134 lines
4.9 KiB
Fortran
134 lines
4.9 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Michigan State University
|
|
!> @brief material subroutine for variable heat source
|
|
!--------------------------------------------------------------------------------------------------
|
|
submodule(phase:thermal) externalheat
|
|
|
|
|
|
integer, dimension(:), allocatable :: &
|
|
source_thermal_externalheat_offset !< which source is my current thermal dissipation mechanism?
|
|
|
|
type :: tParameters !< container type for internal constitutive parameters
|
|
real(pReal), dimension(:), allocatable :: &
|
|
t_n, &
|
|
f_T
|
|
integer :: &
|
|
nIntervals
|
|
end type tParameters
|
|
|
|
type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters (len Ninstances)
|
|
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief module initialization
|
|
!> @details reads in material parameters, allocates arrays, and does sanity checks
|
|
!--------------------------------------------------------------------------------------------------
|
|
module function externalheat_init(source_length) result(mySources)
|
|
|
|
integer, intent(in) :: source_length
|
|
logical, dimension(:,:), allocatable :: mySources
|
|
|
|
class(tNode), pointer :: &
|
|
phases, &
|
|
phase, &
|
|
sources, thermal, &
|
|
src
|
|
integer :: so,Nmembers,ph
|
|
|
|
|
|
mySources = thermal_active('externalheat',source_length)
|
|
if(count(mySources) == 0) return
|
|
print'(/,a)', ' <<<+- phase:thermal:externalheat init -+>>>'
|
|
print'(a,i2)', ' # phases: ',count(mySources); flush(IO_STDOUT)
|
|
|
|
|
|
phases => config_material%get('phase')
|
|
allocate(param(phases%length))
|
|
allocate(source_thermal_externalheat_offset (phases%length), source=0)
|
|
|
|
do ph = 1, phases%length
|
|
phase => phases%get(ph)
|
|
if(count(mySources(:,ph)) == 0) cycle
|
|
thermal => phase%get('thermal')
|
|
sources => thermal%get('source')
|
|
do so = 1, sources%length
|
|
if(mySources(so,ph)) then
|
|
source_thermal_externalheat_offset(ph) = so
|
|
associate(prm => param(ph))
|
|
src => sources%get(so)
|
|
|
|
prm%t_n = src%get_as1dFloat('t_n')
|
|
prm%nIntervals = size(prm%t_n) - 1
|
|
|
|
prm%f_T = src%get_as1dFloat('f_T',requiredSize = size(prm%t_n))
|
|
|
|
Nmembers = count(material_phaseID == ph)
|
|
call phase_allocateState(thermalState(ph)%p(so),Nmembers,1,1,0)
|
|
end associate
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
end function externalheat_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief rate of change of state
|
|
!> @details state only contains current time to linearly interpolate given heat powers
|
|
!--------------------------------------------------------------------------------------------------
|
|
module subroutine externalheat_dotState(ph, en)
|
|
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en
|
|
|
|
integer :: &
|
|
so
|
|
|
|
so = source_thermal_externalheat_offset(ph)
|
|
|
|
thermalState(ph)%p(so)%dotState(1,en) = 1.0_pReal ! state is current time
|
|
|
|
end subroutine externalheat_dotState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief returns local heat generation rate
|
|
!--------------------------------------------------------------------------------------------------
|
|
module function externalheat_f_T(ph,en) result(f_T)
|
|
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en
|
|
real(pReal) :: &
|
|
f_T
|
|
|
|
integer :: &
|
|
so, interval
|
|
real(pReal) :: &
|
|
frac_time
|
|
|
|
so = source_thermal_externalheat_offset(ph)
|
|
|
|
associate(prm => param(ph))
|
|
do interval = 1, prm%nIntervals ! scan through all rate segments
|
|
frac_time = (thermalState(ph)%p(so)%state(1,en) - prm%t_n(interval)) &
|
|
/ (prm%t_n(interval+1) - prm%t_n(interval)) ! fractional time within segment
|
|
if ( (frac_time < 0.0_pReal .and. interval == 1) &
|
|
.or. (frac_time >= 1.0_pReal .and. interval == prm%nIntervals) &
|
|
.or. (frac_time >= 0.0_pReal .and. frac_time < 1.0_pReal) ) &
|
|
f_T = prm%f_T(interval ) * (1.0_pReal - frac_time) + &
|
|
prm%f_T(interval+1) * frac_time ! interpolate heat rate between segment boundaries...
|
|
! ...or extrapolate if outside of bounds
|
|
enddo
|
|
end associate
|
|
|
|
end function externalheat_f_T
|
|
|
|
end submodule externalheat
|