3044 lines
102 KiB
Fortran
3044 lines
102 KiB
Fortran
|
|
!##############################################################
|
|
MODULE mesh
|
|
!##############################################################
|
|
|
|
use prec, only: pReal,pInt
|
|
implicit none
|
|
|
|
! ---------------------------
|
|
! _Nelems : total number of elements in mesh
|
|
! _NcpElems : total number of CP elements in mesh
|
|
! _Nnodes : total number of nodes in mesh
|
|
! _maxNnodes : max number of nodes in any CP element
|
|
! _maxNips : max number of IPs in any CP element
|
|
! _maxNipNeighbors : max number of IP neighbors in any CP element
|
|
! _maxNsharedElems : max number of CP elements sharing a node
|
|
!
|
|
! _element : FEid, type(internal representation), material, texture, node indices
|
|
! _node : x,y,z coordinates (initially!)
|
|
! _sharedElem : entryCount and list of elements containing node
|
|
!
|
|
! _mapFEtoCPelem : [sorted FEid, corresponding CPid]
|
|
! _mapFEtoCPnode : [sorted FEid, corresponding CPid]
|
|
!
|
|
! MISSING: these definitions should actually reside in the
|
|
! FE-solver specific part (different for MARC/ABAQUS)..!
|
|
! Hence, I suggest to prefix with "FE_"
|
|
!
|
|
! _Nnodes : # nodes in a specific type of element
|
|
! _Nips : # IPs in a specific type of element
|
|
! _NipNeighbors : # IP neighbors in a specific type of element
|
|
! _ipNeighbor : +x,-x,+y,-y,+z,-z list of intra-element IPs and
|
|
! (negative) neighbor faces per own IP in a specific type of element
|
|
! _NfaceNodes : # nodes per face in a specific type of element
|
|
|
|
! _nodeOnFace : list of node indices on each face of a specific type of element
|
|
! _nodesAtIP : map IP index to two node indices in a specific type of element
|
|
! _ipNeighborhood : 6 or less neighboring IPs as [element_num, IP_index]
|
|
! _NsubNodes : # subnodes required to fully define all IP volumes
|
|
|
|
! order is +x,-x,+y,-y,+z,-z but meaning strongly depends on Elemtype
|
|
! ---------------------------
|
|
integer(pInt) mesh_Nelems,mesh_NcpElems,mesh_NelemSets,mesh_maxNelemInSet
|
|
integer(pInt) mesh_Nnodes,mesh_maxNnodes,mesh_maxNips,mesh_maxNipNeighbors,mesh_maxNsharedElems,mesh_maxNsubNodes
|
|
integer(pInt), dimension(2) :: mesh_maxValStateVar = 0_pInt
|
|
character(len=64), dimension(:), allocatable :: mesh_nameElemSet
|
|
integer(pInt), dimension(:,:), allocatable :: mesh_mapElemSet
|
|
integer(pInt), dimension(:,:), allocatable, target :: mesh_mapFEtoCPelem,mesh_mapFEtoCPnode
|
|
integer(pInt), dimension(:,:), allocatable :: mesh_element, mesh_sharedElem
|
|
integer(pInt), dimension(:,:,:,:), allocatable :: mesh_ipNeighborhood
|
|
|
|
real(pReal), dimension(:,:,:), allocatable :: mesh_subNodeCoord ! coordinates of subnodes per element
|
|
real(pReal), dimension(:,:), allocatable :: mesh_ipVolume ! volume associated with IP
|
|
real(pReal), dimension(:,:,:), allocatable :: mesh_ipArea ! area of interface to neighboring IP
|
|
real(pReal), dimension(:,:,:,:), allocatable :: mesh_ipAreaNormal ! area normal of interface to neighboring IP
|
|
real(pReal), allocatable :: mesh_node (:,:)
|
|
|
|
integer(pInt) :: hypoelasticTableStyle = 0
|
|
integer(pInt) :: initialcondTableStyle = 0
|
|
integer(pInt), parameter :: FE_Nelemtypes = 7
|
|
integer(pInt), parameter :: FE_maxNnodes = 20
|
|
integer(pInt), parameter :: FE_maxNsubNodes = 56
|
|
integer(pInt), parameter :: FE_maxNips = 27
|
|
integer(pInt), parameter :: FE_maxNipNeighbors = 6
|
|
integer(pInt), parameter :: FE_NipFaceNodes = 4
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter :: FE_Nnodes = &
|
|
(/8, & ! element 7
|
|
4, & ! element 134
|
|
4, & ! element 11
|
|
4, & ! element 27
|
|
4, & ! element 157
|
|
6, & ! element 136
|
|
20 & ! element 21
|
|
/)
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter :: FE_Nips = &
|
|
(/8, & ! element 7
|
|
1, & ! element 134
|
|
4, & ! element 11
|
|
9, & ! element 27
|
|
4, & ! element 157
|
|
6, & ! element 136
|
|
27 & ! element 21
|
|
/)
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter :: FE_NipNeighbors = &
|
|
(/6, & ! element 7
|
|
4, & ! element 134
|
|
4, & ! element 11
|
|
4, & ! element 27
|
|
6, & ! element 157
|
|
6, & ! element 136
|
|
6 & ! element 21
|
|
/)
|
|
integer(pInt), dimension(FE_Nelemtypes), parameter :: FE_NsubNodes = &
|
|
(/19,& ! element 7
|
|
0, & ! element 134
|
|
5, & ! element 11
|
|
12, & ! element 27
|
|
0, & ! element 157
|
|
0, & ! element 136
|
|
56 & ! element 21
|
|
/)
|
|
integer(pInt), dimension(FE_maxNipNeighbors,FE_Nelemtypes), parameter :: FE_NfaceNodes = &
|
|
reshape((/&
|
|
4,4,4,4,4,4, & ! element 7
|
|
3,3,3,3,0,0, & ! element 134
|
|
2,2,2,2,0,0, & ! element 11
|
|
2,2,2,2,0,0, & ! element 27
|
|
3,3,3,3,0,0, & ! element 157
|
|
3,4,4,4,3,0, & ! element 136
|
|
4,4,4,4,4,4 & ! element 21
|
|
/),(/FE_maxNipNeighbors,FE_Nelemtypes/))
|
|
integer(pInt), dimension(2,2,FE_maxNips,FE_Nelemtypes), parameter :: FE_nodesAtIP = &
|
|
reshape((/&
|
|
1,0, 0,0, & ! element 7
|
|
2,0, 0,0, &
|
|
4,0, 0,0, &
|
|
3,0, 0,0, &
|
|
5,0, 0,0, &
|
|
6,0, 0,0, &
|
|
8,0, 0,0, &
|
|
7,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
1,0, 0,0, & ! element 134
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
1,0, 0,0, & ! element 11
|
|
2,0, 0,0, &
|
|
4,0, 0,0, &
|
|
3,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
1,0, 0,0, & ! element 27
|
|
1,2, 0,0, &
|
|
2,0, 0,0, &
|
|
1,4, 0,0, &
|
|
1,3, 2,4, &
|
|
2,3, 0,0, &
|
|
4,0, 0,0, &
|
|
3,4, 0,0, &
|
|
3,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
1,0, 0,0, & ! element 157
|
|
2,0, 0,0, &
|
|
3,0, 0,0, &
|
|
4,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
1,0, 0,0, & ! element 136
|
|
2,0, 0,0, &
|
|
3,0, 0,0, &
|
|
4,0, 0,0, &
|
|
5,0, 0,0, &
|
|
6,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
0,0, 0,0, &
|
|
1,0, 0,0, & ! element 21
|
|
1,2, 0,0, &
|
|
2,0, 0,0, &
|
|
1,4, 0,0, &
|
|
1,3, 2,4, &
|
|
2,3, 0,0, &
|
|
4,0, 0,0, &
|
|
3,4, 0,0, &
|
|
3,0, 0,0, &
|
|
1,5, 0,0, &
|
|
1,6, 2,5, &
|
|
2,6, 0,0, &
|
|
1,8, 4,5, &
|
|
0,0, 0,0, &
|
|
2,7, 3,6, &
|
|
4,8, 0,0, &
|
|
3,8, 4,7, &
|
|
3,7, 0,0, &
|
|
5,0, 0,0, &
|
|
5,6, 0,0, &
|
|
6,0, 0,0, &
|
|
5,8, 0,0, &
|
|
5,7, 6,8, &
|
|
6,7, 0,0, &
|
|
8,0, 0,0, &
|
|
7,8, 0,0, &
|
|
7,0, 0,0 &
|
|
/),(/2,2,FE_maxNips,FE_Nelemtypes/))
|
|
integer(pInt), dimension(FE_NipFaceNodes,FE_maxNipNeighbors,FE_Nelemtypes), parameter :: FE_nodeOnFace = &
|
|
reshape((/&
|
|
1,2,3,4 , & ! element 7
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 , &
|
|
1,2,3,0 , & ! element 134
|
|
1,4,2,0 , &
|
|
2,3,4,0 , &
|
|
1,3,4,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 11
|
|
2,3,0,0 , &
|
|
3,4,0,0 , &
|
|
4,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 27
|
|
2,3,0,0 , &
|
|
3,4,0,0 , &
|
|
4,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 157
|
|
1,4,2,0 , &
|
|
2,3,4,0 , &
|
|
1,3,4,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 136
|
|
1,4,5,2 , &
|
|
2,5,6,3 , &
|
|
1,3,6,4 , &
|
|
4,6,5,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,4 , & ! element 21
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 &
|
|
/),(/FE_NipFaceNodes,FE_maxNipNeighbors,FE_Nelemtypes/))
|
|
integer(pInt), dimension(FE_maxNipNeighbors,FE_maxNips,FE_Nelemtypes), parameter :: FE_ipNeighbor = &
|
|
reshape((/&
|
|
2,-5, 3,-2, 5,-1 , & ! element 7
|
|
-3, 1, 4,-2, 6,-1 , &
|
|
4,-5,-4, 1, 7,-1 , &
|
|
-3, 3,-4, 2, 8,-1 , &
|
|
6,-5, 7,-2,-6, 1 , &
|
|
-3, 5, 8,-2,-6, 2 , &
|
|
8,-5,-4, 5,-6, 3 , &
|
|
-3, 7,-4, 6,-6, 4 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
-1,-2,-3,-4, 0, 0 , & ! element 134
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
2,-4, 3,-1, 0, 0 , & ! element 11
|
|
-2, 1, 4,-1, 0, 0 , &
|
|
4,-4,-3, 1, 0, 0 , &
|
|
-2, 3,-3, 2, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
2,-4, 4,-1, 0, 0 , & ! element 27
|
|
3, 1, 5,-1, 0, 0 , &
|
|
-2, 2, 6,-1, 0, 0 , &
|
|
5,-4, 7, 1, 0, 0 , &
|
|
6, 4, 8, 2, 0, 0 , &
|
|
-2, 5, 9, 3, 0, 0 , &
|
|
8,-4,-3, 4, 0, 0 , &
|
|
9, 7,-3, 5, 0, 0 , &
|
|
-2, 8,-3, 6, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
2,-4, 3,-2, 4,-1 , & ! element 157
|
|
3,-2, 1,-3, 4,-1 , &
|
|
1,-3, 2,-4, 4,-1 , &
|
|
1,-3, 2,-4, 3,-2 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
2,-4, 3,-2, 4,-1 , & ! element 136
|
|
-3, 1, 3,-2, 5,-1 , &
|
|
2,-4,-3, 1, 6,-1 , &
|
|
5,-4, 6,-2,-5, 1 , &
|
|
-3, 4, 6,-2,-5, 2 , &
|
|
5,-4,-3, 4,-5, 3 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
0, 0, 0, 0, 0, 0 , &
|
|
2,-5, 4,-2,10,-1 , & ! element 21
|
|
3, 1, 5,-2,11,-1 , &
|
|
-3, 2, 6,-2,12,-1 , &
|
|
5,-5, 7, 1,13,-1 , &
|
|
6, 4, 8, 2,14,-1 , &
|
|
-3, 5, 9, 3,15,-1 , &
|
|
8,-5,-4, 4,16,-1 , &
|
|
9, 7,-4, 5,17,-1 , &
|
|
-3, 8,-4, 6,18,-1 , &
|
|
11,-5,13,-2,10, 1 , &
|
|
12,10,14,-2,11, 2 , &
|
|
-3,11,15,-2,12, 3 , &
|
|
14,-5,16,10,13, 4 , &
|
|
15,13,17,11,14, 5 , &
|
|
-3,14,18,12,15, 6 , &
|
|
17,-5,-4,13,16, 7 , &
|
|
18,16,-4,14,17, 8 , &
|
|
-3,17,-4,15,18, 9 , &
|
|
20,-5,22,-2,-6,10 , &
|
|
21,19,23,-2,-6,11 , &
|
|
-3,20,24,-2,-6,12 , &
|
|
23,-5,25,19,-6,13 , &
|
|
24,22,26,20,-6,14 , &
|
|
-3,23,27,21,-6,15 , &
|
|
26,-5,-4,22,-6,16 , &
|
|
27,25,-4,23,-6,17 , &
|
|
-3,26,-4,24,-6,18 &
|
|
/),(/FE_maxNipNeighbors,FE_maxNips,FE_Nelemtypes/))
|
|
integer(pInt), dimension(FE_maxNips,FE_maxNsubNodes,FE_Nelemtypes), parameter :: FE_subNodeParent = &
|
|
reshape((/&
|
|
1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! element 7
|
|
2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 2, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 2, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 3, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 4, 8, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 4, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! element 134
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! element 11
|
|
2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! element 27
|
|
1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! element 157
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! element 136
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! element 21
|
|
1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 1, 1, 2, 2, 4, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 2, 2, 1, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 3, 3, 2, 2, 4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 4, 4, 1, 1, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 1, 1, 2, 2, 5, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 2, 2, 1, 1, 6, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
2, 2, 2, 2, 3, 3, 6, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 3, 3, 2, 2, 7, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
3, 3, 3, 3, 4, 4, 7, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 4, 4, 3, 3, 8, 8, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
4, 4, 4, 4, 1, 1, 8, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 1, 1, 4, 4, 5, 5, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 5, 5, 5, 1, 1, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 6, 6, 6, 2, 2, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 6, 6, 6, 2, 2, 7, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 7, 7, 7, 3, 3, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 7, 7, 7, 3, 3, 8, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 8, 8, 8, 4, 4, 7, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 8, 8, 8, 4, 4, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 5, 5, 5, 1, 1, 8, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
5, 5, 5, 5, 6, 6, 8, 8, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
6, 6, 6, 6, 5, 5, 7, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
7, 7, 7, 7, 6, 6, 8, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
8, 8, 8, 8, 5, 5, 7, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 3, 3, 6, 6, 8, 8, 7, &
|
|
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 3, 3, 6, 6, 6, 6, 4, 4, 5, 5, 7, 7, 8, &
|
|
3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, 7, 7, 7, 7, 1, 1, 6, 6, 8, 8, 5, &
|
|
4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 3, 3, 3, 3, 8, 8, 8, 8, 2, 2, 5, 5, 7, 7, 6, &
|
|
5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 6, 6, 6, 6, 8, 8, 8, 8, 2, 2, 4, 4, 7, 7, 3, &
|
|
6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2, 5, 5, 5, 5, 8, 8, 8, 8, 1, 1, 3, 3, 8, 8, 4, &
|
|
7, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3, 3, 6, 6, 6, 6, 7, 7, 7, 7, 2, 2, 4, 4, 5, 5, 1, &
|
|
8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 1, 1, 3, 3, 6, 6, 2 &
|
|
/),(/FE_maxNips,FE_maxNsubNodes,FE_Nelemtypes/))
|
|
integer(pInt), dimension(FE_NipFaceNodes,FE_maxNipNeighbors,FE_maxNips,FE_Nelemtypes), parameter :: FE_subNodeOnIPFace = &
|
|
reshape((/&
|
|
9,21,27,22, & ! element 7
|
|
1,13,25,12, &
|
|
12,25,27,21, &
|
|
1, 9,22,13, &
|
|
13,22,27,25, &
|
|
1,12,21, 9, &
|
|
2,10,23,14, & !
|
|
9,22,27,21, &
|
|
10,21,27,23, &
|
|
2,14,22, 9, &
|
|
14,23,27,22, &
|
|
2, 9,21,10, &
|
|
11,24,27,21, & !
|
|
4,12,25,16, &
|
|
4,16,24,11, &
|
|
12,21,27,25, &
|
|
16,25,27,24, &
|
|
4,11,21,12, &
|
|
3,15,23,10, & !
|
|
11,21,27,24, &
|
|
3,11,24,15, &
|
|
10,23,27,21, &
|
|
15,24,27,23, &
|
|
3,10,21,11, &
|
|
17,22,27,26, & !
|
|
5,20,25,13, &
|
|
20,26,27,25, &
|
|
5,13,22,17, &
|
|
5,17,26,20, &
|
|
13,25,27,22, &
|
|
6,14,23,18, & !
|
|
17,26,27,22, &
|
|
18,23,27,26, &
|
|
6,17,22,14, &
|
|
6,18,26,17, &
|
|
14,22,27,23, &
|
|
19,26,27,24, & !
|
|
8,16,25,20, &
|
|
8,19,24,16, &
|
|
20,25,27,26, &
|
|
8,20,26,19, &
|
|
16,24,27,25, &
|
|
7,18,23,15, & !
|
|
19,24,27,26, &
|
|
7,15,24,19, &
|
|
18,26,27,23, &
|
|
7,19,26,18, &
|
|
15,23,27,24, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
1, 1, 3, 2, & ! element 134
|
|
1, 1, 2, 4, &
|
|
2, 2, 3, 4, &
|
|
1, 1, 4, 3, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
5, 9, 0, 0, & ! element 11
|
|
1, 8, 0, 0, &
|
|
8, 9, 0, 0, &
|
|
1, 5, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
2, 6, 0, 0, & !
|
|
5, 9, 0, 0, &
|
|
6, 9, 0, 0, &
|
|
2, 5, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
3, 6, 0, 0, & !
|
|
7, 9, 0, 0, &
|
|
3, 7, 0, 0, &
|
|
6, 9, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
7, 9, 0, 0, & !
|
|
4, 8, 0, 0, &
|
|
4, 7, 0, 0, &
|
|
8, 9, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
9,17, 0, 0, & ! element 27
|
|
1,16, 0, 0, &
|
|
16,17, 0, 0, &
|
|
1, 9, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
10,18, 0, 0, & !
|
|
9,17, 0, 0, &
|
|
17,18, 0, 0, &
|
|
9,10, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
2,11, 0, 0, & !
|
|
10,18, 0, 0, &
|
|
11,18, 0, 0, &
|
|
2,10, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
17,20, 0, 0, & !
|
|
15,16, 0, 0, &
|
|
15,20, 0, 0, &
|
|
16,17, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
18,19, 0, 0, & !
|
|
17,20, 0, 0, &
|
|
19,20, 0, 0, &
|
|
17,18, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
11,12, 0, 0, & !
|
|
18,19, 0, 0, &
|
|
12,19, 0, 0, &
|
|
11,18, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
14,20, 0, 0, & !
|
|
4,15, 0, 0, &
|
|
4,14, 0, 0, &
|
|
15,20, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
13,19, 0, 0, & !
|
|
14,20, 0, 0, &
|
|
13,14, 0, 0, &
|
|
19,20, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
3,12, 0, 0, & !
|
|
13,19, 0, 0, &
|
|
3,13, 0, 0, &
|
|
12,19, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & ! element 157
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & ! element 136
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, & !
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
0, 0, 0, 0, &
|
|
9,33,57,37, & ! element 21
|
|
1,17,44,16, &
|
|
16,44,57,33, &
|
|
1, 9,37,17, &
|
|
17,37,44,57, &
|
|
1,16,33, 9, &
|
|
10,34,58,38, & !
|
|
9,37,57,33, &
|
|
33,57,58,34, &
|
|
9,10,38,37, &
|
|
37,38,57,58, &
|
|
9,33,34,10, &
|
|
2,11,39,18, & !
|
|
10,38,58,34, &
|
|
34,58,39,11, &
|
|
10, 2,18,38, &
|
|
38,18,58,39, &
|
|
10,34,11, 2, &
|
|
16,15,43,44, & !
|
|
2,18,39,11, &
|
|
11,39,43,15, &
|
|
2,16,44,18, &
|
|
18,44,39,43, &
|
|
2,11,15,16, &
|
|
33,36,60,57, & !
|
|
16,44,43,15, &
|
|
15,43,60,36, &
|
|
16,33,57,44, &
|
|
44,57,43,60, &
|
|
16,15,36,33, &
|
|
34,35,59,58, & !
|
|
33,57,60,36, &
|
|
36,60,59,35, &
|
|
33,34,58,57, &
|
|
57,58,60,59, &
|
|
33,36,35,34, &
|
|
11,12,40,39, & !
|
|
34,58,59,35, &
|
|
35,59,40,12, &
|
|
34,11,39,58, &
|
|
58,39,59,40, &
|
|
34,35,12,11, &
|
|
15, 4,20,43, & !
|
|
11,39,40,12, &
|
|
12,40,20, 4, &
|
|
11,15,43,39, &
|
|
39,43,40,20, &
|
|
11,12, 4,15, &
|
|
36,14,42,60, & !
|
|
15,43,20, 4, &
|
|
4,20,42,14, &
|
|
15,36,60,43, &
|
|
43,60,20,42, &
|
|
15, 4,14,36, &
|
|
37,57,61,45, & !
|
|
17,21,52,44, &
|
|
44,52,61,57, &
|
|
17,37,45,21, &
|
|
21,45,52,61, &
|
|
17,44,57,37, &
|
|
38,58,62,46, & !
|
|
37,45,61,57, &
|
|
57,61,62,58, &
|
|
37,38,46,45, &
|
|
45,46,61,62, &
|
|
37,57,58,38, &
|
|
18,39,47,22, & !
|
|
38,46,62,58, &
|
|
58,62,47,39, &
|
|
38,18,22,46, &
|
|
46,22,62,47, &
|
|
38,58,39,18, &
|
|
44,43,51,52, & !
|
|
18,22,47,39, &
|
|
39,47,51,43, &
|
|
18,44,52,22, &
|
|
22,52,47,51, &
|
|
18,39,43,44, &
|
|
57,60,64,61, & !
|
|
44,52,51,43, &
|
|
43,51,64,60, &
|
|
44,57,61,52, &
|
|
52,61,51,64, &
|
|
44,43,60,57, &
|
|
58,59,63,62, & !
|
|
57,61,64,60, &
|
|
60,64,63,59, &
|
|
57,58,62,61, &
|
|
61,62,64,63, &
|
|
57,60,59,58, &
|
|
39,40,48,47, & !
|
|
58,62,63,59, &
|
|
59,63,48,40, &
|
|
58,39,47,62, &
|
|
62,47,63,48, &
|
|
58,59,40,39, &
|
|
43,20,24,51, & !
|
|
39,47,48,40, &
|
|
40,48,24,20, &
|
|
39,43,51,47, &
|
|
47,51,48,24, &
|
|
39,40,20,43, &
|
|
60,42,50,64, & !
|
|
43,51,24,20, &
|
|
20,24,50,42, &
|
|
43,60,64,51, &
|
|
51,64,24,50, &
|
|
43,20,42,60, &
|
|
45,61,53,25, & !
|
|
21, 5,32,52, &
|
|
52,32,53,61, &
|
|
21,45,25, 5, &
|
|
5,25,32,53, &
|
|
21,52,61,45, &
|
|
46,62,54,26, & !
|
|
45,25,53,61, &
|
|
61,53,54,62, &
|
|
45,46,26,25, &
|
|
25,26,53,54, &
|
|
45,61,62,46, &
|
|
22,47,27, 6, & !
|
|
46,26,54,62, &
|
|
62,54,27,47, &
|
|
46,22, 6,26, &
|
|
26, 6,54,27, &
|
|
46,62,47,22, &
|
|
52,51,31,32, & !
|
|
22, 6,27,47, &
|
|
47,27,31,51, &
|
|
22,52,32, 6, &
|
|
6,32,27,31, &
|
|
22,47,51,52, &
|
|
61,64,56,53, & !
|
|
52,32,31,51, &
|
|
51,31,56,64, &
|
|
52,61,53,32, &
|
|
32,53,31,56, &
|
|
52,51,64,61, &
|
|
62,63,55,54, & !
|
|
61,53,56,64, &
|
|
64,56,55,63, &
|
|
61,62,54,53, &
|
|
53,54,56,55, &
|
|
61,64,63,62, &
|
|
47,48,28,27, & !
|
|
62,54,55,63, &
|
|
63,55,28,48, &
|
|
62,47,27,54, &
|
|
54,27,55,28, &
|
|
62,63,48,47, &
|
|
51,24, 8,31, & !
|
|
47,27,28,48, &
|
|
48,28, 8,24, &
|
|
47,51,31,27, &
|
|
27,31,28, 8, &
|
|
47,48,24,51, &
|
|
64,50,30,56, & !
|
|
51,31, 8,24, &
|
|
24, 8,30,50, &
|
|
51,64,56,31, &
|
|
31,56, 8,30, &
|
|
51,24,50,64 &
|
|
/),(/FE_NipFaceNodes,FE_maxNipNeighbors,FE_maxNips,FE_Nelemtypes/))
|
|
|
|
CONTAINS
|
|
! ---------------------------
|
|
! subroutine mesh_init()
|
|
! function mesh_FEtoCPelement(FEid)
|
|
! function mesh_build_ipNeighorhood()
|
|
! ---------------------------
|
|
|
|
|
|
!***********************************************************
|
|
! initialization
|
|
!***********************************************************
|
|
SUBROUTINE mesh_init ()
|
|
|
|
use prec, only: pInt
|
|
use IO, only: IO_error,IO_open_InputFile
|
|
use FEsolving, only: parallelExecution
|
|
|
|
implicit none
|
|
|
|
integer(pInt), parameter :: fileUnit = 222
|
|
|
|
mesh_Nelems = 0_pInt
|
|
mesh_NcpElems = 0_pInt
|
|
mesh_Nnodes = 0_pInt
|
|
mesh_maxNips = 0_pInt
|
|
mesh_maxNnodes = 0_pInt
|
|
mesh_maxNipNeighbors = 0_pInt
|
|
mesh_maxNsharedElems = 0_pInt
|
|
mesh_maxNsubNodes = 0_pInt
|
|
mesh_NelemSets = 0_pInt
|
|
mesh_maxNelemInSet = 0_pInt
|
|
|
|
|
|
|
|
! call to various subroutines to parse the stuff from the input file...
|
|
if (IO_open_inputFile(fileUnit)) then
|
|
|
|
call mesh_get_meshDimensions(fileUnit)
|
|
call mesh_build_nodeMapping(fileUnit)
|
|
call mesh_build_elemMapping(fileUnit)
|
|
call mesh_build_elemSetMapping(fileUnit)
|
|
call mesh_get_nodeElemDimensions(fileUnit)
|
|
call mesh_build_nodes(fileUnit)
|
|
call mesh_build_elements(fileUnit)
|
|
call mesh_build_sharedElems(fileUnit)
|
|
call mesh_build_ipNeighborhood()
|
|
call mesh_build_subNodeCoords()
|
|
call mesh_build_ipVolumes()
|
|
call mesh_build_ipAreas()
|
|
call mesh_tell_statistics()
|
|
close (fileUnit)
|
|
|
|
parallelExecution = (mesh_Nelems == mesh_NcpElems) ! plus potential killer from non-local constitutive
|
|
else
|
|
call IO_error(100) ! cannot open input file
|
|
endif
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
|
|
!***********************************************************
|
|
! mapping of FE element types to internal representation
|
|
!***********************************************************
|
|
FUNCTION FE_mapElemtype(what)
|
|
|
|
implicit none
|
|
|
|
character(len=*), intent(in) :: what
|
|
integer(pInt) FE_mapElemtype
|
|
|
|
select case (what)
|
|
case ('7', 'C3D8')
|
|
FE_mapElemtype = 1 ! Three-dimensional Arbitrarily Distorted Brick
|
|
case ('134')
|
|
FE_mapElemtype = 2 ! Three-dimensional Four-node Tetrahedron
|
|
case ('11')
|
|
FE_mapElemtype = 3 ! Arbitrary Quadrilateral Plane-strain
|
|
case ('27')
|
|
FE_mapElemtype = 4 ! Plane Strain, Eight-node Distorted Quadrilateral
|
|
case ('157')
|
|
FE_mapElemtype = 5 ! Three-dimensional, Low-order, Tetrahedron, Herrmann Formulations
|
|
case ('136')
|
|
FE_mapElemtype = 6 ! Three-dimensional Arbitrarily Distorted Pentahedral
|
|
case ('21')
|
|
FE_mapElemtype = 7 ! Three-dimensional Arbitrarily Distorted qudratic hexahedral
|
|
case default
|
|
FE_mapElemtype = 0 ! unknown element --> should raise an error upstream..!
|
|
end select
|
|
|
|
END FUNCTION
|
|
|
|
|
|
|
|
!***********************************************************
|
|
! FE to CP id mapping by binary search thru lookup array
|
|
!
|
|
! valid questions are 'elem', 'node'
|
|
!***********************************************************
|
|
FUNCTION mesh_FEasCP(what,id)
|
|
|
|
use prec, only: pInt
|
|
use IO, only: IO_lc
|
|
implicit none
|
|
|
|
character(len=*), intent(in) :: what
|
|
integer(pInt), intent(in) :: id
|
|
integer(pInt), dimension(:,:), pointer :: lookupMap
|
|
integer(pInt) mesh_FEasCP, lower,upper,center
|
|
|
|
mesh_FEasCP = 0_pInt
|
|
select case(IO_lc(what(1:4)))
|
|
case('elem')
|
|
lookupMap => mesh_mapFEtoCPelem
|
|
case('node')
|
|
lookupMap => mesh_mapFEtoCPnode
|
|
case default
|
|
return
|
|
end select
|
|
|
|
lower = 1_pInt
|
|
upper = size(lookupMap,2)
|
|
|
|
! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds?
|
|
if (lookupMap(1,lower) == id) then
|
|
mesh_FEasCP = lookupMap(2,lower)
|
|
return
|
|
elseif (lookupMap(1,upper) == id) then
|
|
mesh_FEasCP = lookupMap(2,upper)
|
|
return
|
|
endif
|
|
|
|
! binary search in between bounds
|
|
do while (upper-lower > 1)
|
|
center = (lower+upper)/2
|
|
if (lookupMap(1,center) < id) then
|
|
lower = center
|
|
elseif (lookupMap(1,center) > id) then
|
|
upper = center
|
|
else
|
|
mesh_FEasCP = lookupMap(2,center)
|
|
exit
|
|
end if
|
|
end do
|
|
return
|
|
|
|
END FUNCTION
|
|
|
|
|
|
!***********************************************************
|
|
! find face-matching element of same type
|
|
!!***********************************************************
|
|
FUNCTION mesh_faceMatch(face,elem)
|
|
|
|
use prec, only: pInt
|
|
implicit none
|
|
|
|
integer(pInt) face,elem
|
|
integer(pInt) mesh_faceMatch
|
|
integer(pInt), dimension(FE_NfaceNodes(face,mesh_element(2,elem))) :: nodeMap
|
|
integer(pInt) minN,NsharedElems,lonelyNode,faceNode,i,n,t
|
|
|
|
minN = mesh_maxNsharedElems+1 ! init to worst case
|
|
mesh_faceMatch = 0_pInt ! intialize to "no match found"
|
|
t = mesh_element(2,elem) ! figure elemType
|
|
|
|
do faceNode=1,FE_NfaceNodes(face,t) ! loop over nodes on face
|
|
nodeMap(faceNode) = mesh_FEasCP('node',mesh_element(4+FE_nodeOnFace(faceNode,face,t),elem)) ! CP id of face node
|
|
NsharedElems = mesh_sharedElem(1,nodeMap(faceNode)) ! figure # shared elements for this node
|
|
if (NsharedElems < minN) then
|
|
minN = NsharedElems ! remember min # shared elems
|
|
lonelyNode = faceNode ! remember most lonely node
|
|
endif
|
|
end do
|
|
candidate: do i=1,minN ! iterate over lonelyNode's shared elements
|
|
mesh_faceMatch = mesh_sharedElem(1+i,nodeMap(lonelyNode)) ! present candidate elem
|
|
if (mesh_faceMatch == elem) then ! my own element ?
|
|
mesh_faceMatch = 0_pInt ! disregard
|
|
cycle candidate
|
|
endif
|
|
do faceNode=1,FE_NfaceNodes(face,t) ! check remaining face nodes to match
|
|
if (faceNode == lonelyNode) cycle ! disregard lonely node (matches anyway)
|
|
n = nodeMap(faceNode)
|
|
if (all(mesh_sharedElem(2:1+mesh_sharedElem(1,n),n) /= mesh_faceMatch)) then ! no ref to candidate elem?
|
|
mesh_faceMatch = 0_pInt ! set to "no match" (so far)
|
|
cycle candidate ! next candidate elem
|
|
endif
|
|
end do
|
|
exit ! surviving candidate
|
|
end do candidate
|
|
|
|
return
|
|
|
|
END FUNCTION
|
|
|
|
|
|
!********************************************************************
|
|
! get count of elements, nodes, and cp elements in mesh
|
|
! for subsequent array allocations
|
|
!
|
|
! assign globals:
|
|
! _Nelems, _Nnodes, _NcpElems
|
|
!********************************************************************
|
|
SUBROUTINE mesh_get_meshDimensions (unit)
|
|
|
|
use prec, only: pInt
|
|
use IO
|
|
implicit none
|
|
|
|
integer(pInt) unit,i,pos(41)
|
|
character*300 line
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(unit)
|
|
do
|
|
read (unit,610,END=620) line
|
|
pos = IO_stringPos(line,20)
|
|
|
|
select case ( IO_lc(IO_StringValue(line,pos,1)))
|
|
case('table')
|
|
if (pos(1) == 6) then
|
|
initialcondTableStyle = IO_IntValue (line,pos,4)
|
|
hypoelasticTableStyle = IO_IntValue (line,pos,5)
|
|
endif
|
|
case('sizing')
|
|
mesh_Nelems = IO_IntValue (line,pos,3)
|
|
mesh_Nnodes = IO_IntValue (line,pos,4)
|
|
case('define')
|
|
select case (IO_lc(IO_StringValue(line,pos,2)))
|
|
case('element') ! Count the number of encountered element sets
|
|
mesh_NelemSets=mesh_NelemSets+1
|
|
mesh_maxNelemInSet = max(mesh_maxNelemInSet,IO_countContinousIntValues(unit))
|
|
end select
|
|
case('hypoelastic')
|
|
do i=1,3+hypoelasticTableStyle ! Skip 3 or 4 lines
|
|
read (unit,610,END=620) line
|
|
end do
|
|
mesh_NcpElems = mesh_NcpElems + IO_countContinousIntValues(unit)
|
|
end select
|
|
|
|
end do
|
|
|
|
620 return
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
!!********************************************************************
|
|
! get maximum count of nodes, IPs, IP neighbors, and shared elements
|
|
! for subsequent array allocations
|
|
!
|
|
! assign globals:
|
|
! _maxNnodes, _maxNips, _maxNipNeighbors, _maxNsharedElems
|
|
!********************************************************************
|
|
SUBROUTINE mesh_get_nodeElemDimensions (unit)
|
|
|
|
use prec, only: pInt
|
|
use IO
|
|
implicit none
|
|
|
|
integer(pInt), dimension (mesh_Nnodes) :: node_count
|
|
integer(pInt), dimension (:), allocatable :: node_seen
|
|
integer(pInt) unit,i,j,n,t,e,NnodesStillToBeRead
|
|
integer(pInt), dimension (133) :: pos
|
|
character*300 line
|
|
|
|
610 FORMAT(A300)
|
|
|
|
node_count = 0_pInt
|
|
allocate(node_seen(maxval(FE_Nnodes)))
|
|
|
|
rewind(unit)
|
|
do
|
|
read (unit,610,END=630) line
|
|
pos = IO_stringPos(line,1)
|
|
if( IO_lc(IO_stringValue(line,pos,1)) == 'connectivity' ) then
|
|
read (unit,610,END=630) line ! Garbage line
|
|
readThisElement: do i=1,mesh_Nelems ! read all elements
|
|
NnodesStillToBeRead = -1_pInt ! number of nodes per element still to be read
|
|
do while (NnodesStillToBeRead /= 0)
|
|
read (unit,610,END=630) line
|
|
pos = IO_stringPos(line,2+FE_maxNnodes) ! limit to maximal number of nodes (plus ID, type)
|
|
if (NnodesStillToBeRead < 0) then ! first line of element with FE ID and element type
|
|
e = mesh_FEasCP('elem',IO_intValue(line,pos,1))
|
|
if (e < 1) exit readThisElement ! disregard non-CP elems
|
|
t = FE_mapElemtype(IO_StringValue(line,pos,2)) ! element type
|
|
NnodesStillToBeRead = FE_Nnodes(t)
|
|
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t))
|
|
mesh_maxNips = max(mesh_maxNips,FE_Nips(t))
|
|
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(t))
|
|
mesh_maxNsubNodes = max(mesh_maxNsubNodes,FE_NsubNodes(t))
|
|
node_seen = 0_pInt
|
|
do j = 1,(pos(1)-2)
|
|
n = mesh_FEasCP('node',IO_IntValue (line,pos,j+2))
|
|
if (all(node_seen /= n)) then
|
|
node_count(n) = node_count(n)+1
|
|
end if
|
|
node_seen(j) = n
|
|
NnodesStillToBeRead = NnodesStillToBeRead - 1
|
|
end do
|
|
else ! all lines after the first just contain nodes
|
|
do j = 1,pos(1)
|
|
n = mesh_FEasCP('node',IO_IntValue (line,pos,j))
|
|
if (all(node_seen /= n)) then
|
|
node_count(n) = node_count(n)+1
|
|
end if
|
|
node_seen(FE_Nnodes(t)-NnodesStillToBeRead+1) = n
|
|
NnodesStillToBeRead = NnodesStillToBeRead - 1
|
|
end do
|
|
end if
|
|
end do
|
|
end do readThisElement
|
|
exit
|
|
end if
|
|
end do
|
|
630 mesh_maxNsharedElems = maxval(node_count)
|
|
|
|
return
|
|
END SUBROUTINE
|
|
|
|
!********************************************************************
|
|
! Build element set mapping
|
|
!
|
|
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
|
|
!********************************************************************
|
|
SUBROUTINE mesh_build_elemSetMapping (unit)
|
|
|
|
use prec, only: pInt
|
|
use IO
|
|
|
|
implicit none
|
|
|
|
integer unit, elem_set
|
|
character*300 line
|
|
integer(pInt), dimension (9) :: pos ! count plus 4 entities on a line
|
|
|
|
610 FORMAT(A300)
|
|
|
|
allocate (mesh_nameElemSet(mesh_NelemSets))
|
|
allocate (mesh_mapElemSet(1+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt
|
|
elem_set = 0_pInt
|
|
|
|
rewind(unit)
|
|
do
|
|
read (unit,610,END=640) line
|
|
pos = IO_stringPos(line,4)
|
|
if( (IO_lc(IO_stringValue(line,pos,1)) == 'define' ).and. &
|
|
(IO_lc(IO_stringValue(line,pos,2)) == 'element' ) )then
|
|
elem_set = elem_set+1
|
|
mesh_nameElemSet(elem_set) = IO_stringValue(line,pos,4)
|
|
mesh_mapElemSet(:,elem_set) = IO_continousIntValues(unit,mesh_maxNelemInSet,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
|
|
end if
|
|
end do
|
|
640 return
|
|
END SUBROUTINE
|
|
|
|
|
|
!********************************************************************
|
|
! Build node mapping from FEM to CP
|
|
!
|
|
! allocate globals:
|
|
! _mapFEtoCPnode
|
|
!********************************************************************
|
|
SUBROUTINE mesh_build_nodeMapping (unit)
|
|
|
|
use prec, only: pInt
|
|
use math, only: qsort
|
|
use IO
|
|
implicit none
|
|
|
|
integer(pInt), dimension (mesh_Nnodes) :: node_count
|
|
integer(pInt) unit,i
|
|
integer(pInt), dimension (133) :: pos
|
|
character*300 line
|
|
|
|
610 FORMAT(A300)
|
|
|
|
allocate (mesh_mapFEtoCPnode(2,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
|
|
node_count(:) = 0_pInt
|
|
|
|
rewind(unit)
|
|
do
|
|
read (unit,610,END=650) line
|
|
pos = IO_stringPos(line,1)
|
|
if( IO_lc(IO_stringValue(line,pos,1)) == 'coordinates' ) then
|
|
read (unit,610,END=650) line ! skip crap line
|
|
do i=1,mesh_Nnodes
|
|
read (unit,610,END=650) line
|
|
mesh_mapFEtoCPnode(1,i) = IO_fixedIntValue (line,(/0,10/),1)
|
|
mesh_mapFEtoCPnode(2,i) = i
|
|
end do
|
|
exit
|
|
end if
|
|
end do
|
|
|
|
650 call qsort(mesh_mapFEtoCPnode,1,size(mesh_mapFEtoCPnode,2))
|
|
|
|
return
|
|
END SUBROUTINE
|
|
|
|
|
|
!********************************************************************
|
|
! Build element mapping from FEM to CP
|
|
!
|
|
! allocate globals:
|
|
! _mapFEtoCPelem
|
|
!********************************************************************
|
|
SUBROUTINE mesh_build_elemMapping (unit)
|
|
|
|
use prec, only: pInt
|
|
use math, only: qsort
|
|
use IO
|
|
|
|
implicit none
|
|
|
|
integer unit, i,CP_elem
|
|
character*300 line
|
|
integer(pInt), dimension (3) :: pos
|
|
integer(pInt), dimension (1+mesh_NcpElems) :: contInts
|
|
|
|
|
|
610 FORMAT(A300)
|
|
|
|
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
|
|
CP_elem = 0_pInt
|
|
|
|
rewind(unit)
|
|
do
|
|
read (unit,610,END=660) line
|
|
pos = IO_stringPos(line,1)
|
|
if( IO_lc(IO_stringValue(line,pos,1)) == 'hypoelastic' ) then
|
|
do i=1,3+hypoelasticTableStyle ! skip three (or four if new table style!) lines
|
|
read (unit,610,END=660) line
|
|
end do
|
|
contInts = IO_continousIntValues(unit,mesh_NcpElems,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
|
|
do i = 1,contInts(1)
|
|
CP_elem = CP_elem+1
|
|
mesh_mapFEtoCPelem(1,CP_elem) = contInts(1+i)
|
|
mesh_mapFEtoCPelem(2,CP_elem) = CP_elem
|
|
enddo
|
|
end if
|
|
end do
|
|
|
|
660 call qsort(mesh_mapFEtoCPelem,1,size(mesh_mapFEtoCPelem,2)) ! should be mesh_NcpElems
|
|
|
|
return
|
|
END SUBROUTINE
|
|
|
|
|
|
!********************************************************************
|
|
! store x,y,z coordinates of all nodes in mesh
|
|
!
|
|
! allocate globals:
|
|
! _node
|
|
!********************************************************************
|
|
SUBROUTINE mesh_build_nodes (unit)
|
|
|
|
use prec, only: pInt
|
|
use IO
|
|
implicit none
|
|
|
|
integer unit,i,j,m
|
|
integer(pInt), dimension(3) :: pos
|
|
integer(pInt), dimension(5), parameter :: node_ends = (/0,10,30,50,70/)
|
|
character*300 line
|
|
|
|
allocate ( mesh_node (3,mesh_Nnodes) )
|
|
mesh_node(:,:) = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
rewind(unit)
|
|
do
|
|
read (unit,610,END=670) line
|
|
pos = IO_stringPos(line,1)
|
|
if( IO_lc(IO_stringValue(line,pos,1)) == 'coordinates' ) then
|
|
read (unit,610,END=670) line ! skip crap line
|
|
do i=1,mesh_Nnodes
|
|
read (unit,610,END=670) line
|
|
m = mesh_FEasCP('node',IO_fixedIntValue (line,node_ends,1))
|
|
do j=1,3
|
|
mesh_node(j,m) = IO_fixedNoEFloatValue (line,node_ends,j+1)
|
|
end do
|
|
end do
|
|
exit
|
|
end if
|
|
end do
|
|
|
|
670 return
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
!********************************************************************
|
|
! store FEid, type, mat, tex, and node list per element
|
|
!
|
|
! allocate globals:
|
|
! _element
|
|
!********************************************************************
|
|
SUBROUTINE mesh_build_elements (unit)
|
|
|
|
use prec, only: pInt
|
|
use IO
|
|
implicit none
|
|
|
|
integer unit,e,i,j,sv,val,NnodesStillToBeRead
|
|
integer, parameter :: maxNchunks = 2+FE_maxNnodes
|
|
integer(pInt), dimension(1+2*maxNchunks) :: pos
|
|
integer(pInt), dimension(1+mesh_NcpElems) :: contInts
|
|
character*300 line
|
|
|
|
allocate (mesh_element (4+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
|
|
|
|
610 FORMAT(A300)
|
|
|
|
|
|
rewind(unit)
|
|
do
|
|
read (unit,610,END=680) line
|
|
pos = IO_stringPos(line,2)
|
|
if( IO_lc(IO_stringValue(line,pos,1)) == 'connectivity' ) then
|
|
read (unit,610,END=680) line ! Garbage line
|
|
readThisElement: do i=1,mesh_Nelems
|
|
NnodesStillToBeRead = -1_pInt ! number of nodes per element still to be read
|
|
do while (NnodesStillToBeRead /= 0)
|
|
read (unit,610,END=680) line
|
|
pos = IO_stringPos(line,2+FE_maxNnodes) ! limit to maximal number of nodes (plus ID, type)
|
|
if (NnodesStillToBeRead < 0) then ! first line of element with FE ID and element type
|
|
e = mesh_FEasCP('elem',IO_intValue(line,pos,1))
|
|
if (e < 1) exit readThisElement ! disregard non-CP elems
|
|
mesh_element(1,e) = IO_IntValue(line,pos,1) ! FE id
|
|
mesh_element(2,e) = FE_mapElemtype(IO_StringValue(line,pos,2)) ! elem type
|
|
NnodesStillToBeRead = FE_Nnodes(mesh_element(2,e))
|
|
do j = 1,(pos(1)-2)
|
|
mesh_element(j+4,e) = IO_IntValue(line,pos,j+2) ! copy FE ids of nodes
|
|
NnodesStillToBeRead = NnodesStillToBeRead - 1
|
|
end do
|
|
else ! all lines after the first just contain nodes
|
|
do j = 1,pos(1)
|
|
mesh_element(FE_Nnodes(mesh_element(2,e))-NnodesStillToBeRead+5,e) = IO_IntValue(line,pos,j) ! copy FE ids of nodes
|
|
NnodesStillToBeRead = NnodesStillToBeRead - 1
|
|
end do
|
|
end if
|
|
end do
|
|
end do readThisElement
|
|
exit
|
|
end if
|
|
end do
|
|
|
|
rewind(unit) ! just in case "initial state" apears before "connectivity"
|
|
read (unit,610,END=680) line
|
|
do
|
|
pos = IO_stringPos(line,2)
|
|
if( (IO_lc(IO_stringValue(line,pos,1)) == 'initial').and. &
|
|
(IO_lc(IO_stringValue(line,pos,2)) == 'state') ) then
|
|
if (initialcondTableStyle == 2) read (unit,610,END=680) line ! read extra line for new style
|
|
read (unit,610,END=680) line ! read line with index of state var
|
|
pos = IO_stringPos(line,1)
|
|
sv = IO_IntValue (line,pos,1) ! figure state variable index
|
|
if( (sv == 2).or.(sv == 3) ) then ! only state vars 2 and 3 of interest
|
|
read (unit,610,END=680) line ! read line with value of state var
|
|
pos = IO_stringPos(line,1)
|
|
do while (scan(IO_stringValue(line,pos,1),'+-',back=.true.)>1) ! is noEfloat value?
|
|
val = NINT(IO_fixedNoEFloatValue (line,(/0,20/),1)) ! state var's value
|
|
mesh_maxValStateVar(sv-1) = max(val,mesh_maxValStateVar(sv-1)) ! remember max val of material and texture index
|
|
if (initialcondTableStyle == 2) then
|
|
read (unit,610,END=680) line ! read extra line
|
|
read (unit,610,END=680) line ! read extra line
|
|
end if
|
|
contInts = IO_continousIntValues(unit,mesh_Nelems,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets) ! get affected elements
|
|
do i = 1,contInts(1)
|
|
e = mesh_FEasCP('elem',contInts(1+i))
|
|
mesh_element(1+sv,e) = val
|
|
end do
|
|
if (initialcondTableStyle == 0) read (unit,610,END=680) line ! ignore IP range for old table style
|
|
read (unit,610,END=680) line
|
|
pos = IO_stringPos(line,1)
|
|
end do
|
|
end if
|
|
else
|
|
read (unit,610,END=680) line
|
|
end if
|
|
end do
|
|
|
|
680 return
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
!********************************************************************
|
|
! build list of elements shared by each node in mesh
|
|
!
|
|
! allocate globals:
|
|
! _sharedElem
|
|
!********************************************************************
|
|
SUBROUTINE mesh_build_sharedElems (unit)
|
|
|
|
use prec, only: pInt
|
|
use IO
|
|
implicit none
|
|
|
|
integer(pint) unit,i,j,n,e,t,NnodesStillToBeRead
|
|
integer(pInt), dimension (133) :: pos
|
|
integer(pInt), dimension (:), allocatable :: node_seen
|
|
character*300 line
|
|
|
|
610 FORMAT(A300)
|
|
|
|
allocate(node_seen(maxval(FE_Nnodes)))
|
|
allocate ( mesh_sharedElem( 1+mesh_maxNsharedElems,mesh_Nnodes) )
|
|
mesh_sharedElem(:,:) = 0_pInt
|
|
|
|
rewind(unit)
|
|
do
|
|
read (unit,610,END=690) line
|
|
pos = IO_stringPos(line,1)
|
|
if( IO_lc(IO_stringValue(line,pos,1)) == 'connectivity' ) then
|
|
read (unit,610,END=690) line ! Garbage line
|
|
readThisElement: do i=1,mesh_Nelems ! read all elements
|
|
NnodesStillToBeRead = -1_pInt ! number of nodes per element still to be read
|
|
do while (NnodesStillToBeRead /= 0)
|
|
read (unit,610,END=690) line
|
|
pos = IO_stringPos(line,2+FE_maxNnodes) ! limit to maximal number of nodes (plus ID, type)
|
|
if (NnodesStillToBeRead < 0) then ! first line of element with FE ID and element type
|
|
e = mesh_FEasCP('elem',IO_intValue(line,pos,1))
|
|
if (e < 1) exit readThisElement ! disregard non-CP elems
|
|
t = FE_mapElemtype(IO_StringValue(line,pos,2)) ! element type
|
|
NnodesStillToBeRead = FE_Nnodes(t)
|
|
node_seen = 0_pInt
|
|
do j = 1,(pos(1)-2)
|
|
n = mesh_FEasCP('node',IO_IntValue (line,pos,j+2))
|
|
if (all(node_seen /= n)) then
|
|
mesh_sharedElem(1,n) = mesh_sharedElem(1,n) + 1
|
|
mesh_sharedElem(1+mesh_sharedElem(1,n),n) = e
|
|
end if
|
|
node_seen(j) = n
|
|
NnodesStillToBeRead = NnodesStillToBeRead - 1
|
|
end do
|
|
else
|
|
do j = 1,pos(1)
|
|
n = mesh_FEasCP('node',IO_IntValue (line,pos,j))
|
|
if (all(node_seen /= n)) then
|
|
mesh_sharedElem(1,n) = mesh_sharedElem(1,n) + 1
|
|
mesh_sharedElem(1+mesh_sharedElem(1,n),n) = e
|
|
end if
|
|
node_seen(FE_Nnodes(t)-NnodesStillToBeRead+1) = n
|
|
NnodesStillToBeRead = NnodesStillToBeRead - 1
|
|
end do
|
|
end if
|
|
end do
|
|
end do readThisElement
|
|
exit
|
|
end if
|
|
end do
|
|
690 return
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
!***********************************************************
|
|
! build up of IP neighborhood
|
|
!
|
|
! allocate globals
|
|
! _ipNeighborhood
|
|
!***********************************************************
|
|
SUBROUTINE mesh_build_ipNeighborhood()
|
|
|
|
use prec, only: pInt
|
|
implicit none
|
|
|
|
integer(pInt) e,t,i,j,k,n
|
|
integer(pInt) neighbor,neighboringElem,neighboringIP,matchingElem
|
|
integer(pInt), dimension(2) :: linkedNode = 0_pInt
|
|
|
|
allocate(mesh_ipNeighborhood(2,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipNeighborhood = 0_pInt
|
|
|
|
do e = 1,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get elemType
|
|
do i = 1,FE_Nips(t) ! loop over IPs of elem
|
|
do n = 1,FE_NipNeighbors(t) ! loop over neighbors of IP
|
|
neighbor = FE_ipNeighbor(n,i,t)
|
|
if (neighbor > 0) then ! intra-element IP
|
|
neighboringElem = e
|
|
neighboringIP = neighbor
|
|
else ! neighboring element's IP
|
|
neighboringElem = 0_pInt
|
|
neighboringIP = 0_pInt
|
|
matchingElem = mesh_faceMatch(-neighbor,e) ! get CP elem id of face match
|
|
if (matchingElem > 0 .and. mesh_element(2,matchingElem) == t) then ! found match of same type?
|
|
if (FE_nodesAtIP(2,1,i,t) == 0) then ! single linked node
|
|
matchNode1: do j = 1,FE_Nnodes(t) ! check against all neighbor's nodes
|
|
if (mesh_element(4+FE_nodesAtIP(1,1,i,t),e)==mesh_element(4+j,matchingElem)) then
|
|
linkedNode(1) = j ! which neighboring node matches my first nodeAtIP (indexed globally)
|
|
linkedNode(2) = 0_pInt
|
|
exit matchNode1
|
|
endif
|
|
enddo matchNode1
|
|
matchFace1: do j = 1,FE_Nips(t)
|
|
if ((linkedNode(1) == FE_nodesAtIP(1,1,j,t)) .and. (FE_nodesAtIP(2,1,j,t) == 0))then
|
|
neighboringElem = matchingElem
|
|
neighboringIP = j
|
|
exit matchFace1
|
|
endif
|
|
enddo matchFace1
|
|
else ! double linked node
|
|
matchNode2: do j = 1,FE_Nnodes(t) ! check against all neighbor's nodes
|
|
if (mesh_element(4+FE_nodesAtIP(1,1,i,t),e)==mesh_element(4+j,matchingElem)) linkedNode(1) = j ! which neighboring node matches my first nodeAtIP (indexed globally)
|
|
if (mesh_element(4+FE_nodesAtIP(2,1,i,t),e)==mesh_element(4+j,matchingElem)) linkedNode(2) = j ! which neighboring node matches my second nodeAtIP (indexed globally)
|
|
enddo matchNode2
|
|
matchFace2: do j = 1,FE_Nips(t)
|
|
if ((linkedNode(1) == FE_nodesAtIP(1,1,j,t) .and. linkedNode(2) == FE_nodesAtIP(2,1,j,t)) .or. &
|
|
(linkedNode(1) == FE_nodesAtIP(2,1,j,t) .and. linkedNode(2) == FE_nodesAtIP(1,1,j,t)) .or. &
|
|
(linkedNode(1) == FE_nodesAtIP(1,2,j,t) .and. linkedNode(2) == FE_nodesAtIP(2,2,j,t)) .or. &
|
|
(linkedNode(1) == FE_nodesAtIP(2,2,j,t) .and. linkedNode(2) == FE_nodesAtIP(1,2,j,t))) then
|
|
neighboringElem = matchingElem
|
|
neighboringIP = j
|
|
exit matchFace2
|
|
endif
|
|
enddo matchFace2
|
|
endif
|
|
endif
|
|
endif
|
|
mesh_ipNeighborhood(1,n,i,e) = neighboringElem
|
|
mesh_ipNeighborhood(2,n,i,e) = neighboringIP
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
return
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
|
|
!***********************************************************
|
|
! assignment of coordinates for subnodes in each cp element
|
|
!
|
|
! allocate globals
|
|
! _subNodeCoord
|
|
!***********************************************************
|
|
SUBROUTINE mesh_build_subNodeCoords()
|
|
|
|
use prec, only: pInt,pReal
|
|
implicit none
|
|
|
|
integer(pInt) e,t,n,p
|
|
|
|
allocate(mesh_subNodeCoord(3,mesh_maxNnodes+mesh_maxNsubNodes,mesh_NcpElems)) ; mesh_subNodeCoord = 0.0_pReal
|
|
|
|
do e = 1,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get elemType
|
|
do n = 1,FE_Nnodes(t)
|
|
mesh_subNodeCoord(:,n,e) = mesh_node(:,mesh_FEasCP('node',mesh_element(4+n,e))) ! loop over nodes of this element type
|
|
enddo
|
|
do n = 1,FE_NsubNodes(t) ! now for the true subnodes
|
|
do p = 1,FE_Nips(t) ! loop through parents
|
|
if (FE_subNodeParent(p,n,t) > 0) & ! valid parent node
|
|
mesh_subNodeCoord(:,n+FE_Nnodes(t),e) = &
|
|
mesh_subNodeCoord(:,n+FE_Nnodes(t),e) + &
|
|
mesh_node(:,mesh_FEasCP('node',mesh_element(4+FE_subNodeParent(p,n,t),e))) ! add up parents
|
|
enddo
|
|
mesh_subNodeCoord(:,n+FE_Nnodes(t),e) = mesh_subNodeCoord(:,n+FE_Nnodes(t),e) / count(FE_subNodeParent(:,n,t) > 0)
|
|
enddo
|
|
enddo
|
|
|
|
return
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
!***********************************************************
|
|
! calculation of IP volume
|
|
!
|
|
! allocate globals
|
|
! _ipVolume
|
|
!***********************************************************
|
|
SUBROUTINE mesh_build_ipVolumes()
|
|
|
|
use prec, only: pInt
|
|
use math, only: math_volTetrahedron
|
|
implicit none
|
|
|
|
integer(pInt) e,f,t,i,j,k,n,test
|
|
integer(pInt), parameter :: Ntriangles = FE_NipFaceNodes-2 ! each interface is made up of this many triangles
|
|
integer(pInt), dimension(mesh_maxNnodes+mesh_maxNsubNodes) :: gravityNode ! flagList to find subnodes determining center of grav
|
|
real(pReal), dimension(3,mesh_maxNnodes+mesh_maxNsubNodes) :: gravityNodePos ! coordinates of subnodes determining center of grav
|
|
real(pReal), dimension (3,FE_NipFaceNodes) :: nPos ! coordinates of nodes on IP face
|
|
real(pReal), dimension(Ntriangles,FE_NipFaceNodes) :: volume ! volumes of possible tetrahedra
|
|
real(pReal), dimension(3) :: centerOfGravity
|
|
|
|
allocate(mesh_ipVolume(mesh_maxNips,mesh_NcpElems)) ; mesh_ipVolume = 0.0_pReal
|
|
write(6,'(a10,x,a20,x,a20,x,a25,3(x,a6))') 'FE_Nips','FE_NipNeighbors','FE_NipFaceNodes','FE_subNodeOnIPFace','x','y','z'
|
|
do e = 1,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get elemType
|
|
do i = 1,FE_Nips(t) ! loop over IPs of elem
|
|
gravityNode = 0_pInt ! reset flagList
|
|
gravityNodePos = 0.0_pReal ! reset coordinates
|
|
do f = 1,FE_NipNeighbors(t) ! loop over interfaces of IP
|
|
do n = 1,FE_NipFaceNodes ! loop over nodes on interface
|
|
gravityNode(FE_subNodeOnIPFace(n,f,i,t)) = 1
|
|
gravityNodePos(:,FE_subNodeOnIPFace(n,f,i,t)) = mesh_subNodeCoord(:,FE_subNodeOnIPFace(n,f,i,t),e)
|
|
write(6,'(i10,x,i20,x,i20,x,i25,3(x,f6.3))') i,f,n,FE_subNodeOnIPFace(n,f,i,t),&
|
|
mesh_subNodeCoord(1,FE_subNodeOnIPFace(n,f,i,t),e),&
|
|
mesh_subNodeCoord(2,FE_subNodeOnIPFace(n,f,i,t),e),&
|
|
mesh_subNodeCoord(3,FE_subNodeOnIPFace(n,f,i,t),e)
|
|
end do
|
|
end do
|
|
|
|
do j = 1,mesh_maxNnodes+mesh_maxNsubNodes-1 ! walk through entire flagList except last
|
|
if (gravityNode(j) > 0_pInt) then ! valid node index
|
|
do k = j+1,mesh_maxNnodes+mesh_maxNsubNodes ! walk through remainder of list
|
|
if (all((gravityNodePos(:,j) - gravityNodePos(:,k)) == 0.0_pReal)) then ! found match
|
|
gravityNode(j) = 0_pInt ! delete first instance
|
|
gravityNodePos(:,j) = 0.0_pReal
|
|
exit ! continue with next suspect
|
|
end if
|
|
end do
|
|
end if
|
|
end do
|
|
centerOfGravity = sum(gravityNodePos,2)/count(gravityNode > 0)
|
|
|
|
do f = 1,FE_NipNeighbors(t) ! loop over interfaces of IP and add tetrahedra which connect to CoG
|
|
forall (n = 1:FE_NipFaceNodes) nPos(:,n) = mesh_subNodeCoord(:,FE_subNodeOnIPFace(n,f,i,t),e)
|
|
forall (n = 1:FE_NipFaceNodes, j = 1:Ntriangles) & ! start at each interface node and build valid triangles to cover interface
|
|
volume(j,n) = math_volTetrahedron(nPos(:,n), & ! calc volume of respective tetrahedron to CoG
|
|
nPos(:,1+mod(n+j-1,FE_NipFaceNodes)), &
|
|
nPos(:,1+mod(n+j-0,FE_NipFaceNodes)), &
|
|
centerOfGravity)
|
|
mesh_ipVolume(i,e) = mesh_ipVolume(i,e) + sum(volume) ! add contribution from this interface
|
|
end do
|
|
mesh_ipVolume(i,e) = mesh_ipVolume(i,e) / FE_NipFaceNodes ! renormalize with interfaceNodeNum due to loop over them
|
|
end do
|
|
end do
|
|
return
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
!***********************************************************
|
|
! calculation of IP interface areas
|
|
!
|
|
! allocate globals
|
|
! _ipArea, _ipAreaNormal
|
|
!***********************************************************
|
|
SUBROUTINE mesh_build_ipAreas()
|
|
|
|
use prec, only: pInt,pReal
|
|
use math
|
|
implicit none
|
|
|
|
integer(pInt) e,f,t,i,j,n
|
|
integer(pInt), parameter :: Ntriangles = FE_NipFaceNodes-2 ! each interface is made up of this many triangles
|
|
real(pReal), dimension (3,FE_NipFaceNodes) :: nPos ! coordinates of nodes on IP face
|
|
real(pReal), dimension(3,Ntriangles,FE_NipFaceNodes) :: normal
|
|
real(pReal), dimension(Ntriangles,FE_NipFaceNodes) :: area
|
|
|
|
allocate(mesh_ipArea(mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipArea = 0.0_pReal
|
|
allocate(mesh_ipAreaNormal(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipAreaNormal = 0.0_pReal
|
|
|
|
do e = 1,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get elemType
|
|
do i = 1,FE_Nips(t) ! loop over IPs of elem
|
|
do f = 1,FE_NipNeighbors(t) ! loop over interfaces of IP
|
|
forall (n = 1:FE_NipFaceNodes) nPos(:,n) = mesh_subNodeCoord(:,FE_subNodeOnIPFace(n,f,i,t),e)
|
|
forall (n = 1:FE_NipFaceNodes, j = 1:Ntriangles) ! start at each interface node and build valid triangles to cover interface
|
|
normal(:,j,n) = math_vectorproduct(nPos(:,1+mod(n+j-1,FE_NipFaceNodes)) - nPos(:,n), & ! calc their normal vectors
|
|
nPos(:,1+mod(n+j-0,FE_NipFaceNodes)) - nPos(:,n))
|
|
area(j,n) = dsqrt(sum(normal(:,j,n)*normal(:,j,n))) ! and area
|
|
end forall
|
|
forall (n = 1:FE_NipFaceNodes, j = 1:Ntriangles, area(j,n) > 0.0_pReal) &
|
|
normal(:,j,n) = normal(:,j,n) / area(j,n) ! make unit normal
|
|
|
|
mesh_ipArea(f,i,e) = sum(area) / (FE_NipFaceNodes*2.0_pReal) ! area of parallelograms instead of triangles
|
|
mesh_ipAreaNormal(:,f,i,e) = sum(sum(normal,3),2) / count(area > 0.0_pReal) ! average of all valid normals
|
|
enddo
|
|
enddo
|
|
enddo
|
|
return
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
!***********************************************************
|
|
! write statistics regarding input file parsing
|
|
! to the output file
|
|
!
|
|
!***********************************************************
|
|
SUBROUTINE mesh_tell_statistics()
|
|
|
|
use prec, only: pInt
|
|
use math, only: math_range
|
|
use IO, only: IO_error
|
|
|
|
implicit none
|
|
|
|
integer(pInt), dimension (:,:), allocatable :: mesh_HomogMicro
|
|
character(len=64) fmt
|
|
|
|
integer(pInt) i,e,n,f,t
|
|
|
|
if (mesh_maxValStateVar(1) == 0) call IO_error(110) ! no materials specified
|
|
if (mesh_maxValStateVar(2) == 0) call IO_error(120) ! no textures specified
|
|
|
|
allocate (mesh_HomogMicro(mesh_maxValStateVar(1),mesh_maxValStateVar(2))); mesh_HomogMicro = 0_pInt
|
|
do i=1,mesh_NcpElems
|
|
mesh_HomogMicro(mesh_element(3,i),mesh_element(4,i)) = &
|
|
mesh_HomogMicro(mesh_element(3,i),mesh_element(4,i)) + 1 ! count combinations of homogenization and microstructure
|
|
enddo
|
|
|
|
!$OMP CRITICAL (write2out)
|
|
|
|
write (6,*)
|
|
write (6,*) "Input Parser: IP NEIGHBORHOOD"
|
|
write (6,*)
|
|
write (6,"(a10,x,a10,x,a10,x,a3,x,a13,x,a13)") "elem","IP","neighbor","","elemNeighbor","ipNeighbor"
|
|
do e = 1,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get elemType
|
|
do i = 1,FE_Nips(t) ! loop over IPs of elem
|
|
do n = 1,FE_NipNeighbors(t) ! loop over neighbors of IP
|
|
write (6,"(i10,x,i10,x,i10,x,a3,x,i13,x,i13)") e,i,n,'-->',mesh_ipNeighborhood(1,n,i,e),mesh_ipNeighborhood(2,n,i,e)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
write (6,*)
|
|
write (6,"(a13,x,e15.8)") "total volume", sum(mesh_ipVolume)
|
|
write (6,*)
|
|
write (6,"(a5,x,a5,x,a15,x,a5,x,a15,x,a16)") "elem","IP","volume","face","area","-- normal --"
|
|
do e = 1,mesh_NcpElems
|
|
do i = 1,FE_Nips(mesh_element(2,e))
|
|
write (6,"(i5,x,i5,x,e15.8)") e,i,mesh_IPvolume(i,e)
|
|
do f = 1,FE_NipNeighbors(mesh_element(2,e))
|
|
! write (6,"(i33,x,e15.8,x,3(f6.3,x))") f,mesh_ipArea(f,i,e),mesh_ipAreaNormal(:,f,i,e)
|
|
enddo
|
|
enddo
|
|
enddo
|
|
write (6,*)
|
|
write (6,*) "Input Parser: STATISTICS"
|
|
write (6,*)
|
|
write (6,*) mesh_Nelems, " : total number of elements in mesh"
|
|
write (6,*) mesh_NcpElems, " : total number of CP elements in mesh"
|
|
write (6,*) mesh_Nnodes, " : total number of nodes in mesh"
|
|
write (6,*) mesh_maxNnodes, " : max number of nodes in any CP element"
|
|
write (6,*) mesh_maxNips, " : max number of IPs in any CP element"
|
|
write (6,*) mesh_maxNipNeighbors, " : max number of IP neighbors in any CP element"
|
|
write (6,*) mesh_maxNsubNodes, " : max number of (additional) subnodes in any CP element"
|
|
write (6,*) mesh_maxNsharedElems, " : max number of CP elements sharing a node"
|
|
write (6,*)
|
|
write (6,*) "Input Parser: HOMOGENIZATION/MICROSTRUCTURE"
|
|
write (6,*)
|
|
write (6,*) mesh_maxValStateVar(1), " : maximum homogenization index"
|
|
write (6,*) mesh_maxValStateVar(2), " : maximum microstructure index"
|
|
write (6,*)
|
|
write (fmt,"(a,i5,a)") "(9(x),a1,x,",mesh_maxValStateVar(2),"(i8))"
|
|
write (6,fmt) "+",math_range(mesh_maxValStateVar(2))
|
|
write (fmt,"(a,i5,a)") "(i8,x,a1,x,",mesh_maxValStateVar(2),"(i8))"
|
|
do i=1,mesh_maxValStateVar(1) ! loop over all (possibly assigned) homogenizations
|
|
write (6,fmt) i,"|",mesh_HomogMicro(i,:) ! loop over all (possibly assigned) microstrcutures
|
|
enddo
|
|
write (6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
|
|
return
|
|
|
|
END SUBROUTINE
|
|
|
|
|
|
END MODULE mesh
|
|
|