DAMASK_EICMD/trunk/CPFEM.f90

526 lines
23 KiB
Fortran

!##############################################################
MODULE CPFEM
!##############################################################
! *** CPFEM engine ***
!
use prec, only: pReal,pInt
implicit none
!
! ****************************************************************
! *** General variables for the material behaviour calculation ***
! ****************************************************************
real(pReal), dimension (:,:), allocatable :: CPFEM_Temperature
real(pReal), dimension (:,:,:), allocatable :: CPFEM_stress_all
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jacobi_all
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn_all
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ffn1_all
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_results
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_ini_ori
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_sigma_old
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_sigma_new
real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_old
real(pReal), dimension (:,:,:,:,:), allocatable :: CPFEM_Fp_new
real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_jaco_old
real(pReal), dimension(6,6) :: CPFEM_dummy_jacobian
real(pReal) CPFEM_dummy_stress
integer(pInt) :: CPFEM_inc_old = 0_pInt
integer(pInt) :: CPFEM_subinc_old = 1_pInt
integer(pInt) :: CPFEM_cycle_old = -1_pInt
integer(pInt) :: CPFEM_Nresults = 4_pInt ! three Euler angles plus volume fraction
logical :: CPFEM_first_call = .true.
CONTAINS
!*********************************************************
!*** allocate the arrays defined in module CPFEM ***
!*** and initialize them ***
!*********************************************************
SUBROUTINE CPFEM_init()
!
use prec, only: pReal,pInt
use math, only: math_EulertoR, math_I3, math_identity2nd
use mesh
use constitutive
!
implicit none
integer(pInt) e,i,g
!
! *** mpie.marc parameters ***
allocate(CPFEM_Temperature (mesh_maxNips,mesh_NcpElems)) ; CPFEM_Temperature = 0.0_pReal
allocate(CPFEM_ffn_all (3,3,mesh_maxNips,mesh_NcpElems))
forall(e=1:mesh_NcpElems,i=1:mesh_maxNips) CPFEM_ffn_all(:,:,i,e) = math_I3
allocate(CPFEM_ffn1_all (3,3,mesh_maxNips,mesh_NcpElems)) ; CPFEM_ffn1_all = CPFEM_ffn_all
allocate(CPFEM_stress_all( 6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_stress_all = 0.0_pReal
allocate(CPFEM_jacobi_all(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jacobi_all = 0.0_pReal
!
! *** User defined results !!! MISSING incorporate consti_Nresults ***
allocate(CPFEM_results(CPFEM_Nresults+constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
CPFEM_results = 0.0_pReal
!
! *** Second Piola-Kirchoff stress tensor at (t=t0) and (t=t1) ***
allocate(CPFEM_sigma_old(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_sigma_old = 0.0_pReal
allocate(CPFEM_sigma_new(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_sigma_new = 0.0_pReal
!
! *** Plastic deformation gradient at (t=t0) and (t=t1) ***
allocate(CPFEM_Fp_old(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
forall (e=1:mesh_NcpElems,i=1:mesh_maxNips,g=1:constitutive_maxNgrains) &
CPFEM_Fp_old(:,:,g,i,e) = math_EulerToR(constitutive_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation
allocate(CPFEM_Fp_new(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; CPFEM_Fp_new = 0.0_pReal
!
! *** Old jacobian (consistent tangent) ***
allocate(CPFEM_jaco_old(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_jaco_old = 0.0_pReal
!
! *** dummy Jacobian and stress returned in odd cycles
CPFEM_dummy_jacobian=1.0e50_pReal*math_identity2nd(6)
CPFEM_dummy_stress = 1e5_pReal
!
! *** Output to MARC output file ***
write(6,*)
write(6,*) 'Arrays allocated:'
write(6,*) 'CPFEM_Temperature: ', shape(CPFEM_Temperature)
write(6,*) 'CPFEM_ffn_all: ', shape(CPFEM_ffn_all)
write(6,*) 'CPFEM_ffn1_all: ', shape(CPFEM_ffn1_all)
write(6,*) 'CPFEM_stress_all: ', shape(CPFEM_stress_all)
write(6,*) 'CPFEM_jacobi_all: ', shape(CPFEM_jacobi_all)
write(6,*) 'CPFEM_results: ', shape(CPFEM_results)
write(6,*) 'CPFEM_sigma_old: ', shape(CPFEM_sigma_old)
write(6,*) 'CPFEM_sigma_new: ', shape(CPFEM_sigma_new)
write(6,*) 'CPFEM_Fp_old: ', shape(CPFEM_Fp_old)
write(6,*) 'CPFEM_Fp_new: ', shape(CPFEM_Fp_new)
write(6,*) 'CPFEM_jaco_old: ', shape(CPFEM_jaco_old)
write(6,*)
call flush(6)
return
END SUBROUTINE
!
!
!***********************************************************************
!*** perform initialization at first call, update variables and ***
!*** call the actual material model ***
!***********************************************************************
SUBROUTINE CPFEM_general(ffn, ffn1, Temperature, CPFEM_inc, CPFEM_subinc, CPFEM_cn, CPFEM_stress_recovery, CPFEM_dt,&
CPFEM_en, CPFEM_in, CPFEM_stress, CPFEM_jaco, CPFEM_ngens)
!
use prec, only: pReal,pInt
use math, only: math_init, invnrmMandel
use mesh, only: mesh_init,mesh_FEasCP, mesh_NcpElems, FE_Nips, FE_mapElemtype, mesh_element
use crystal, only: crystal_Init
use constitutive, only: constitutive_init,constitutive_state_old,constitutive_state_new
implicit none
!
integer(pInt) CPFEM_inc, CPFEM_subinc, CPFEM_cn, CPFEM_en, CPFEM_in, cp_en, CPFEM_ngens, i, e
real(pReal) ffn(3,3), ffn1(3,3), Temperature, CPFEM_dt, CPFEM_stress(CPFEM_ngens), CPFEM_jaco(CPFEM_ngens,CPFEM_ngens)
logical CPFEM_stress_recovery
!
! calculate only every second cycle
if(mod(CPFEM_cn,2)==0) then
! really calculate only in first call of new cycle and when in stress recovery
if(CPFEM_cn/=CPFEM_cycle_old .and. (CPFEM_stress_recovery .or. CPFEM_cn==0)) then
! initialization step
if (CPFEM_first_call) then
! three dimensional stress state ?
call math_init()
call mesh_init()
call crystal_Init()
call constitutive_init()
call CPFEM_init()
CPFEM_Temperature = Temperature
CPFEM_first_call = .false.
endif
if (CPFEM_inc==CPFEM_inc_old) then ! not a new increment
! case of a new subincrement:update starting with subinc 2
if (CPFEM_subinc > CPFEM_subinc_old) then
CPFEM_sigma_old = CPFEM_sigma_new
CPFEM_Fp_old = CPFEM_Fp_new
constitutive_state_old = constitutive_state_new
CPFEM_subinc_old = CPFEM_subinc
endif
else ! new increment
CPFEM_sigma_old = CPFEM_sigma_new
CPFEM_Fp_old = CPFEM_Fp_new
constitutive_state_old = constitutive_state_new
CPFEM_inc_old = CPFEM_inc
CPFEM_subinc_old = 1_pInt
endif
CPFEM_cycle_old=CPFEM_cn
! this shall be done in a parallel loop in the future
do e=1,mesh_NcpElems
do i=1,FE_Nips(FE_mapElemtype(mesh_element(2,e)))
call CPFEM_stressIP(CPFEM_cn, CPFEM_dt, i, e)
enddo
enddo
end if
! return stress and jacobi
! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13
! Marc: 11, 22, 33, 12, 23, 13
cp_en = mesh_FEasCP('elem', CPFEM_en)
CPFEM_stress(1:CPFEM_ngens)=invnrmMandel(1:CPFEM_ngens)*CPFEM_stress_all(1:CPFEM_ngens, CPFEM_in, cp_en)
CPFEM_jaco(1:CPFEM_ngens,1:CPFEM_ngens)=CPFEM_jaco_old(1:CPFEM_ngens,1:CPFEM_ngens, CPFEM_in, cp_en)
forall(i=1:CPFEM_ngens) CPFEM_jaco(1:CPFEM_ngens,i)=CPFEM_jaco(1:CPFEM_ngens,i)*invnrmMandel(1:CPFEM_ngens)
else
! record data for use in second cycle and return fixed result
cp_en = mesh_FEasCP('elem',CPFEM_en)
CPFEM_Temperature(CPFEM_in, cp_en) = Temperature
CPFEM_ffn_all(:,:,CPFEM_in, cp_en) = ffn
CPFEM_ffn1_all(:,:,CPFEM_in, cp_en) = ffn1
CPFEM_stress(1:CPFEM_ngens) = CPFEM_dummy_stress
CPFEM_jaco(1:CPFEM_ngens,1:CPFEM_ngens)=CPFEM_dummy_jacobian(1:CPFEM_ngens,1:CPFEM_ngens)
end if
return
END SUBROUTINE
!**********************************************************
!*** calculate the material behaviour at IP level ***
!**********************************************************
SUBROUTINE CPFEM_stressIP(&
CPFEM_cn,& ! Cycle number
CPFEM_dt,& ! Time increment (dt)
CPFEM_in,& ! Integration point number
cp_en) ! Element number
use prec, only: pReal,pInt,ijaco,nCutback
use math, only: math_pDecomposition,math_RtoEuler, inDeg
use IO, only: IO_error
use mesh, only: mesh_element
use constitutive
!
implicit none
integer(pInt), parameter :: i_now = 1_pInt,i_then = 2_pInt
character(len=128) msg
integer(pInt) CPFEM_cn,cp_en,CPFEM_in,grain,i
logical updateJaco,error
real(pReal) CPFEM_dt,dt,t,volfrac
real(pReal), dimension(6) :: cs,Tstar_v
real(pReal), dimension(6,6) :: cd
real(pReal), dimension(3,3) :: Fe,U,R,deltaFg
real(pReal), dimension(3,3,2) :: Fg,Fp
real(pReal), dimension(constitutive_maxNstatevars,2) :: state
updateJaco = (mod(CPFEM_cn,2_pInt*ijaco)==0) ! update consistent tangent every ijaco'th iteration
CPFEM_stress_all(:,CPFEM_in,cp_en) = 0.0_pReal ! average Cauchy stress
if (updateJaco) CPFEM_jaco_old(:,:,CPFEM_in,cp_en) = 0.0_pReal ! average consistent tangent
! -------------- grain loop -----------------
do grain = 1,texture_Ngrains(mesh_element(4,cp_en))
! -------------------------------------------
i = 0_pInt ! cutback counter
state(:,i_now) = constitutive_state_old(:,grain,CPFEM_in,cp_en)
Fg(:,:,i_now) = CPFEM_ffn_all(:,:,CPFEM_in,cp_en)
Fp(:,:,i_now) = CPFEM_Fp_old(:,:,grain,CPFEM_in,cp_en)
deltaFg = CPFEM_ffn1_all(:,:,CPFEM_in,cp_en)-CPFEM_ffn_all(:,:,CPFEM_in,cp_en)
dt = CPFEM_dt
Tstar_v = CPFEM_sigma_old(:,grain,CPFEM_in,cp_en) ! use last result as initial guess
Fg(:,:,i_then) = Fg(:,:,i_now)
state(:,i_then) = 0.0_pReal ! state_old as initial guess
t = 0.0_pReal
! ------- crystallite integration -----------
do
! -------------------------------------------
if (t+dt < CPFEM_dt) then ! intermediate solution
t = t+dt ! next time inc
Fg(:,:,i_then) = Fg(:,:,i_then)+deltaFg ! corresponding Fg
else ! full step solution
t = CPFEM_dt ! final time
Fg(:,:,i_then) = CPFEM_ffn1_all(:,:,CPFEM_in,cp_en) ! final Fg
endif
call CPFEM_stressCrystallite(msg,cs,cd,Tstar_v,Fp(:,:,i_then),Fe,state(:,i_then),&
dt,cp_en,CPFEM_in,grain,updateJaco .and. t==CPFEM_dt,&
Fg(:,:,i_now),Fg(:,:,i_then),Fp(:,:,i_now),state(:,i_now))
if (msg == 'ok') then ! solution converged
if (t == CPFEM_dt) exit ! reached final "then"
else ! solution not found
i = i+1_pInt ! inc cutback counter
! write(6,*) 'ncut:', i
if (i > nCutback) then ! limit exceeded?
write(6,*) 'cutback limit --> '//msg
write(6,*) 'Grain: ',grain
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',mesh_element(1,cp_en)
call IO_error(600)
return ! byebye
else
t = t-dt ! rewind time
Fg(:,:,i_then) = Fg(:,:,i_then)-deltaFg ! rewind Fg
dt = 0.5_pReal*dt ! cut time-step in half
deltaFg = 0.5_pReal*deltaFg ! cut Fg-step in half
endif
endif
enddo ! crystallite integration (cutback loop)
! ---- update crystallite matrices at t = t1 ----
CPFEM_Fp_new(:,:,grain,CPFEM_in,cp_en) = Fp(:,:,i_then)
constitutive_state_new(:,grain,CPFEM_in,cp_en) = state(:,i_then)
CPFEM_sigma_new(:,grain,CPFEM_in,cp_en) = Tstar_v
! ---- contribute to IP result ----
volfrac = constitutive_matVolFrac(grain,CPFEM_in,cp_en)*constitutive_texVolFrac(grain,CPFEM_in,cp_en)
CPFEM_stress_all(:,CPFEM_in,cp_en) = CPFEM_stress_all(:,CPFEM_in,cp_en)+volfrac*cs ! average Cauchy stress
if (updateJaco) CPFEM_jaco_old(:,:,CPFEM_in,cp_en) = CPFEM_jaco_old(:,:,CPFEM_in,cp_en)+volfrac*cd ! average consistent tangent
! ---- update results plotted in MENTAT ----
call math_pDecomposition(Fe,U,R,error) ! polar decomposition
if (error) then
write(6,*) 'polar decomposition'
write(6,*) 'Grain: ',grain
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',mesh_element(1,cp_en)
call IO_error(600)
return
endif
CPFEM_results(1:3,grain,CPFEM_in,cp_en) = math_RtoEuler(transpose(R))*inDeg ! orientation
CPFEM_results(4 ,grain,CPFEM_in,cp_en) = volfrac ! volume fraction of orientation
CPFEM_results(5:4+constitutive_Nresults(grain,CPFEM_in,cp_en),grain,CPFEM_in,cp_en) = &
constitutive_post_results(Tstar_v,state(:,i_then),CPFEM_dt,CPFEM_Temperature(CPFEM_in,cp_en),grain,CPFEM_in,cp_en)
enddo ! grain loop
return
END SUBROUTINE
!********************************************************************
! Calculates the stress for a single component
! it is based on the paper by Kalidindi et al.:
! J. Mech. Phys, Solids Vol. 40, No. 3, pp. 537-569, 1992
! it is modified to use anisotropic elasticity matrix
!********************************************************************
subroutine CPFEM_stressCrystallite(&
msg,& ! return message
cs,& ! Cauchy stress vector
dcs_de,& ! consistent tangent
Tstar_v,& ! second Piola-Kirchoff stress tensor
Fp_new,& ! new plastic deformation gradient
Fe_new,& ! new "elastic" deformation gradient
state_new,& ! new state variable array
!
dt,& ! time increment
cp_en,& ! element number
CPFEM_in,& ! integration point number
grain,& ! grain number
updateJaco,& ! boolean to calculate Jacobi matrix
Fg_old,& ! old global deformation gradient
Fg_new,& ! new global deformation gradient
Fp_old,& ! old plastic deformation gradient
state_old) ! old state variable array
use prec, only: pReal,pInt,pert_e
use constitutive, only: constitutive_Nstatevars
use math, only: math_Mandel6to33,mapMandel
implicit none
character(len=*) msg
logical updateJaco
integer(pInt) cp_en,CPFEM_in,grain,i
real(pReal) dt
real(pReal), dimension(3,3) :: Fg_old,Fg_new,Fg_pert,Fp_old,Fp_new,Fp_pert,Fe_new,Fe_pert,E_pert
real(pReal), dimension(6) :: cs,Tstar_v,Tstar_v_pert
real(pReal), dimension(6,6) :: dcs_de
real(pReal), dimension(constitutive_Nstatevars(grain,CPFEM_in,cp_en)) :: state_old,state_new,state_pert
call CPFEM_timeIntegration(msg,Fp_new,Fe_new,Tstar_v,state_new, & ! def gradients and PK2 at end of time step
dt,cp_en,CPFEM_in,grain,Fg_new,Fp_old,state_old)
if (msg /= 'ok') return
cs = CPFEM_CauchyStress(Tstar_v,Fe_new) ! Cauchy stress
if (updateJaco) then ! consistent tangent using numerical perturbation of Fg
do i = 1,6 ! Fg component
E_pert = 0.0_pReal
E_pert(mapMandel(1,i),mapMandel(2,i)) = E_pert(mapMandel(1,i),mapMandel(2,i)) + pert_e/2.0_pReal
E_pert(mapMandel(2,i),mapMandel(1,i)) = E_pert(mapMandel(2,i),mapMandel(1,i)) + pert_e/2.0_pReal
Fg_pert = Fg_new+matmul(E_pert,Fg_old) ! perturbated Fg
Tstar_v_pert = Tstar_v ! initial guess from end of time step
state_pert = state_new ! initial guess from end of time step
call CPFEM_timeIntegration(msg,Fp_pert,Fe_pert,Tstar_v_pert,state_pert, &
dt,cp_en,CPFEM_in,grain,Fg_pert,Fp_old,state_old)
if (msg /= 'ok') then
msg = 'consistent tangent --> '//msg
return
endif
! Remark: (perturbated) Cauchy stress is Mandel hence dcs_de(:,4:6) is too large by sqrt(2)
dcs_de(:,i) = (CPFEM_CauchyStress(Tstar_v_pert,Fe_pert)-cs)/pert_e
enddo
endif
return
END SUBROUTINE
!***********************************************************************
!*** fully-implicit two-level time integration ***
!***********************************************************************
SUBROUTINE CPFEM_timeIntegration(&
msg,& ! return message
Fp_new,& ! new plastic deformation gradient
Fe_new,& ! new "elastic" deformation gradient
Tstar_v,& ! 2nd PK stress (taken as initial guess if /= 0)
state_new,& ! current microstructure at end of time inc (taken as guess if /= 0)
!
dt,& ! time increment
cp_en,& ! element number
CPFEM_in,& ! integration point number
grain,& ! grain number
Fg_new,& ! new total def gradient
Fp_old,& ! former plastic def gradient
state_old) ! former microstructure
use prec
use constitutive, only: constitutive_Nstatevars,&
constitutive_homogenizedC,constitutive_dotState,constitutive_LpAndItsTangent,&
constitutive_Microstructure
use math
implicit none
character(len=*) msg
integer(pInt) cp_en, CPFEM_in, grain
integer(pInt) iState,iStress,dummy, i,j,k,l,m
real(pReal) dt,det, p_hydro
real(pReal), dimension(6) :: Tstar_v,dTstar_v,Rstress, T_elastic, Rstress_old
real(pReal), dimension(6,6) :: C_66,Jacobi,invJacobi
real(pReal), dimension(3,3) :: Fg_new,Fp_old,Fp_new,Fe_new,invFp_old,invFp_new,Lp,A,B,AB
real(pReal), dimension(3,3,3,3) :: dLp, LTL
real(pReal), dimension(constitutive_Nstatevars(grain, CPFEM_in, cp_en)) :: state_old,state_new,dstate,Rstate,RstateS
logical failed
msg = 'ok' ! error-free so far
call math_invert3x3(Fp_old,invFp_old,det,failed) ! inversion of Fp
if (failed) then
msg = 'inversion Fp_old'
return
endif
C_66 = constitutive_HomogenizedC(grain, CPFEM_in, cp_en)
A = matmul(Fg_new,invFp_old) ! actually Fe
A = matmul(transpose(A), A)
! former state guessed, if none specified
if (all(state_new == 0.0_pReal)) state_new = state_old
RstateS = state_new
iState = 0_pInt
Rstress = Tstar_v
Rstress_old=Rstress
state: do ! outer iteration: state
iState = iState+1
if (iState > nState) then
msg = 'limit state iteration'
return
endif
call constitutive_Microstructure(state_new,CPFEM_Temperature(CPFEM_in,cp_en),grain,CPFEM_in,cp_en)
iStress = 0_pInt
stress: do ! inner iteration: stress
iStress = iStress+1
if (iStress > nStress) then ! too many loops required
msg = 'limit stress iteration'
return
endif
p_hydro=(Tstar_v(1)+Tstar_v(2)+Tstar_v(3))/3.0_pReal
forall(i=1:3) Tstar_v(i)=Tstar_v(i)-p_hydro
call constitutive_LpAndItsTangent(Lp,dLp,Tstar_v,state_new,CPFEM_Temperature(CPFEM_in,cp_en),grain,CPFEM_in,cp_en)
B = math_I3-dt*Lp
! B = B / math_det3x3(B)**(1.0_pReal/3.0_pReal)
AB = matmul(A,B)
T_elastic= 0.5_pReal*matmul(C_66,math_Mandel33to6(matmul(transpose(B),AB)-math_I3))
p_hydro=(T_elastic(1)+T_elastic(2)+T_elastic(3))/3.0_pReal
forall(i=1:3) T_elastic(i)=T_elastic(i)-p_hydro
Rstress = Tstar_v - T_elastic
! step size control: if residuum does not improve redo iteration with reduced step size
if(maxval(abs(Rstress)) > maxval(abs(Rstress_old)) .and. &
maxval(abs(Rstress)) > abstol_ResStress .and. iStress > 1) then
Tstar_v=Tstar_v+0.5*dTstar_v
dTstar_v=0.5*dTstar_v
cycle
endif
if (iStress > 1 .and. &
(maxval(abs(Tstar_v)) < abstol_Stress .or. maxval(abs(Rstress/maxval(abs(Tstar_v)))) < reltol_Stress)) exit stress
! update stress guess using inverse of dRes/dTstar (Newton--Raphson)
LTL = 0.0_pReal
do i=1,3
do j=1,3
do k=1,3
do l=1,3
do m=1,3
LTL(i,j,k,l) = LTL(i,j,k,l) + dLp(j,i,m,k)*AB(m,l) + AB(m,i)*dLp(m,j,k,l)
enddo
enddo
enddo
enddo
enddo
Jacobi = math_identity2nd(6) + 0.5_pReal*dt*matmul(C_66,math_Mandel3333to66(LTL))
j = 0_pInt
call math_invert6x6(Jacobi,invJacobi,dummy,failed)
do while (failed .and. j <= nReg)
forall (i=1:6) Jacobi(i,i) = 1.05_pReal*maxval(Jacobi(i,:)) ! regularization
call math_invert6x6(Jacobi,invJacobi,dummy,failed)
j = j+1
enddo
if (failed) then
msg = 'regularization Jacobi'
return
endif
dTstar_v = matmul(invJacobi,Rstress) ! correction to Tstar
Rstress_old=Rstress
Tstar_v = Tstar_v-dTstar_v
! write(999,*) Tstar_v, dTstar_v, Rstress
enddo stress
! write(6,*) 'istress', istress
Tstar_v = 0.5_pReal*matmul(C_66,math_Mandel33to6(matmul(transpose(B),AB)-math_I3))
dstate = dt*constitutive_dotState(Tstar_v,state_new,CPFEM_Temperature(CPFEM_in,cp_en),grain,CPFEM_in,cp_en) ! evolution of microstructure
Rstate = state_new - (state_old+dstate)
RstateS = 0.0_pReal
forall (i=1:constitutive_Nstatevars(grain,CPFEM_in,cp_en), state_new(i)/=0.0_pReal) &
RstateS(i) = Rstate(i)/state_new(i)
state_new = state_old+dstate
if (maxval(abs(RstateS)) < reltol_State) exit state
enddo state
! write(6,*) 'istate', istate
! write(999,*) 'Tstar_v raus', Tstar_v
! write(999,*)
invFp_new = matmul(invFp_old,B)
call math_invert3x3(invFp_new,Fp_new,det,failed)
if (failed) then
msg = 'inversion Fp_new'
return
endif
Fp_new = Fp_new*det**(1.0_pReal/3.0_pReal) ! det = det(InvFp_new) !!
Fe_new = matmul(Fg_new,invFp_new)
return
END SUBROUTINE
FUNCTION CPFEM_CauchyStress(PK_v,Fe)
!***********************************************************************
!*** Cauchy stress calculation ***
!***********************************************************************
use prec, only: pReal,pInt
use math, only: math_Mandel33to6,math_Mandel6to33,math_det3x3
implicit none
! *** Subroutine parameters ***
real(pReal) PK_v(6), Fe(3,3), CPFEM_CauchyStress(6)
CPFEM_CauchyStress = math_Mandel33to6(matmul(matmul(Fe,math_Mandel6to33(PK_v)),transpose(Fe))/math_det3x3(Fe))
return
END FUNCTION
END MODULE