DAMASK_EICMD/src/phase_mechanical_eigen_slip...

185 lines
7.1 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incorporating kinematics resulting from opening of slip planes
!> @details to be done
!--------------------------------------------------------------------------------------------------
submodule(phase:eigen) slipplaneopening
integer, dimension(:), allocatable :: damage_isoductile_instance
type :: tParameters !< container type for internal constitutive parameters
integer :: &
sum_N_sl !< total number of cleavage planes
real(pReal) :: &
dot_o, & !< opening rate of cleavage planes
q !< damage rate sensitivity
real(pReal), dimension(:), allocatable :: &
g_crit
real(pReal), dimension(:,:,:), allocatable :: &
P_d, &
P_t, &
P_n
end type tParameters
type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters (len Ninstances)
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
module function damage_isoductile_init() result(myKinematics)
logical, dimension(:), allocatable :: myKinematics
integer :: p,i
character(len=pStringLen) :: extmsg = ''
integer, dimension(:), allocatable :: N_sl
real(pReal), dimension(:,:), allocatable :: d,n,t
class(tNode), pointer :: &
phases, &
phase, &
mech, &
pl, &
kinematics, &
kinematic_type
myKinematics = kinematics_active2('isoductile')
if(count(myKinematics) == 0) return
print'(/,a)', ' <<<+- phase:mechanical:eigen:slipplaneopening init -+>>>'
print'(a,i2)', ' # phases: ',count(myKinematics); flush(IO_STDOUT)
phases => config_material%get('phase')
allocate(param(phases%length))
do p = 1, phases%length
if(myKinematics(p)) then
phase => phases%get(p)
mech => phase%get('mechanical')
pl => mech%get('plastic')
kinematics => phase%get('damage')
associate(prm => param(p))
kinematic_type => kinematics%get(1)
prm%dot_o = kinematic_type%get_asFloat('dot_o')
prm%q = kinematic_type%get_asFloat('q')
N_sl = pl%get_as1dInt('N_sl')
prm%sum_N_sl = sum(abs(N_sl))
d = lattice_slip_direction (N_sl,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
t = lattice_slip_transverse(N_sl,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
n = lattice_slip_normal (N_sl,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
allocate(prm%P_d(3,3,size(d,2)),prm%P_t(3,3,size(t,2)),prm%P_n(3,3,size(n,2)))
do i=1, size(n,2)
prm%P_d(1:3,1:3,i) = math_outer(d(1:3,i), n(1:3,i))
prm%P_t(1:3,1:3,i) = math_outer(t(1:3,i), n(1:3,i))
prm%P_n(1:3,1:3,i) = math_outer(n(1:3,i), n(1:3,i))
enddo
prm%g_crit = kinematic_type%get_as1dFloat('g_crit',requiredSize=size(N_sl))
! expand: family => system
prm%g_crit = math_expand(prm%g_crit,N_sl)
! sanity checks
if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' anisoDuctile_n'
if (prm%dot_o <= 0.0_pReal) extmsg = trim(extmsg)//' anisoDuctile_sdot0'
if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' anisoDuctile_critLoad'
!--------------------------------------------------------------------------------------------------
! exit if any parameter is out of range
if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)//'(slipplane_opening)')
end associate
endif
enddo
end function damage_isoductile_init
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
module subroutine damage_isoductile_LiAndItsTangent(Ld, dLd_dTstar, S, ph,me)
integer, intent(in) :: &
ph, me
real(pReal), intent(in), dimension(3,3) :: &
S
real(pReal), intent(out), dimension(3,3) :: &
Ld !< damage velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLd_dTstar !< derivative of Ld with respect to Tstar (4th-order tensor)
integer :: &
i, k, l, m, n
real(pReal) :: &
traction_d, traction_t, traction_n, traction_crit, &
udotd, dudotd_dt, udott, dudott_dt, udotn, dudotn_dt
associate(prm => param(ph))
Ld = 0.0_pReal
dLd_dTstar = 0.0_pReal
do i = 1, prm%sum_N_sl
traction_d = math_tensordot(S,prm%P_d(1:3,1:3,i))
traction_t = math_tensordot(S,prm%P_t(1:3,1:3,i))
traction_n = math_tensordot(S,prm%P_n(1:3,1:3,i))
traction_crit = prm%g_crit(i)* damage_phi(ph,me)
udotd = sign(1.0_pReal,traction_d)* prm%dot_o* ( abs(traction_d)/traction_crit &
- abs(traction_d)/prm%g_crit(i))**prm%q
udott = sign(1.0_pReal,traction_t)* prm%dot_o* ( abs(traction_t)/traction_crit &
- abs(traction_t)/prm%g_crit(i))**prm%q
udotn = prm%dot_o* ( max(0.0_pReal,traction_n)/traction_crit &
- max(0.0_pReal,traction_n)/prm%g_crit(i))**prm%q
if (dNeq0(traction_d)) then
dudotd_dt = udotd*prm%q/traction_d
else
dudotd_dt = 0.0_pReal
endif
if (dNeq0(traction_t)) then
dudott_dt = udott*prm%q/traction_t
else
dudott_dt = 0.0_pReal
endif
if (dNeq0(traction_n)) then
dudotn_dt = udotn*prm%q/traction_n
else
dudotn_dt = 0.0_pReal
endif
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLd_dTstar(k,l,m,n) = dLd_dTstar(k,l,m,n) &
+ dudotd_dt*prm%P_d(k,l,i)*prm%P_d(m,n,i) &
+ dudott_dt*prm%P_t(k,l,i)*prm%P_t(m,n,i) &
+ dudotn_dt*prm%P_n(k,l,i)*prm%P_n(m,n,i)
Ld = Ld &
+ udotd*prm%P_d(1:3,1:3,i) &
+ udott*prm%P_t(1:3,1:3,i) &
+ udotn*prm%P_n(1:3,1:3,i)
enddo
end associate
end subroutine damage_isoductile_LiAndItsTangent
end submodule slipplaneopening