||
9643, 9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, &
|
||
! 1201:1300
|
||
9739, 9743, 9749, 9767, 9769, 9781, 9787, 9791, 9803, 9811, &
|
||
9817, 9829, 9833, 9839, 9851, 9857, 9859, 9871, 9883, 9887, &
|
||
9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007, &
|
||
10009, 10037, 10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, &
|
||
10103, 10111, 10133, 10139, 10141, 10151, 10159, 10163, 10169, 10177, &
|
||
10181, 10193, 10211, 10223, 10243, 10247, 10253, 10259, 10267, 10271, &
|
||
10273, 10289, 10301, 10303, 10313, 10321, 10331, 10333, 10337, 10343, &
|
||
10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453, 10457, 10459, &
|
||
10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567, &
|
||
10589, 10597, 10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, &
|
||
! 1301:1400
|
||
10663, 10667, 10687, 10691, 10709, 10711, 10723, 10729, 10733, 10739, &
|
||
10753, 10771, 10781, 10789, 10799, 10831, 10837, 10847, 10853, 10859, &
|
||
10861, 10867, 10883, 10889, 10891, 10903, 10909, 10937, 10939, 10949, &
|
||
10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047, 11057, 11059, &
|
||
11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149, &
|
||
11159, 11161, 11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, &
|
||
11257, 11261, 11273, 11279, 11287, 11299, 11311, 11317, 11321, 11329, &
|
||
11351, 11353, 11369, 11383, 11393, 11399, 11411, 11423, 11437, 11443, &
|
||
11447, 11467, 11471, 11483, 11489, 11491, 11497, 11503, 11519, 11527, &
|
||
11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621, 11633, 11657, &
|
||
! 1401:1500
|
||
11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777, &
|
||
11779, 11783, 11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, &
|
||
11839, 11863, 11867, 11887, 11897, 11903, 11909, 11923, 11927, 11933, &
|
||
11939, 11941, 11953, 11959, 11969, 11971, 11981, 11987, 12007, 12011, &
|
||
12037, 12041, 12043, 12049, 12071, 12073, 12097, 12101, 12107, 12109, &
|
||
12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197, 12203, 12211, &
|
||
12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289, &
|
||
12301, 12323, 12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, &
|
||
12409, 12413, 12421, 12433, 12437, 12451, 12457, 12473, 12479, 12487, &
|
||
12491, 12497, 12503, 12511, 12517, 12527, 12539, 12541, 12547, 12553, &
|
||
! 1501:1600
|
||
12569, 12577, 12583, 12589, 12601, 12611, 12613, 12619, 12637, 12641, &
|
||
12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713, 12721, 12739, &
|
||
12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829, &
|
||
12841, 12853, 12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, &
|
||
12941, 12953, 12959, 12967, 12973, 12979, 12983, 13001, 13003, 13007, &
|
||
13009, 13033, 13037, 13043, 13049, 13063, 13093, 13099, 13103, 13109, &
|
||
13121, 13127, 13147, 13151, 13159, 13163, 13171, 13177, 13183, 13187, &
|
||
13217, 13219, 13229, 13241, 13249, 13259, 13267, 13291, 13297, 13309, &
|
||
13313, 13327, 13331, 13337, 13339, 13367, 13381, 13397, 13399, 13411, &
|
||
13417, 13421, 13441, 13451, 13457, 13463, 13469, 13477, 13487, 13499],pInt)
|
||
|
||
current = current + 1_pInt
|
||
|
||
base = prime(bases)
|
||
base_inv = 1.0_pReal/real(base,pReal)
|
||
|
||
halton = 0.0_pReal
|
||
t = current
|
||
|
||
do while (any( t /= 0_pInt) )
|
||
halton = halton + real(mod(t,base), pReal) * base_inv
|
||
base_inv = base_inv / real(base, pReal)
|
||
t = t / base
|
||
enddo
|
||
|
||
end function halton
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief factorial
|
||
!--------------------------------------------------------------------------------------------------
|
||
integer(pInt) pure function math_factorial(n)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: n
|
||
integer(pInt) :: i
|
||
|
||
math_factorial = product([(i, i=1,n)])
|
||
|
||
end function math_factorial
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief binomial coefficient
|
||
!--------------------------------------------------------------------------------------------------
|
||
integer(pInt) pure function math_binomial(n,k)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: n, k
|
||
integer(pInt) :: i, j
|
||
|
||
j = min(k,n-k)
|
||
math_binomial = product([(i, i=n, n-j+1, -1)])/math_factorial(j)
|
||
|
||
end function math_binomial
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief multinomial coefficient
|
||
!--------------------------------------------------------------------------------------------------
|
||
integer(pInt) pure function math_multinomial(alpha)
|
||
|
||
implicit none
|
||
integer(pInt), intent(in), dimension(:) :: alpha
|
||
integer(pInt) :: i
|
||
|
||
math_multinomial = 1_pInt
|
||
do i = 1, size(alpha)
|
||
math_multinomial = math_multinomial*math_binomial(sum(alpha(1:i)),alpha(i))
|
||
enddo
|
||
|
||
end function math_multinomial
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief volume of tetrahedron given by four vertices
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_volTetrahedron(v1,v2,v3,v4)
|
||
|
||
implicit none
|
||
real(pReal), dimension (3), intent(in) :: v1,v2,v3,v4
|
||
real(pReal), dimension (3,3) :: m
|
||
|
||
m(1:3,1) = v1-v2
|
||
m(1:3,2) = v2-v3
|
||
m(1:3,3) = v3-v4
|
||
|
||
math_volTetrahedron = math_det33(m)/6.0_pReal
|
||
|
||
end function math_volTetrahedron
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief area of triangle given by three vertices
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_areaTriangle(v1,v2,v3)
|
||
|
||
implicit none
|
||
real(pReal), dimension (3), intent(in) :: v1,v2,v3
|
||
|
||
math_areaTriangle = 0.5_pReal * norm2(math_crossproduct(v1-v2,v1-v3))
|
||
|
||
end function math_areaTriangle
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief rotate 33 tensor forward
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_rotate_forward33(tensor,rot_tensor)
|
||
|
||
implicit none
|
||
|
||
real(pReal), dimension(3,3) :: math_rotate_forward33
|
||
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
|
||
|
||
math_rotate_forward33 = math_mul33x33(rot_tensor,math_mul33x33(tensor,transpose(rot_tensor)))
|
||
|
||
end function math_rotate_forward33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief rotate 33 tensor backward
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_rotate_backward33(tensor,rot_tensor)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3) :: math_rotate_backward33
|
||
real(pReal), dimension(3,3), intent(in) :: tensor, rot_tensor
|
||
|
||
math_rotate_backward33 = math_mul33x33(transpose(rot_tensor),math_mul33x33(tensor,rot_tensor))
|
||
|
||
end function math_rotate_backward33
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief rotate 3333 tensor C'_ijkl=g_im*g_jn*g_ko*g_lp*C_mnop
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function math_rotate_forward3333(tensor,rot_tensor)
|
||
|
||
implicit none
|
||
real(pReal), dimension(3,3,3,3) :: math_rotate_forward3333
|
||
real(pReal), dimension(3,3), intent(in) :: rot_tensor
|
||
real(pReal), dimension(3,3,3,3), intent(in) :: tensor
|
||
integer(pInt) :: i,j,k,l,m,n,o,p
|
||
|
||
math_rotate_forward3333= 0.0_pReal
|
||
|
||
do i = 1_pInt,3_pInt; do j = 1_pInt,3_pInt; do k = 1_pInt,3_pInt; do l = 1_pInt,3_pInt
|
||
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt; do p = 1_pInt,3_pInt
|
||
math_rotate_forward3333(i,j,k,l) = math_rotate_forward3333(i,j,k,l) &
|
||
+ rot_tensor(i,m) * rot_tensor(j,n) &
|
||
* rot_tensor(k,o) * rot_tensor(l,p) * tensor(m,n,o,p)
|
||
enddo; enddo; enddo; enddo; enddo; enddo; enddo; enddo
|
||
|
||
end function math_rotate_forward3333
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief limits a scalar value to a certain range (either one or two sided)
|
||
! Will return NaN if left > right
|
||
!--------------------------------------------------------------------------------------------------
|
||
real(pReal) pure function math_clip(a, left, right)
|
||
use, intrinsic :: &
|
||
IEEE_arithmetic
|
||
|
||
implicit none
|
||
real(pReal), intent(in) :: a
|
||
real(pReal), intent(in), optional :: left, right
|
||
|
||
|
||
math_clip = min ( &
|
||
max (merge(left, -huge(a), present(left)), a), &
|
||
merge(right, huge(a), present(right)) &
|
||
)
|
||
|
||
if (present(left) .and. present(right)) &
|
||
math_clip = merge (IEEE_value(1.0_pReal,IEEE_quiet_NaN),math_clip, left>right)
|
||
|
||
end function math_clip
|
||
|
||
end module math
|