DAMASK_EICMD/src/source_thermal_externalheat...

139 lines
5.7 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Michigan State University
!> @brief material subroutine for variable heat source
!--------------------------------------------------------------------------------------------------
submodule(constitutive:constitutive_thermal) source_thermal_externalheat
integer, dimension(:), allocatable :: &
source_thermal_externalheat_offset, & !< which source is my current thermal dissipation mechanism?
source_thermal_externalheat_instance !< instance of thermal dissipation source mechanism
type :: tParameters !< container type for internal constitutive parameters
real(pReal), dimension(:), allocatable :: &
time, &
heat_rate
integer :: &
nIntervals
end type tParameters
type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters (len Ninstance)
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
module function source_thermal_externalheat_init(source_length) result(mySources)
integer, intent(in) :: source_length
logical, dimension(:,:), allocatable :: mySources
class(tNode), pointer :: &
phases, &
phase, &
sources, &
src
integer :: Ninstance,sourceOffset,NipcMyPhase,p
print'(/,a)', ' <<<+- source_thermal_externalHeat init -+>>>'
mySources = source_active('thermal_externalheat',source_length)
Ninstance = count(mySources)
print'(a,i2)', ' # instances: ',Ninstance; flush(6)
if(Ninstance == 0) return
phases => config_material%get('phase')
allocate(param(Ninstance))
allocate(source_thermal_externalheat_offset (phases%length), source=0)
allocate(source_thermal_externalheat_instance(phases%length), source=0)
do p = 1, phases%length
phase => phases%get(p)
if(any(mySources(:,p))) source_thermal_externalheat_instance(p) = count(mySources(:,1:p))
if(count(mySources(:,p)) == 0) cycle
sources => phase%get('source')
do sourceOffset = 1, sources%length
if(mySources(sourceOffset,p)) then
source_thermal_externalheat_offset(p) = sourceOffset
associate(prm => param(source_thermal_externalheat_instance(p)))
src => sources%get(sourceOffset)
prm%time = src%get_asFloats('t_n')
prm%nIntervals = size(prm%time) - 1
prm%heat_rate = src%get_asFloats('f_T',requiredSize = size(prm%time))
NipcMyPhase = count(material_phaseAt==p) * discretization_nIP
call constitutive_allocateState(sourceState(p)%p(sourceOffset),NipcMyPhase,1,1,0)
end associate
endif
enddo
enddo
end function source_thermal_externalheat_init
!--------------------------------------------------------------------------------------------------
!> @brief rate of change of state
!> @details state only contains current time to linearly interpolate given heat powers
!--------------------------------------------------------------------------------------------------
module subroutine source_thermal_externalheat_dotState(phase, of)
integer, intent(in) :: &
phase, &
of
integer :: &
sourceOffset
sourceOffset = source_thermal_externalheat_offset(phase)
sourceState(phase)%p(sourceOffset)%dotState(1,of) = 1.0_pReal ! state is current time
end subroutine source_thermal_externalheat_dotState
!--------------------------------------------------------------------------------------------------
!> @brief returns local heat generation rate
!--------------------------------------------------------------------------------------------------
module subroutine source_thermal_externalheat_getRateAndItsTangent(TDot, dTDot_dT, phase, of)
integer, intent(in) :: &
phase, &
of
real(pReal), intent(out) :: &
TDot, &
dTDot_dT
integer :: &
sourceOffset, interval
real(pReal) :: &
frac_time
sourceOffset = source_thermal_externalheat_offset(phase)
associate(prm => param(source_thermal_externalheat_instance(phase)))
do interval = 1, prm%nIntervals ! scan through all rate segments
frac_time = (sourceState(phase)%p(sourceOffset)%state(1,of) - prm%time(interval)) &
/ (prm%time(interval+1) - prm%time(interval)) ! fractional time within segment
if ( (frac_time < 0.0_pReal .and. interval == 1) &
.or. (frac_time >= 1.0_pReal .and. interval == prm%nIntervals) &
.or. (frac_time >= 0.0_pReal .and. frac_time < 1.0_pReal) ) &
TDot = prm%heat_rate(interval ) * (1.0_pReal - frac_time) + &
prm%heat_rate(interval+1) * frac_time ! interpolate heat rate between segment boundaries...
! ...or extrapolate if outside of bounds
enddo
dTDot_dT = 0.0
end associate
end subroutine source_thermal_externalheat_getRateAndItsTangent
end submodule source_thermal_externalheat