578 lines
23 KiB
Python
578 lines
23 KiB
Python
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os,sys,shutil
|
|
import logging,logging.config
|
|
import damask
|
|
import numpy as np
|
|
from collections import Iterable
|
|
from optparse import OptionParser
|
|
|
|
class Test():
|
|
"""
|
|
General class for testing.
|
|
|
|
Is sub-classed by the individual tests.
|
|
"""
|
|
|
|
variants = []
|
|
|
|
def __init__(self, **kwargs):
|
|
|
|
defaults = {'description': '',
|
|
'keep': False,
|
|
'accept': False,
|
|
'updateRequest': False,
|
|
'show': False,
|
|
'select': None,
|
|
}
|
|
for arg in defaults.keys():
|
|
setattr(self,arg,kwargs.get(arg) if kwargs.get(arg) else defaults[arg])
|
|
|
|
fh = logging.FileHandler('test.log') # create file handler which logs even debug messages
|
|
fh.setLevel(logging.DEBUG)
|
|
fh.setFormatter(logging.Formatter('%(asctime)s - %(levelname)s: \n%(message)s'))
|
|
|
|
ch = logging.StreamHandler(stream=sys.stdout) # create console handler with a higher log level
|
|
ch.setLevel(logging.INFO)
|
|
ch.setFormatter(logging.Formatter('%(message)s'))
|
|
|
|
logger = logging.getLogger()
|
|
logger.addHandler(fh)
|
|
logger.addHandler(ch)
|
|
logger.setLevel(0)
|
|
|
|
logging.info('\n'.join(['+'*40,
|
|
'-'*40,
|
|
'| '+self.description,
|
|
'-'*40,
|
|
]))
|
|
|
|
self.dirBase = os.path.dirname(os.path.realpath(sys.modules[self.__class__.__module__].__file__))
|
|
|
|
self.parser = OptionParser(description = '{} (Test class version: {})'.format(self.description,damask.version),
|
|
usage = './test.py [options]')
|
|
self.parser.add_option("-k", "--keep",
|
|
action = "store_true",
|
|
dest = "keep",
|
|
help = "keep current results, just run postprocessing")
|
|
self.parser.add_option("--ok", "--accept",
|
|
action = "store_true",
|
|
dest = "accept",
|
|
help = "calculate results but always consider test as successfull")
|
|
self.parser.add_option("-l", "--list",
|
|
action = "store_true",
|
|
dest = "show",
|
|
help = "show all test variants and do no calculation")
|
|
self.parser.add_option("-s", "--select",
|
|
dest = "select",
|
|
help = "run test of given name only")
|
|
self.parser.set_defaults(keep = self.keep,
|
|
accept = self.accept,
|
|
update = self.updateRequest,
|
|
show = self.show,
|
|
select = self.select,
|
|
)
|
|
|
|
|
|
def execute(self):
|
|
"""Run all variants and report first failure."""
|
|
if not self.options.keep:
|
|
if not self.feasible(): return -1
|
|
self.clean()
|
|
self.prepareAll()
|
|
|
|
for variant,name in enumerate(self.variants):
|
|
if self.options.show:
|
|
logging.critical('{}: {}'.format(variant,name))
|
|
elif self.options.select is not None and name != self.options.select:
|
|
pass
|
|
else:
|
|
try:
|
|
if not self.options.keep:
|
|
self.prepare(variant)
|
|
self.run(variant)
|
|
|
|
self.postprocess(variant)
|
|
|
|
if self.options.update:
|
|
if self.update(variant) != 0: logging.critical('update for "{}" failed.'.format(name))
|
|
elif not (self.options.accept or self.compare(variant)): # no update, do comparison
|
|
return variant+1 # return culprit
|
|
|
|
except Exception as e :
|
|
logging.critical('exception during variant execution: {}'.format(e))
|
|
return variant+1 # return culprit
|
|
return 0
|
|
|
|
def feasible(self):
|
|
"""Check whether test is possible or not (e.g. no license available)."""
|
|
return True
|
|
|
|
def clean(self):
|
|
"""Delete directory tree containing current results."""
|
|
try:
|
|
shutil.rmtree(self.dirCurrent())
|
|
except:
|
|
logging.warning('removal of directory "{}" not possible...'.format(self.dirCurrent()))
|
|
|
|
try:
|
|
os.mkdir(self.dirCurrent())
|
|
return True
|
|
except:
|
|
logging.critical('creation of directory "{}" failed.'.format(self.dirCurrent()))
|
|
return False
|
|
|
|
def prepareAll(self):
|
|
"""Do all necessary preparations for the whole test"""
|
|
return True
|
|
|
|
def prepare(self,variant):
|
|
"""Do all necessary preparations for the run of each test variant"""
|
|
return True
|
|
|
|
|
|
def run(self,variant):
|
|
"""Execute the requested test variant."""
|
|
return True
|
|
|
|
|
|
def postprocess(self,variant):
|
|
"""Perform post-processing of generated results for this test variant."""
|
|
return True
|
|
|
|
|
|
def compare(self,variant):
|
|
"""Compare reference to current results."""
|
|
return True
|
|
|
|
|
|
def update(self,variant):
|
|
"""Update reference with current results."""
|
|
logging.critical('update not supported.')
|
|
return 1
|
|
|
|
|
|
def dirReference(self):
|
|
"""Directory containing reference results of the test."""
|
|
return os.path.normpath(os.path.join(self.dirBase,'reference/'))
|
|
|
|
|
|
def dirCurrent(self):
|
|
"""Directory containing current results of the test."""
|
|
return os.path.normpath(os.path.join(self.dirBase,'current/'))
|
|
|
|
|
|
def dirProof(self):
|
|
"""Directory containing human readable proof of correctness for the test."""
|
|
return os.path.normpath(os.path.join(self.dirBase,'proof/'))
|
|
|
|
|
|
def fileInRoot(self,dir,file):
|
|
"""Path to a file in the root directory of DAMASK."""
|
|
return os.path.join(damask.Environment().rootDir(),dir,file)
|
|
|
|
|
|
def fileInReference(self,file):
|
|
"""Path to a file in the refrence directory for the test."""
|
|
return os.path.join(self.dirReference(),file)
|
|
|
|
|
|
def fileInCurrent(self,file):
|
|
"""Path to a file in the current results directory for the test."""
|
|
return os.path.join(self.dirCurrent(),file)
|
|
|
|
|
|
def fileInProof(self,file):
|
|
"""Path to a file in the proof directory for the test."""
|
|
return os.path.join(self.dirProof(),file)
|
|
|
|
|
|
def copy(self, mapA, mapB,
|
|
A = [], B = []):
|
|
"""
|
|
Copy list of files from (mapped) source to target.
|
|
|
|
mapA/B is one of self.fileInX.
|
|
"""
|
|
if not B or len(B) == 0: B = A
|
|
|
|
for source,target in zip(list(map(mapA,A)),list(map(mapB,B))):
|
|
try:
|
|
shutil.copy2(source,target)
|
|
except:
|
|
logging.critical('error copying {} to {}'.format(source,target))
|
|
|
|
|
|
def copy_Reference2Current(self,sourcefiles=[],targetfiles=[]):
|
|
|
|
if len(targetfiles) == 0: targetfiles = sourcefiles
|
|
for i,file in enumerate(sourcefiles):
|
|
try:
|
|
shutil.copy2(self.fileInReference(file),self.fileInCurrent(targetfiles[i]))
|
|
except:
|
|
logging.critical('Reference2Current: Unable to copy file "{}"'.format(file))
|
|
|
|
|
|
def copy_Base2Current(self,sourceDir,sourcefiles=[],targetfiles=[]):
|
|
|
|
source=os.path.normpath(os.path.join(self.dirBase,'../../..',sourceDir))
|
|
if len(targetfiles) == 0: targetfiles = sourcefiles
|
|
for i,file in enumerate(sourcefiles):
|
|
try:
|
|
shutil.copy2(os.path.join(source,file),self.fileInCurrent(targetfiles[i]))
|
|
except:
|
|
logging.error(os.path.join(source,file))
|
|
logging.critical('Base2Current: Unable to copy file "{}"'.format(file))
|
|
|
|
|
|
def copy_Current2Reference(self,sourcefiles=[],targetfiles=[]):
|
|
|
|
if len(targetfiles) == 0: targetfiles = sourcefiles
|
|
for i,file in enumerate(sourcefiles):
|
|
try:
|
|
shutil.copy2(self.fileInCurrent(file),self.fileInReference(targetfiles[i]))
|
|
except:
|
|
logging.critical('Current2Reference: Unable to copy file "{}"'.format(file))
|
|
|
|
|
|
def copy_Proof2Current(self,sourcefiles=[],targetfiles=[]):
|
|
|
|
if len(targetfiles) == 0: targetfiles = sourcefiles
|
|
for i,file in enumerate(sourcefiles):
|
|
try:
|
|
shutil.copy2(self.fileInProof(file),self.fileInCurrent(targetfiles[i]))
|
|
except:
|
|
logging.critical('Proof2Current: Unable to copy file "{}"'.format(file))
|
|
|
|
|
|
def copy_Current2Current(self,sourcefiles=[],targetfiles=[]):
|
|
|
|
for i,file in enumerate(sourcefiles):
|
|
try:
|
|
shutil.copy2(self.fileInReference(file),self.fileInCurrent(targetfiles[i]))
|
|
except:
|
|
logging.critical('Current2Current: Unable to copy file "{}"'.format(file))
|
|
|
|
|
|
def execute_inCurrentDir(self,cmd,streamIn=None):
|
|
|
|
logging.info(cmd)
|
|
out,error = damask.util.execute(cmd,streamIn,self.dirCurrent())
|
|
|
|
logging.info(error)
|
|
logging.debug(out)
|
|
|
|
return out,error
|
|
|
|
|
|
|
|
def compare_Array(self,File1,File2):
|
|
|
|
import numpy as np
|
|
logging.info('\n '.join(['comparing',File1,File2]))
|
|
table1 = damask.ASCIItable(name=File1,readonly=True)
|
|
table1.head_read()
|
|
len1=len(table1.info)+2
|
|
table2 = damask.ASCIItable(name=File2,readonly=True)
|
|
table2.head_read()
|
|
len2=len(table2.info)+2
|
|
|
|
refArray = np.nan_to_num(np.genfromtxt(File1,missing_values='n/a',skip_header = len1,autostrip=True))
|
|
curArray = np.nan_to_num(np.genfromtxt(File2,missing_values='n/a',skip_header = len2,autostrip=True))
|
|
|
|
if len(curArray) == len(refArray):
|
|
refArrayNonZero = refArray[refArray.nonzero()]
|
|
curArray = curArray[refArray.nonzero()]
|
|
max_err=np.max(abs(refArrayNonZero[curArray.nonzero()]/curArray[curArray.nonzero()]-1.))
|
|
max_loc=np.argmax(abs(refArrayNonZero[curArray.nonzero()]/curArray[curArray.nonzero()]-1.))
|
|
refArrayNonZero = refArrayNonZero[curArray.nonzero()]
|
|
curArray = curArray[curArray.nonzero()]
|
|
print(' ********\n * maximum relative error {} between {} and {}\n ********'.format(max_err,
|
|
refArrayNonZero[max_loc],
|
|
curArray[max_loc]))
|
|
return max_err
|
|
else:
|
|
raise Exception('mismatch in array size to compare')
|
|
|
|
|
|
def compare_ArrayRefCur(self,ref,cur=''):
|
|
|
|
if cur =='': cur = ref
|
|
refName = self.fileInReference(ref)
|
|
curName = self.fileInCurrent(cur)
|
|
return self.compare_Array(refName,curName)
|
|
|
|
|
|
def compare_ArrayCurCur(self,cur0,cur1):
|
|
|
|
cur0Name = self.fileInCurrent(cur0)
|
|
cur1Name = self.fileInCurrent(cur1)
|
|
return self.compare_Array(cur0Name,cur1Name)
|
|
|
|
def compare_Table(self,headings0,file0,headings1,file1,normHeadings='',normType=None,
|
|
absoluteTolerance=False,perLine=False,skipLines=[]):
|
|
|
|
import numpy as np
|
|
logging.info('\n '.join(['comparing ASCII Tables',file0,file1]))
|
|
if normHeadings == '': normHeadings = headings0
|
|
|
|
# check if comparison is possible and determine lenght of columns
|
|
if len(headings0) == len(headings1) == len(normHeadings):
|
|
dataLength = len(headings0)
|
|
length = [1 for i in range(dataLength)]
|
|
shape = [[] for i in range(dataLength)]
|
|
data = [[] for i in range(dataLength)]
|
|
maxError = [0.0 for i in range(dataLength)]
|
|
absTol = [absoluteTolerance for i in range(dataLength)]
|
|
column = [[1 for i in range(dataLength)] for j in range(2)]
|
|
|
|
norm = [[] for i in range(dataLength)]
|
|
normLength = [1 for i in range(dataLength)]
|
|
normShape = [[] for i in range(dataLength)]
|
|
normColumn = [1 for i in range(dataLength)]
|
|
|
|
for i in range(dataLength):
|
|
if headings0[i]['shape'] != headings1[i]['shape']:
|
|
raise Exception('shape mismatch between {} and {} '.format(headings0[i]['label'],headings1[i]['label']))
|
|
shape[i] = headings0[i]['shape']
|
|
for j in range(np.shape(shape[i])[0]):
|
|
length[i] *= shape[i][j]
|
|
normShape[i] = normHeadings[i]['shape']
|
|
for j in range(np.shape(normShape[i])[0]):
|
|
normLength[i] *= normShape[i][j]
|
|
else:
|
|
raise Exception('trying to compare {} with {} normed by {} data sets'.format(len(headings0),
|
|
len(headings1),
|
|
len(normHeadings)))
|
|
|
|
table0 = damask.ASCIItable(name=file0,readonly=True)
|
|
table0.head_read()
|
|
table1 = damask.ASCIItable(name=file1,readonly=True)
|
|
table1.head_read()
|
|
|
|
for i in range(dataLength):
|
|
key0 = ('1_' if length[i]>1 else '') + headings0[i]['label']
|
|
key1 = ('1_' if length[i]>1 else '') + headings1[i]['label']
|
|
normKey = ('1_' if normLength[i]>1 else '') + normHeadings[i]['label']
|
|
if key0 not in table0.labels(raw = True):
|
|
raise Exception('column {} not found in 1. table...\n'.format(key0))
|
|
elif key1 not in table1.labels(raw = True):
|
|
raise Exception('column {} not found in 2. table...\n'.format(key1))
|
|
elif normKey not in table0.labels(raw = True):
|
|
raise Exception('column {} not found in 1. table...\n'.format(normKey))
|
|
else:
|
|
column[0][i] = table0.label_index(key0)
|
|
column[1][i] = table1.label_index(key1)
|
|
normColumn[i] = table0.label_index(normKey)
|
|
|
|
line0 = 0
|
|
while table0.data_read(): # read next data line of ASCII table
|
|
if line0 not in skipLines:
|
|
for i in range(dataLength):
|
|
myData = np.array(map(float,table0.data[column[0][i]:\
|
|
column[0][i]+length[i]]),'d')
|
|
normData = np.array(map(float,table0.data[normColumn[i]:\
|
|
normColumn[i]+normLength[i]]),'d')
|
|
data[i] = np.append(data[i],np.reshape(myData,shape[i]))
|
|
if normType == 'pInf':
|
|
norm[i] = np.append(norm[i],np.max(np.abs(normData)))
|
|
else:
|
|
norm[i] = np.append(norm[i],np.linalg.norm(np.reshape(normData,normShape[i]),normType))
|
|
line0 += 1
|
|
|
|
for i in range(dataLength):
|
|
if not perLine: norm[i] = [np.max(norm[i]) for j in range(line0-len(skipLines))]
|
|
data[i] = np.reshape(data[i],[line0-len(skipLines),length[i]])
|
|
if any(norm[i]) == 0.0 or absTol[i]:
|
|
norm[i] = [1.0 for j in range(line0-len(skipLines))]
|
|
absTol[i] = True
|
|
if perLine:
|
|
logging.warning('At least one norm of {} in 1. table is 0.0, using absolute tolerance'.format(headings0[i]['label']))
|
|
else:
|
|
logging.warning('Maximum norm of {} in 1. table is 0.0, using absolute tolerance'.format(headings0[i]['label']))
|
|
|
|
line1 = 0
|
|
while table1.data_read(): # read next data line of ASCII table
|
|
if line1 not in skipLines:
|
|
for i in range(dataLength):
|
|
myData = np.array(map(float,table1.data[column[1][i]:\
|
|
column[1][i]+length[i]]),'d')
|
|
maxError[i] = max(maxError[i],np.linalg.norm(np.reshape(myData-data[i][line1-len(skipLines),:],shape[i]))/
|
|
norm[i][line1-len(skipLines)])
|
|
line1 +=1
|
|
|
|
if (line0 != line1): raise Exception('found {} lines in 1. table but {} in 2. table'.format(line0,line1))
|
|
|
|
logging.info(' ********')
|
|
for i in range(dataLength):
|
|
if absTol[i]:
|
|
logging.info(' * maximum absolute error {} between {} and {}'.format(maxError[i],
|
|
headings0[i]['label'],
|
|
headings1[i]['label']))
|
|
else:
|
|
logging.info(' * maximum relative error {} between {} and {}'.format(maxError[i],
|
|
headings0[i]['label'],
|
|
headings1[i]['label']))
|
|
logging.info(' ********')
|
|
return maxError
|
|
|
|
|
|
def compare_TablesStatistically(self,
|
|
files = [None,None], # list of file names
|
|
columns = [None], # list of list of column labels (per file)
|
|
meanTol = 1.0e-4,
|
|
stdTol = 1.0e-6,
|
|
preFilter = 1.0e-9):
|
|
"""
|
|
Calculate statistics of tables
|
|
|
|
threshold can be used to ignore small values (a negative number disables this feature)
|
|
"""
|
|
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
|
files = [str(files)]
|
|
|
|
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
|
|
for table in tables:
|
|
table.head_read()
|
|
|
|
columns += [columns[0]]*(len(files)-len(columns)) # extend to same length as files
|
|
columns = columns[:len(files)] # truncate to same length as files
|
|
|
|
for i,column in enumerate(columns):
|
|
if column is None: columns[i] = tables[i].labels(raw = True) # if no column is given, read all
|
|
|
|
logging.info('comparing ASCIItables statistically')
|
|
for i in range(len(columns)):
|
|
columns[i] = columns[0] if not columns[i] else \
|
|
([columns[i]] if not (isinstance(columns[i], Iterable) and not isinstance(columns[i], str)) else \
|
|
columns[i]
|
|
)
|
|
logging.info(files[i]+':'+','.join(columns[i]))
|
|
|
|
if len(files) < 2: return True # single table is always close to itself...
|
|
|
|
data = []
|
|
for table,labels in zip(tables,columns):
|
|
table.data_readArray(labels)
|
|
data.append(table.data)
|
|
table.close()
|
|
|
|
|
|
for i in range(1,len(data)):
|
|
delta = data[i]-data[i-1]
|
|
normBy = (np.abs(data[i]) + np.abs(data[i-1]))*0.5
|
|
normedDelta = np.where(normBy>preFilter,delta/normBy,0.0)
|
|
mean = np.amax(np.abs(np.mean(normedDelta,0)))
|
|
std = np.amax(np.std(normedDelta,0))
|
|
logging.info('mean: {:f}'.format(mean))
|
|
logging.info('std: {:f}'.format(std))
|
|
|
|
return (mean<meanTol) & (std < stdTol)
|
|
|
|
|
|
|
|
def compare_Tables(self,
|
|
files = [None,None], # list of file names
|
|
columns = [None], # list of list of column labels (per file)
|
|
rtol = 1e-5,
|
|
atol = 1e-8,
|
|
debug = False):
|
|
"""Compare multiple tables with np.allclose"""
|
|
if not (isinstance(files, Iterable) and not isinstance(files, str)): # check whether list of files is requested
|
|
files = [str(files)]
|
|
|
|
if len(files) < 2: return True # single table is always close to itself...
|
|
|
|
tables = [damask.ASCIItable(name = filename,readonly = True) for filename in files]
|
|
for table in tables:
|
|
table.head_read()
|
|
|
|
columns += [columns[0]]*(len(files)-len(columns)) # extend to same length as files
|
|
columns = columns[:len(files)] # truncate to same length as files
|
|
|
|
for i,column in enumerate(columns):
|
|
if column is None: columns[i] = tables[i].labels(raw = False) # if no column is given, use all
|
|
|
|
logging.info('comparing ASCIItables')
|
|
for i in range(len(columns)):
|
|
columns[i] = columns[0] if not columns[i] else \
|
|
([columns[i]] if not (isinstance(columns[i], Iterable) and not isinstance(columns[i], str)) else \
|
|
columns[i]
|
|
)
|
|
logging.info(files[i]+': '+','.join(columns[i]))
|
|
|
|
dimensions = tables[0].label_dimension(columns[0]) # width of each requested column
|
|
maximum = np.zeros_like(columns[0],dtype=float) # one magnitude per column entry
|
|
data = [] # list of feature table extracted from each file (ASCII table)
|
|
|
|
for i,(table,labels) in enumerate(zip(tables,columns)):
|
|
if np.any(dimensions != table.label_dimension(labels)): # check data object consistency
|
|
logging.critical('Table {} differs in data layout.'.format(files[i]))
|
|
return False
|
|
table.data_readArray(labels) # read data, ...
|
|
data.append(table.data) # ... store, ...
|
|
table.close() # ... close
|
|
|
|
for j,label in enumerate(labels): # iterate over object labels
|
|
maximum[j] = np.maximum(\
|
|
maximum[j],
|
|
np.amax(np.linalg.norm(table.data[:,table.label_indexrange(label)],
|
|
axis=1))
|
|
) # find maximum Euclidean norm across rows
|
|
|
|
maximum = np.where(maximum > 0.0, maximum, 1.0) # avoid div by zero for zero columns
|
|
maximum = np.repeat(maximum,dimensions) # spread maximum over columns of each object
|
|
|
|
for i in range(len(data)):
|
|
data[i] /= maximum # normalize each table
|
|
|
|
if debug:
|
|
logging.debug(str(maximum))
|
|
allclose = np.absolute(data[0]-data[1]) <= (atol + rtol*np.absolute(data[1]))
|
|
for ok,valA,valB in zip(allclose,data[0],data[1]):
|
|
logging.debug('{}:\n{}\n{}'.format(ok,valA,valB))
|
|
|
|
allclose = True # start optimistic
|
|
for i in range(1,len(data)):
|
|
allclose &= np.allclose(data[i-1],data[i],rtol,atol) # accumulate "pessimism"
|
|
|
|
return allclose
|
|
|
|
|
|
def compare_TableRefCur(self,headingsRef,ref,headingsCur='',cur='',normHeadings='',normType=None,\
|
|
absoluteTolerance=False,perLine=False,skipLines=[]):
|
|
|
|
if cur == '': cur = ref
|
|
if headingsCur == '': headingsCur = headingsRef
|
|
refName = self.fileInReference(ref)
|
|
curName = self.fileInCurrent(cur)
|
|
return self.compare_Table(headingsRef,refName,headingsCur,curName,normHeadings,normType,
|
|
absoluteTolerance,perLine,skipLines)
|
|
|
|
|
|
def compare_TableCurCur(self,headingsCur0,Cur0,Cur1,headingsCur1='',normHeadings='',normType=None,\
|
|
absoluteTolerance=False,perLine=False,skipLines=[]):
|
|
|
|
if headingsCur1 == '': headingsCur1 = headingsCur0
|
|
cur0Name = self.fileInCurrent(Cur0)
|
|
cur1Name = self.fileInCurrent(Cur1)
|
|
return self.compare_Table(headingsCur0,cur0Name,headingsCur1,cur1Name,normHeadings,normType,
|
|
absoluteTolerance,perLine,skipLines)
|
|
|
|
|
|
def report_Success(self,culprit):
|
|
|
|
ret = culprit
|
|
|
|
if culprit == 0:
|
|
msg = 'The test passed' if len(self.variants) == 1 \
|
|
else 'All {} tests passed.'.format(len(self.variants))
|
|
elif culprit == -1:
|
|
msg = 'Warning: Could not start test...'
|
|
ret = 0
|
|
else:
|
|
msg = ' * Test "{}" failed.'.format(self.variants[culprit-1])
|
|
|
|
logging.critical('\n'.join(['*'*40,msg,'*'*40]) + '\n')
|
|
return ret
|