1107 lines
60 KiB
Fortran
1107 lines
60 KiB
Fortran
! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
|
||
!
|
||
! This file is part of DAMASK,
|
||
! the Düsseldorf Advanced MAterial Simulation Kit.
|
||
!
|
||
! DAMASK is free software: you can redistribute it and/or modify
|
||
! it under the terms of the GNU General Public License as published by
|
||
! the Free Software Foundation, either version 3 of the License, or
|
||
! (at your option) any later version.
|
||
!
|
||
! DAMASK is distributed in the hope that it will be useful,
|
||
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
! GNU General Public License for more details.
|
||
!
|
||
! You should have received a copy of the GNU General Public License
|
||
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
||
!
|
||
!--------------------------------------------------------------------------------------------------
|
||
! $Id$
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @brief defines lattice structure definitions, slip and twin system definitions, Schimd matrix
|
||
!> calculation and non-Schmid behavior
|
||
!--------------------------------------------------------------------------------------------------
|
||
module lattice
|
||
use prec, only: &
|
||
pReal, &
|
||
pInt
|
||
|
||
implicit none
|
||
private
|
||
integer(pInt), parameter, public :: &
|
||
lattice_maxNslipFamily = 6_pInt, & !< max # of slip system families over lattice structures
|
||
lattice_maxNtwinFamily = 4_pInt, & !< max # of twin system families over lattice structures
|
||
lattice_maxNslip = 33_pInt, & !< max # of slip systems over lattice structures
|
||
lattice_maxNtwin = 24_pInt, & !< max # of twin systems over lattice structures
|
||
lattice_maxNinteraction = 42_pInt, & !< max # of interaction types (in hardening matrix part)
|
||
lattice_maxNnonSchmid = 6_pInt !< max # of non schmid contributions over lattice structures
|
||
|
||
integer(pInt), allocatable, dimension(:,:), protected, public :: &
|
||
lattice_NslipSystem, & !< total # of slip systems in each family
|
||
lattice_NtwinSystem !< total # of twin systems in each family
|
||
|
||
integer(pInt), allocatable, dimension(:,:,:), protected, public :: &
|
||
lattice_interactionSlipSlip, & !< Slip--slip interaction type
|
||
lattice_interactionSlipTwin, & !< Slip--twin interaction type
|
||
lattice_interactionTwinSlip, & !< Twin--slip interaction type
|
||
lattice_interactionTwinTwin !< Twin--twin interaction type
|
||
|
||
|
||
real(pReal), allocatable, dimension(:,:,:,:,:), protected, public :: &
|
||
lattice_Sslip !< Schmid and non-Schmid matrices
|
||
|
||
real(pReal), allocatable, dimension(:,:,:,:), protected, public :: &
|
||
lattice_Sslip_v !< Mandel notation of lattice_Sslip
|
||
|
||
real(pReal), allocatable, dimension(:,:,:), protected, public :: &
|
||
lattice_sn, & !< normal direction of slip system
|
||
lattice_sd, & !< slip direction of slip system
|
||
lattice_st !< sd x sn
|
||
|
||
! rotation and Schmid matrices, normal, shear direction and d x n of twin systems
|
||
real(pReal), allocatable, dimension(:,:,:,:), protected, public :: &
|
||
lattice_Stwin, &
|
||
lattice_Qtwin
|
||
|
||
real(pReal), allocatable, dimension(:,:,:), protected, public :: &
|
||
lattice_Stwin_v, &
|
||
lattice_tn, &
|
||
lattice_td, &
|
||
lattice_tt
|
||
|
||
real(pReal), allocatable, dimension(:,:), protected, public :: &
|
||
lattice_shearTwin !< characteristic twin shear
|
||
|
||
integer(pInt), private :: &
|
||
lattice_Nhexagonal, & !< total # of hexagonal lattice structure (from tag CoverA_ratio)
|
||
lattice_Nstructure !< total # of lattice structures (1: fcc,2: bcc,3+: hexagonal)
|
||
|
||
integer(pInt), dimension(:,:), pointer, private :: &
|
||
interactionSlipSlip, &
|
||
interactionSlipTwin, &
|
||
interactionTwinSlip, &
|
||
interactionTwinTwin
|
||
|
||
integer(pInt), allocatable, dimension(:), protected, public :: &
|
||
lattice_NnonSchmid !< total # of non-Schmid contributions for each structure
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! fcc (1)
|
||
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
|
||
lattice_fcc_NslipSystem = int([12, 0, 0, 0, 0, 0],pInt) !< total # of slip systems per family for fcc
|
||
|
||
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
|
||
lattice_fcc_NtwinSystem = int([12, 0, 0, 0],pInt) !< total # of twin systems per family for fcc
|
||
|
||
integer(pInt), parameter, private :: &
|
||
lattice_fcc_Nslip = 12_pInt, & ! sum(lattice_fcc_NslipSystem), & !< total # of slip systems for fcc
|
||
lattice_fcc_Ntwin = 12_pInt, & ! sum(lattice_fcc_NtwinSystem) !< total # of twin systems for fcc
|
||
lattice_fcc_NnonSchmid = 0_pInt !< total # of non-Schmid contributions for fcc
|
||
|
||
integer(pInt), private :: &
|
||
lattice_fcc_Nstructure = 0_pInt
|
||
|
||
real(pReal), dimension(3+3,lattice_fcc_Nslip), parameter, private :: &
|
||
lattice_fcc_systemSlip = reshape(real([&
|
||
0, 1,-1, 1, 1, 1, &
|
||
-1, 0, 1, 1, 1, 1, &
|
||
1,-1, 0, 1, 1, 1, &
|
||
0,-1,-1, -1,-1, 1, &
|
||
1, 0, 1, -1,-1, 1, &
|
||
-1, 1, 0, -1,-1, 1, &
|
||
0,-1, 1, 1,-1,-1, &
|
||
-1, 0,-1, 1,-1,-1, &
|
||
1, 1, 0, 1,-1,-1, &
|
||
0, 1, 1, -1, 1,-1, &
|
||
1, 0,-1, -1, 1,-1, &
|
||
-1,-1, 0, -1, 1,-1 &
|
||
],pReal),[ 3_pInt + 3_pInt,lattice_fcc_Nslip]) !< Slip system <110>{111} directions. Sorted according to Eisenlohr & Hantcherli
|
||
|
||
real(pReal), dimension(3+3,lattice_fcc_Ntwin), parameter, private :: &
|
||
lattice_fcc_systemTwin = reshape(real( [&
|
||
-2, 1, 1, 1, 1, 1, &
|
||
1,-2, 1, 1, 1, 1, &
|
||
1, 1,-2, 1, 1, 1, &
|
||
2,-1, 1, -1,-1, 1, &
|
||
-1, 2, 1, -1,-1, 1, &
|
||
-1,-1,-2, -1,-1, 1, &
|
||
-2,-1,-1, 1,-1,-1, &
|
||
1, 2,-1, 1,-1,-1, &
|
||
1,-1, 2, 1,-1,-1, &
|
||
2, 1,-1, -1, 1,-1, &
|
||
-1,-2,-1, -1, 1,-1, &
|
||
-1, 1, 2, -1, 1,-1 &
|
||
],pReal),[ 3_pInt + 3_pInt ,lattice_fcc_Ntwin]) !< Twin system <112>{111} directions. Sorted according to Eisenlohr & Hantcherli
|
||
|
||
real(pReal), dimension(lattice_fcc_Ntwin), parameter, private :: &
|
||
lattice_fcc_shearTwin = reshape([&
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal &
|
||
],[lattice_fcc_Ntwin]) !< Twin system <112>{111} ??? Sorted according to Eisenlohr & Hantcherli
|
||
|
||
integer(pInt), dimension(2_pInt,lattice_fcc_Ntwin), parameter, public :: &
|
||
lattice_fcc_corellationTwinSlip = reshape(int( [&
|
||
2,3, &
|
||
1,3, &
|
||
1,2, &
|
||
5,6, &
|
||
4,6, &
|
||
4,5, &
|
||
8,9, &
|
||
7,9, &
|
||
7,8, &
|
||
11,12, &
|
||
10,12, &
|
||
10,11 &
|
||
],pInt),[2_pInt,lattice_fcc_Ntwin])
|
||
|
||
integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Nslip), target, public :: &
|
||
lattice_fcc_interactionSlipSlip = reshape(int( [&
|
||
1,2,2,4,6,5,3,5,5,4,5,6, & ! ---> slip
|
||
2,1,2,6,4,5,5,4,6,5,3,5, & ! |
|
||
2,2,1,5,5,3,5,6,4,6,5,4, & ! |
|
||
4,6,5,1,2,2,4,5,6,3,5,5, & ! v slip
|
||
6,4,5,2,1,2,5,3,5,5,4,6, &
|
||
5,5,3,2,2,1,6,5,4,5,6,4, &
|
||
3,5,5,4,5,6,1,2,2,4,6,5, &
|
||
5,4,6,5,3,5,2,1,2,6,4,5, &
|
||
5,6,4,6,5,4,2,2,1,5,5,3, &
|
||
4,5,6,3,5,5,4,6,5,1,2,2, &
|
||
5,3,5,5,4,6,6,4,5,2,1,2, &
|
||
6,5,4,5,6,4,5,5,3,2,2,1 &
|
||
],pInt),[lattice_fcc_Nslip,lattice_fcc_Nslip],order=[2,1]) !< Slip--slip interaction types for fcc
|
||
!< 1: self interaction
|
||
!< 2: coplanar interaction
|
||
!< 3: collinear interaction
|
||
!< 4: Hirth locks
|
||
!< 5: glissile junctions
|
||
!< 6: Lomer locks
|
||
integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Ntwin), target, public :: &
|
||
lattice_fcc_interactionSlipTwin = reshape(int( [&
|
||
1,1,1,3,3,3,2,2,2,3,3,3, & ! ---> twin
|
||
1,1,1,3,3,3,3,3,3,2,2,2, & ! |
|
||
1,1,1,2,2,2,3,3,3,3,3,3, & ! |
|
||
3,3,3,1,1,1,3,3,3,2,2,2, & ! v slip
|
||
3,3,3,1,1,1,2,2,2,3,3,3, &
|
||
2,2,2,1,1,1,3,3,3,3,3,3, &
|
||
2,2,2,3,3,3,1,1,1,3,3,3, &
|
||
3,3,3,2,2,2,1,1,1,3,3,3, &
|
||
3,3,3,3,3,3,1,1,1,2,2,2, &
|
||
3,3,3,2,2,2,3,3,3,1,1,1, &
|
||
2,2,2,3,3,3,3,3,3,1,1,1, &
|
||
3,3,3,3,3,3,2,2,2,1,1,1 &
|
||
],pInt),[lattice_fcc_Nslip,lattice_fcc_Ntwin],order=[2,1]) !< Slip--twin interaction types for fcc
|
||
!< 1: coplanar interaction
|
||
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
|
||
!< 3: other interaction
|
||
integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Nslip), target, public :: &
|
||
lattice_fcc_interactionTwinSlip = 0_pInt !< Twin--Slip interaction types for fcc
|
||
|
||
integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Ntwin), target, public :: &
|
||
lattice_fcc_interactionTwinTwin = reshape(int( [&
|
||
1,1,1,2,2,2,2,2,2,2,2,2, & ! ---> twin
|
||
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
|
||
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
|
||
2,2,2,1,1,1,2,2,2,2,2,2, & ! v twin
|
||
2,2,2,1,1,1,2,2,2,2,2,2, &
|
||
2,2,2,1,1,1,2,2,2,2,2,2, &
|
||
2,2,2,2,2,2,1,1,1,2,2,2, &
|
||
2,2,2,2,2,2,1,1,1,2,2,2, &
|
||
2,2,2,2,2,2,1,1,1,2,2,2, &
|
||
2,2,2,2,2,2,2,2,2,1,1,1, &
|
||
2,2,2,2,2,2,2,2,2,1,1,1, &
|
||
2,2,2,2,2,2,2,2,2,1,1,1 &
|
||
],pInt),[lattice_fcc_Ntwin,lattice_fcc_Ntwin],order=[2,1]) !< Twin--twin interaction types for fcc
|
||
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! bcc (2)
|
||
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
|
||
lattice_bcc_NslipSystem = int([ 12, 12, 0, 0, 0, 0], pInt) !< total # of slip systems per family for bcc
|
||
|
||
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
|
||
lattice_bcc_NtwinSystem = int([ 12, 0, 0, 0], pInt) !< total # of twin systems per family for bcc
|
||
|
||
integer(pInt), parameter, private :: &
|
||
lattice_bcc_Nslip = 24_pInt, & ! sum(lattice_bcc_NslipSystem), & !< total # of slip systems for bcc
|
||
lattice_bcc_Ntwin = 12_pInt, & ! sum(lattice_bcc_NtwinSystem) !< total # of twin systems for bcc
|
||
lattice_bcc_NnonSchmid = 6_pInt !< # of non-Schmid contributions for bcc. 6 known non schmid contributions for BCC (A. Koester, A. Ma, A. Hartmaier 2012)
|
||
|
||
integer(pInt), private :: &
|
||
lattice_bcc_Nstructure = 0_pInt
|
||
|
||
real(pReal), dimension(3+3,lattice_bcc_Nslip), parameter, private :: &
|
||
lattice_bcc_systemSlip = reshape(real([&
|
||
! Slip system <111>{110}
|
||
1,-1, 1, 0, 1, 1, &
|
||
-1,-1, 1, 0, 1, 1, &
|
||
1, 1, 1, 0,-1, 1, &
|
||
-1, 1, 1, 0,-1, 1, &
|
||
-1, 1, 1, 1, 0, 1, &
|
||
-1,-1, 1, 1, 0, 1, &
|
||
1, 1, 1, -1, 0, 1, &
|
||
1,-1, 1, -1, 0, 1, &
|
||
-1, 1, 1, 1, 1, 0, &
|
||
-1, 1,-1, 1, 1, 0, &
|
||
1, 1, 1, -1, 1, 0, &
|
||
1, 1,-1, -1, 1, 0, &
|
||
! Slip system <111>{112}
|
||
-1, 1, 1, 2, 1, 1, &
|
||
1, 1, 1, -2, 1, 1, &
|
||
1, 1,-1, 2,-1, 1, &
|
||
1,-1, 1, 2, 1,-1, &
|
||
1,-1, 1, 1, 2, 1, &
|
||
1, 1,-1, -1, 2, 1, &
|
||
1, 1, 1, 1,-2, 1, &
|
||
-1, 1, 1, 1, 2,-1, &
|
||
1, 1,-1, 1, 1, 2, &
|
||
1,-1, 1, -1, 1, 2, &
|
||
-1, 1, 1, 1,-1, 2, &
|
||
1, 1, 1, 1, 1,-2 &
|
||
! Slip system <111>{123}
|
||
! 1, 1,-1, 1, 2, 3, &
|
||
! 1,-1, 1, -1, 2, 3, &
|
||
! -1, 1, 1, 1,-2, 3, &
|
||
! 1, 1, 1, 1, 2,-3, &
|
||
! 1,-1, 1, 1, 3, 2, &
|
||
! 1, 1,-1, -1, 3, 2, &
|
||
! 1, 1, 1, 1,-3, 2, &
|
||
! -1, 1, 1, 1, 3,-2, &
|
||
! 1, 1,-1, 2, 1, 3, &
|
||
! 1,-1, 1, -2, 1, 3, &
|
||
! -1, 1, 1, 2,-1, 3, &
|
||
! 1, 1, 1, 2, 1,-3, &
|
||
! 1,-1, 1, 2, 3, 1, &
|
||
! 1, 1,-1, -2, 3, 1, &
|
||
! 1, 1, 1, 2,-3, 1, &
|
||
! -1, 1, 1, 2, 3,-1, &
|
||
! -1, 1, 1, 3, 1, 2, &
|
||
! 1, 1, 1, -3, 1, 2, &
|
||
! 1, 1,-1, 3,-1, 2, &
|
||
! 1,-1, 1, 3, 1,-2, &
|
||
! -1, 1, 1, 3, 2, 1, &
|
||
! 1, 1, 1, -3, 2, 1, &
|
||
! 1, 1,-1, 3,-2, 1, &
|
||
! 1,-1, 1, 3, 2,-1 &
|
||
],pReal),[ 3_pInt + 3_pInt ,lattice_bcc_Nslip])
|
||
|
||
real(pReal), dimension(3+3,lattice_bcc_Ntwin), parameter, private :: &
|
||
lattice_bcc_systemTwin = reshape(real([&
|
||
! Twin system <111>{112}
|
||
-1, 1, 1, 2, 1, 1, &
|
||
1, 1, 1, -2, 1, 1, &
|
||
1, 1,-1, 2,-1, 1, &
|
||
1,-1, 1, 2, 1,-1, &
|
||
1,-1, 1, 1, 2, 1, &
|
||
1, 1,-1, -1, 2, 1, &
|
||
1, 1, 1, 1,-2, 1, &
|
||
-1, 1, 1, 1, 2,-1, &
|
||
1, 1,-1, 1, 1, 2, &
|
||
1,-1, 1, -1, 1, 2, &
|
||
-1, 1, 1, 1,-1, 2, &
|
||
1, 1, 1, 1, 1,-2 &
|
||
],pReal),[ 3_pInt + 3_pInt,lattice_bcc_Ntwin])
|
||
|
||
real(pReal), dimension(lattice_bcc_Ntwin), parameter, private :: &
|
||
lattice_bcc_shearTwin = reshape([&
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal, &
|
||
0.7071067812_pReal &
|
||
],[lattice_bcc_Ntwin])
|
||
|
||
integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Nslip), target, public :: &
|
||
lattice_bcc_interactionSlipSlip = reshape(int( [&
|
||
1,2,6,6,5,4,4,3,4,3,5,4, 6,6,4,3,3,4,6,6,4,3,6,6, & ! ---> slip
|
||
2,1,6,6,4,3,5,4,5,4,4,3, 6,6,3,4,4,3,6,6,3,4,6,6, & ! |
|
||
6,6,1,2,4,5,3,4,4,5,3,4, 4,3,6,6,6,6,3,4,6,6,4,3, & ! |
|
||
6,6,2,1,3,4,4,5,3,4,4,5, 3,4,6,6,6,6,4,3,6,6,3,4, & ! v slip
|
||
5,4,4,3,1,2,6,6,3,4,5,4, 3,6,4,6,6,4,6,3,4,6,3,6, &
|
||
4,3,5,4,2,1,6,6,4,5,4,3, 4,6,3,6,6,3,6,4,3,6,4,6, &
|
||
4,5,3,4,6,6,1,2,5,4,3,4, 6,3,6,4,4,6,3,6,6,4,6,3, &
|
||
3,4,4,5,6,6,2,1,4,3,4,5, 6,4,6,3,3,6,4,6,6,3,6,4, &
|
||
4,5,4,3,3,4,5,4,1,2,6,6, 3,6,6,4,4,6,6,3,6,4,3,6, &
|
||
3,4,5,4,4,5,4,3,2,1,6,6, 4,6,6,3,3,6,6,4,6,3,4,6, &
|
||
5,4,3,4,5,4,3,4,6,6,1,2, 6,3,4,6,6,4,3,6,4,6,6,3, &
|
||
4,3,4,5,4,3,4,5,6,6,2,1, 6,4,3,6,6,3,4,6,3,6,6,4, &
|
||
!
|
||
6,6,4,3,3,4,6,6,3,4,6,6, 1,5,6,6,5,6,6,3,5,6,3,6, &
|
||
6,6,3,4,6,6,3,4,6,6,3,4, 5,1,6,6,6,5,3,6,6,5,6,3, &
|
||
4,3,6,6,4,3,6,6,6,6,4,3, 6,6,1,5,6,3,5,6,3,6,5,6, &
|
||
3,4,6,6,6,6,4,3,4,3,6,6, 6,6,5,1,3,6,6,5,6,3,6,5, &
|
||
3,4,6,6,6,6,4,3,4,3,6,6, 5,6,6,3,1,6,5,6,5,3,6,6, &
|
||
4,3,6,6,4,3,6,6,6,6,4,3, 6,5,3,6,6,1,6,5,3,5,6,6, &
|
||
6,6,3,4,6,6,3,4,6,6,3,4, 6,3,5,6,5,6,1,6,6,6,5,3, &
|
||
6,6,4,3,3,4,6,6,3,4,6,6, 3,6,6,5,6,5,6,1,6,6,3,5, &
|
||
4,3,6,6,4,3,6,6,6,6,4,3, 5,6,3,6,5,3,6,6,1,6,6,5, &
|
||
3,4,6,6,6,6,4,3,4,3,6,6, 6,5,6,3,3,5,6,6,6,1,5,6, &
|
||
6,6,4,3,3,4,6,6,3,4,6,6, 3,6,5,6,6,6,5,3,6,5,1,6, &
|
||
6,6,3,4,6,6,3,4,6,6,3,4, 6,3,6,5,6,6,3,5,5,6,6,1 &
|
||
],pInt),[lattice_bcc_Nslip,lattice_bcc_Nslip],order=[2,1]) !< Slip--slip interaction types for bcc from Queyreau et al. Int J Plast 25 (2009) 361–377
|
||
!< 1: self interaction
|
||
!< 2: coplanar interaction
|
||
!< 3: collinear interaction
|
||
!< 4: mixed-asymmetrical junction
|
||
!< 5: mixed-symmetrical junction
|
||
!< 6: edge junction
|
||
integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Ntwin), target, public :: &
|
||
lattice_bcc_interactionSlipTwin = reshape(int( [&
|
||
3,3,3,2,2,3,3,3,3,2,3,3, & ! ---> twin
|
||
3,3,2,3,3,2,3,3,2,3,3,3, & ! |
|
||
3,2,3,3,3,3,2,3,3,3,3,2, & ! |
|
||
2,3,3,3,3,3,3,2,3,3,2,3, & ! v slip
|
||
2,3,3,3,3,3,3,2,3,3,2,3, &
|
||
3,3,2,3,3,2,3,3,2,3,3,3, &
|
||
3,2,3,3,3,3,2,3,3,3,3,2, &
|
||
3,3,3,2,2,3,3,3,3,2,3,3, &
|
||
2,3,3,3,3,3,3,2,3,3,2,3, &
|
||
3,3,3,2,2,3,3,3,3,2,3,3, &
|
||
3,2,3,3,3,3,2,3,3,3,3,2, &
|
||
3,3,2,3,3,2,3,3,2,3,3,3, &
|
||
!
|
||
1,3,3,3,3,3,3,2,3,3,2,3, &
|
||
3,1,3,3,3,3,2,3,3,3,3,2, &
|
||
3,3,1,3,3,2,3,3,2,3,3,3, &
|
||
3,3,3,1,2,3,3,3,3,2,3,3, &
|
||
3,3,3,2,1,3,3,3,3,2,3,3, &
|
||
3,3,2,3,3,1,3,3,2,3,3,3, &
|
||
3,2,3,3,3,3,1,3,3,3,3,2, &
|
||
2,3,3,3,3,3,3,1,3,3,2,3, &
|
||
3,3,2,3,3,2,3,3,1,3,3,3, &
|
||
3,3,3,2,2,3,3,3,3,1,3,3, &
|
||
2,3,3,3,3,3,3,2,3,3,1,3, &
|
||
3,2,3,3,3,3,2,3,3,3,3,1 &
|
||
],pInt),[lattice_bcc_Nslip,lattice_bcc_Ntwin],order=[2,1]) !< Slip--twin interaction types for bcc
|
||
!< 1: coplanar interaction
|
||
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
|
||
!< 3: other interaction
|
||
integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Nslip), target, public :: &
|
||
lattice_bcc_interactionTwinSlip = 0_pInt !< Twin--slip interaction types for bcc @todo not implemented yet
|
||
|
||
integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Ntwin), target, public :: &
|
||
lattice_bcc_interactionTwinTwin = reshape(int( [&
|
||
1,3,3,3,3,3,3,2,3,3,2,3, & ! ---> twin
|
||
3,1,3,3,3,3,2,3,3,3,3,2, & ! |
|
||
3,3,1,3,3,2,3,3,2,3,3,3, & ! |
|
||
3,3,3,1,2,3,3,3,3,2,3,3, & ! v twin
|
||
3,3,3,2,1,3,3,3,3,2,3,3, &
|
||
3,3,2,3,3,1,3,3,2,3,3,3, &
|
||
3,2,3,3,3,3,1,3,3,3,3,2, &
|
||
2,3,3,3,3,3,3,1,3,3,2,3, &
|
||
3,3,2,3,3,2,3,3,1,3,3,3, &
|
||
3,3,3,2,2,3,3,3,3,1,3,3, &
|
||
2,3,3,3,3,3,3,2,3,3,1,3, &
|
||
3,2,3,3,3,3,2,3,3,3,3,1 &
|
||
],pInt),[lattice_bcc_Ntwin,lattice_bcc_Ntwin],order=[2,1]) !< Twin--twin interaction types for bcc
|
||
!< 1: self interaction
|
||
!< 2: collinear interaction
|
||
!< 3: other interaction
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! hex (3+)
|
||
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
|
||
lattice_hex_NslipSystem = int([ 3, 3, 6, 12, 6, 3],pInt) !< # of slip systems per family for hex
|
||
|
||
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
|
||
lattice_hex_NtwinSystem = int([ 6, 6, 6, 6],pInt) !< # of slip systems per family for hex
|
||
|
||
integer(pInt), parameter , private :: &
|
||
lattice_hex_Nslip = 33_pInt, & ! sum(lattice_hex_NslipSystem), !< total # of slip systems for hex
|
||
lattice_hex_Ntwin = 24_pInt, & ! sum(lattice_hex_NtwinSystem) !< total # of twin systems for hex
|
||
lattice_hex_NnonSchmid = 0_pInt !< # of non-Schmid contributions for hex
|
||
|
||
integer(pInt), private :: &
|
||
lattice_hex_Nstructure = 0_pInt
|
||
|
||
real(pReal), dimension(4+4,lattice_hex_Nslip), parameter, private :: &
|
||
lattice_hex_systemSlip = reshape(real([&
|
||
! Basal systems <11.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base))
|
||
2, -1, -1, 0, 0, 0, 0, 1, &
|
||
-1, 2, -1, 0, 0, 0, 0, 1, &
|
||
-1, -1, 2, 0, 0, 0, 0, 1, &
|
||
! 1st type prismatic systems <11.0>{10.0} (independent of c/a-ratio)
|
||
2, -1, -1, 0, 0, 1, -1, 0, &
|
||
-1, 2, -1, 0, -1, 0, 1, 0, &
|
||
-1, -1, 2, 0, 1, -1, 0, 0, &
|
||
! 2nd type prismatic systems <10.0>{11.0} -- a slip; plane normals independent of c/a-ratio
|
||
0, 1, -1, 0, 2, -1, -1, 0, &
|
||
-1, 0, 1, 0, -1, 2, -1, 0, &
|
||
1, -1, 0, 0, -1, -1, 2, 0, &
|
||
! 1st type 1st order pyramidal systems <11.0>{-11.1} -- plane normals depend on the c/a-ratio
|
||
2, -1, -1, 0, 0, 1, -1, 1, &
|
||
-1, 2, -1, 0, -1, 0, 1, 1, &
|
||
-1, -1, 2, 0, 1, -1, 0, 1, &
|
||
1, 1, -2, 0, -1, 1, 0, 1, &
|
||
-2, 1, 1, 0, 0, -1, 1, 1, &
|
||
1, -2, 1, 0, 1, 0, -1, 1, &
|
||
! pyramidal system: c+a slip <11.3>{-10.1} -- plane normals depend on the c/a-ratio
|
||
2, -1, -1, 3, -1, 1, 0, 1, &
|
||
1, -2, 1, 3, -1, 1, 0, 1, &
|
||
-1, -1, 2, 3, 1, 0, -1, 1, &
|
||
-2, 1, 1, 3, 1, 0, -1, 1, &
|
||
-1, 2, -1, 3, 0, -1, 1, 1, &
|
||
1, 1, -2, 3, 0, -1, 1, 1, &
|
||
-2, 1, 1, 3, 1, -1, 0, 1, &
|
||
-1, 2, -1, 3, 1, -1, 0, 1, &
|
||
1, 1, -2, 3, -1, 0, 1, 1, &
|
||
2, -1, -1, 3, -1, 0, 1, 1, &
|
||
1, -2, 1, 3, 0, 1, -1, 1, &
|
||
-1, -1, 2, 3, 0, 1, -1, 1, &
|
||
! pyramidal system: c+a slip <11.3>{-1-1.2} -- as for hexagonal ice (Castelnau et al 1996, similar to twin system found below)
|
||
2, -1, -1, 3, -2, 1, 1, 2, & ! sorted according to similar twin system
|
||
-1, 2, -1, 3, 1, -2, 1, 2, & ! <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a)
|
||
-1, -1, 2, 3, 1, 1, -2, 2, &
|
||
-2, 1, 1, 3, 2, -1, -1, 2, &
|
||
1, -2, 1, 3, -1, 2, -1, 2, &
|
||
1, 1, -2, 3, -1, -1, 2, 2 &
|
||
],pReal),[ 4_pInt + 4_pInt,lattice_hex_Nslip]) !< slip systems for hex sorted by A. Alankar & P. Eisenlohr
|
||
|
||
real(pReal), dimension(4+4,lattice_hex_Ntwin), parameter, private :: &
|
||
lattice_hex_systemTwin = reshape(real([&
|
||
1, -1, 0, 1, -1, 1, 0, 2, & ! <-10.1>{10.2} shear = (3-(c/a)^2)/(sqrt(3) c/a)
|
||
-1, 0, 1, 1, 1, 0, -1, 2, &
|
||
0, 1, -1, 1, 0, -1, 1, 2, &
|
||
-1, 1, 0, 1, 1, -1, 0, 2, &
|
||
1, 0, -1, 1, -1, 0, 1, 2, &
|
||
0, -1, 1, 1, 0, 1, -1, 2, &
|
||
!
|
||
2, -1, -1, 6, -2, 1, 1, 1, & ! <11.6>{-1-1.1} shear = 1/(c/a)
|
||
-1, 2, -1, 6, 1, -2, 1, 1, &
|
||
-1, -1, 2, 6, 1, 1, -2, 1, &
|
||
-2, 1, 1, 6, 2, -1, -1, 1, &
|
||
1, -2, 1, 6, -1, 2, -1, 1, &
|
||
1, 1, -2, 6, -1, -1, 2, 1, &
|
||
!
|
||
-1, 1, 0, -2, -1, 1, 0, 1, & !! <10.-2>{10.1} shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
|
||
1, 0, -1, -2, 1, 0, -1, 1, &
|
||
0, -1, 1, -2, 0, -1, 1, 1, &
|
||
1, -1, 0, -2, 1, -1, 0, 1, &
|
||
-1, 0, 1, -2, -1, 0, 1, 1, &
|
||
0, 1, -1, -2, 0, 1, -1, 1, &
|
||
!
|
||
2, -1, -1, -3, 2, -1, -1, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a)
|
||
-1, 2, -1, -3, -1, 2, -1, 2, &
|
||
-1, -1, 2, -3, -1, -1, 2, 2, &
|
||
-2, 1, 1, -3, -2, 1, 1, 2, &
|
||
1, -2, 1, -3, 1, -2, 1, 2, &
|
||
1, 1, -2, -3, 1, 1, -2, 2 &
|
||
],pReal),[ 4_pInt + 4_pInt ,lattice_hex_Ntwin]) !< twin systems for hex, order follows Prof. Tom Bieler's scheme; but numbering in data was restarted from 1
|
||
|
||
integer(pInt), dimension(lattice_hex_Ntwin), parameter, private :: &
|
||
lattice_hex_shearTwin = reshape(int( [& ! indicator to formula further below
|
||
1, & ! <-10.1>{10.2}
|
||
1, &
|
||
1, &
|
||
1, &
|
||
1, &
|
||
1, &
|
||
2, & ! <11.6>{-1-1.1}
|
||
2, &
|
||
2, &
|
||
2, &
|
||
2, &
|
||
2, &
|
||
3, & ! <10.-2>{10.1}
|
||
3, &
|
||
3, &
|
||
3, &
|
||
3, &
|
||
3, &
|
||
4, & ! <11.-3>{11.2}
|
||
4, &
|
||
4, &
|
||
4, &
|
||
4, &
|
||
4 &
|
||
],pInt),[lattice_hex_Ntwin])
|
||
|
||
integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Nslip), target, public :: &
|
||
lattice_hex_interactionSlipSlip = reshape(int( [&
|
||
1, 2, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! ---> slip
|
||
2, 1, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! |
|
||
2, 2, 1, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! |
|
||
! v slip
|
||
6, 6, 6, 4, 5, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
|
||
6, 6, 6, 5, 4, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
|
||
6, 6, 6, 5, 5, 4, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
|
||
!
|
||
12,12,12, 11,11,11, 9,10,10, 15,15,15,15,15,15, 33,33,33,33,33,33,33,33,33,33,33,33, 33,33,33,33,33,33, &
|
||
12,12,12, 11,11,11, 10, 9,10, 15,15,15,15,15,15, 33,33,33,33,33,33,33,33,33,33,33,33, 33,33,33,33,33,33, &
|
||
12,12,12, 11,11,11, 10,10, 9, 15,15,15,15,15,15, 33,33,33,33,33,33,33,33,33,33,33,33, 33,33,33,33,33,33, &
|
||
!
|
||
20,20,20, 19,19,19, 18,18,18, 16,17,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
|
||
20,20,20, 19,19,19, 18,18,18, 17,16,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
|
||
20,20,20, 19,19,19, 18,18,18, 17,17,16,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
|
||
20,20,20, 19,19,19, 18,18,18, 17,17,17,16,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
|
||
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,16,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
|
||
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,17,16, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
|
||
!
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 25,26,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,25,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,25,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,25,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,25,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,25,26,26,26,26,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,25,26,26,26,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,25,26,26,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,25,26,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,25,26,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,25,26, 35,35,35,35,35,35, &
|
||
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,26,25, 35,35,35,35,35,35, &
|
||
!
|
||
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 36,37,37,37,37,37, &
|
||
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,36,37,37,37,37, &
|
||
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,36,37,37,37, &
|
||
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,36,37,37, &
|
||
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,36,37, &
|
||
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,37,36 &
|
||
!
|
||
],pInt),[lattice_hex_Nslip,lattice_hex_Nslip],order=[2,1]) !< Slip--slip interaction types for hex (32? in total)
|
||
|
||
integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Ntwin), target, public :: &
|
||
lattice_hex_interactionSlipTwin = reshape(int( [&
|
||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! --> twin
|
||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! |
|
||
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! |
|
||
! v
|
||
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, & ! slip
|
||
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, &
|
||
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, &
|
||
!
|
||
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
|
||
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
|
||
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
|
||
!
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
|
||
!
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
|
||
!
|
||
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
|
||
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
|
||
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
|
||
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
|
||
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
|
||
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24 &
|
||
!
|
||
],pInt),[lattice_hex_Nslip,lattice_hex_Ntwin],order=[2,1]) !< Slip--twin interaction types for hex (isotropic, 24 in total)
|
||
|
||
integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Nslip), target, public :: &
|
||
lattice_hex_interactionTwinSlip = reshape(int( [&
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! --> slip
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! |
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! |
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! v
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! twin
|
||
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, &
|
||
!
|
||
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
|
||
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
|
||
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
|
||
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
|
||
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
|
||
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
|
||
!
|
||
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
|
||
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
|
||
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
|
||
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
|
||
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
|
||
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
|
||
!
|
||
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
|
||
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
|
||
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
|
||
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
|
||
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
|
||
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24 &
|
||
],pInt),[lattice_hex_Ntwin,lattice_hex_Nslip],order=[2,1]) !< Twin--twin interaction types for hex (isotropic, 20 in total)
|
||
|
||
integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Ntwin), target, public :: &
|
||
lattice_hex_interactionTwinTwin = reshape(int( [&
|
||
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! ---> twin
|
||
2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
|
||
2, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
|
||
2, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! v twin
|
||
2, 2, 2, 2, 1, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, &
|
||
2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, &
|
||
!
|
||
6, 6, 6, 6, 6, 6, 4, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
6, 6, 6, 6, 6, 6, 5, 4, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
6, 6, 6, 6, 6, 6, 5, 5, 4, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
|
||
!
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 9,10,10,10,10,10, 15,15,15,15,15,15, &
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10, 9,10,10,10,10, 15,15,15,15,15,15, &
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10, 9,10,10,10, 15,15,15,15,15,15, &
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10, 9,10,10, 15,15,15,15,15,15, &
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10, 9,10, 15,15,15,15,15,15, &
|
||
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10,10, 9, 15,15,15,15,15,15, &
|
||
!
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 16,17,17,17,17,17, &
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,16,17,17,17,17, &
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,16,17,17,17, &
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,16,17,17, &
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,16,17, &
|
||
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,17, 4 &
|
||
],pInt),[lattice_hex_Ntwin,lattice_hex_Ntwin],order=[2,1]) !< Twin--slip interaction types for hex (isotropic, 16 in total)
|
||
|
||
|
||
|
||
public :: &
|
||
lattice_init, &
|
||
lattice_initializeStructure, &
|
||
lattice_symmetryType, &
|
||
lattice_symmetrizeC66, &
|
||
lattice_configNchunks
|
||
|
||
contains
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Module initialization
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine lattice_init
|
||
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
||
use IO, only: &
|
||
IO_open_file,&
|
||
IO_open_jobFile_stat, &
|
||
IO_countSections, &
|
||
IO_countTagInPart, &
|
||
IO_error, &
|
||
IO_timeStamp
|
||
use material, only: &
|
||
material_configfile, &
|
||
material_localFileExt, &
|
||
material_partPhase
|
||
use debug, only: &
|
||
debug_level, &
|
||
debug_lattice, &
|
||
debug_levelBasic
|
||
|
||
implicit none
|
||
integer(pInt), parameter :: fileunit = 200_pInt
|
||
integer(pInt) :: Nsections
|
||
|
||
write(6,'(/,a)') ' <<<+- lattice init -+>>>'
|
||
write(6,'(a)') ' $Id$'
|
||
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
||
#include "compilation_info.f90"
|
||
|
||
if (.not. IO_open_jobFile_stat(fileunit,material_localFileExt)) then ! no local material configuration present...
|
||
call IO_open_file(fileunit,material_configFile) ! ... open material.config file
|
||
endif
|
||
Nsections = IO_countSections(fileunit,material_partPhase)
|
||
lattice_Nstructure = 2_pInt + sum(IO_countTagInPart(fileunit,material_partPhase,'covera_ratio',Nsections)) ! fcc + bcc + all hex
|
||
close(fileunit)
|
||
|
||
if (iand(debug_level(debug_lattice),debug_levelBasic) /= 0_pInt) then
|
||
write(6,'(a16,1x,i5)') ' # phases:',Nsections
|
||
write(6,'(a16,1x,i5,/)') ' # structures:',lattice_Nstructure
|
||
endif
|
||
|
||
allocate(lattice_NnonSchmid(lattice_Nstructure)); lattice_NnonSchmid = 0_pInt
|
||
allocate(lattice_Sslip(3,3,1+2*lattice_maxNnonSchmid,lattice_maxNslip,lattice_Nstructure)); lattice_Sslip = 0.0_pReal
|
||
allocate(lattice_Sslip_v(6,1+2*lattice_maxNnonSchmid,lattice_maxNslip,lattice_Nstructure)); lattice_Sslip_v = 0.0_pReal
|
||
allocate(lattice_sd(3,lattice_maxNslip,lattice_Nstructure)); lattice_sd = 0.0_pReal
|
||
allocate(lattice_st(3,lattice_maxNslip,lattice_Nstructure)); lattice_st = 0.0_pReal
|
||
allocate(lattice_sn(3,lattice_maxNslip,lattice_Nstructure)); lattice_sn = 0.0_pReal
|
||
|
||
allocate(lattice_Qtwin(3,3,lattice_maxNtwin,lattice_Nstructure)); lattice_Qtwin = 0.0_pReal
|
||
allocate(lattice_Stwin(3,3,lattice_maxNtwin,lattice_Nstructure)); lattice_Stwin = 0.0_pReal
|
||
allocate(lattice_Stwin_v(6,lattice_maxNtwin,lattice_Nstructure)); lattice_Stwin_v = 0.0_pReal
|
||
allocate(lattice_td(3,lattice_maxNtwin,lattice_Nstructure)); lattice_td = 0.0_pReal
|
||
allocate(lattice_tt(3,lattice_maxNtwin,lattice_Nstructure)); lattice_tt = 0.0_pReal
|
||
allocate(lattice_tn(3,lattice_maxNtwin,lattice_Nstructure)); lattice_tn = 0.0_pReal
|
||
|
||
allocate(lattice_shearTwin(lattice_maxNtwin,lattice_Nstructure)); lattice_shearTwin = 0.0_pReal
|
||
|
||
allocate(lattice_NslipSystem(lattice_maxNslipFamily,lattice_Nstructure)); lattice_NslipSystem = 0_pInt
|
||
allocate(lattice_NtwinSystem(lattice_maxNtwinFamily,lattice_Nstructure)); lattice_NtwinSystem = 0_pInt
|
||
|
||
allocate(lattice_interactionSlipSlip(lattice_maxNslip,lattice_maxNslip,lattice_Nstructure))
|
||
lattice_interactionSlipSlip = 0_pInt ! other:me
|
||
allocate(lattice_interactionSlipTwin(lattice_maxNslip,lattice_maxNtwin,lattice_Nstructure))
|
||
lattice_interactionSlipTwin = 0_pInt ! other:me
|
||
allocate(lattice_interactionTwinSlip(lattice_maxNtwin,lattice_maxNslip,lattice_Nstructure))
|
||
lattice_interactionTwinSlip = 0_pInt ! other:me
|
||
allocate(lattice_interactionTwinTwin(lattice_maxNtwin,lattice_maxNtwin,lattice_Nstructure))
|
||
lattice_interactionTwinTwin = 0_pInt ! other:me
|
||
|
||
end subroutine lattice_init
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Calculation of Schmid matrices, etc.
|
||
!--------------------------------------------------------------------------------------------------
|
||
integer(pInt) function lattice_initializeStructure(struct,CoverA)
|
||
use math, only: &
|
||
math_vectorproduct, &
|
||
math_tensorproduct, &
|
||
math_norm3, &
|
||
math_mul33x3, &
|
||
math_trace33, &
|
||
math_symmetric33, &
|
||
math_Mandel33to6, &
|
||
math_axisAngleToR, &
|
||
INRAD
|
||
use IO, only: &
|
||
IO_error
|
||
|
||
implicit none
|
||
character(len=*) struct
|
||
real(pReal) CoverA
|
||
real(pReal), dimension(3) :: sdU = 0.0_pReal, &
|
||
snU = 0.0_pReal, &
|
||
np = 0.0_pReal, &
|
||
nn = 0.0_pReal
|
||
real(pReal), dimension(3,lattice_maxNslip) :: sd = 0.0_pReal, &
|
||
sn = 0.0_pReal
|
||
real(pReal), dimension(3,3,2,lattice_maxNnonSchmid,lattice_maxNslip) :: sns = 0.0_pReal
|
||
real(pReal), dimension(3,lattice_maxNtwin) :: td = 0.0_pReal, &
|
||
tn = 0.0_pReal
|
||
real(pReal), dimension(lattice_maxNtwin) :: ts = 0.0_pReal
|
||
integer(pInt), dimension(lattice_maxNslipFamily) :: myNslipSystem = 0_pInt
|
||
integer(pInt), dimension(lattice_maxNtwinFamily) :: myNtwinSystem = 0_pInt
|
||
integer(pInt) :: i,j,myNslip,myNtwin,myStructure = 0_pInt
|
||
logical :: processMe
|
||
|
||
processMe = .false.
|
||
|
||
select case(struct(1:3)) ! check first three chars of structure name
|
||
case ('fcc')
|
||
myStructure = 1_pInt
|
||
myNslipSystem = lattice_fcc_NslipSystem ! size of slip system families
|
||
myNtwinSystem = lattice_fcc_NtwinSystem ! size of twin system families
|
||
myNslip = lattice_fcc_Nslip ! overall number of slip systems
|
||
myNtwin = lattice_fcc_Ntwin ! overall number of twin systems
|
||
lattice_fcc_Nstructure = lattice_fcc_Nstructure + 1_pInt ! count fcc instances
|
||
if (lattice_fcc_Nstructure == 1_pInt) then ! me is first fcc structure
|
||
processMe = .true.
|
||
lattice_NnonSchmid(myStructure) = lattice_fcc_NnonSchmid ! Currently no known non schmid contributions for FCC (to be changed later)
|
||
do i = 1_pInt,myNslip ! assign slip system vectors
|
||
sd(1:3,i) = lattice_fcc_systemSlip(1:3,i)
|
||
sn(1:3,i) = lattice_fcc_systemSlip(4:6,i)
|
||
do j = 1_pInt,lattice_fcc_NnonSchmid
|
||
sns(1:3,1:3,1,j,i) = 0.0_pReal
|
||
sns(1:3,1:3,2,j,i) = 0.0_pReal
|
||
enddo
|
||
enddo
|
||
do i = 1_pInt,myNtwin ! assign twin system vectors and shears
|
||
td(1:3,i) = lattice_fcc_systemTwin(1:3,i)
|
||
tn(1:3,i) = lattice_fcc_systemTwin(4:6,i)
|
||
ts(i) = lattice_fcc_shearTwin(i)
|
||
enddo
|
||
interactionSlipSlip => lattice_fcc_interactionSlipSlip
|
||
interactionSlipTwin => lattice_fcc_interactionSlipTwin
|
||
interactionTwinSlip => lattice_fcc_interactionTwinSlip
|
||
interactionTwinTwin => lattice_fcc_interactionTwinTwin
|
||
endif
|
||
|
||
case ('bcc')
|
||
myStructure = 2_pInt
|
||
myNslipSystem = lattice_bcc_NslipSystem ! size of slip system families
|
||
myNtwinSystem = lattice_bcc_NtwinSystem ! size of twin system families
|
||
myNslip = lattice_bcc_Nslip ! overall number of slip systems
|
||
myNtwin = lattice_bcc_Ntwin ! overall number of twin systems
|
||
lattice_bcc_Nstructure = lattice_bcc_Nstructure + 1_pInt ! count bcc instances
|
||
if (lattice_bcc_Nstructure == 1_pInt) then ! me is first bcc structure
|
||
processMe = .true.
|
||
lattice_NnonSchmid(myStructure) = lattice_bcc_NnonSchmid
|
||
do i = 1_pInt,myNslip ! assign slip system vectors
|
||
sd(1:3,i) = lattice_bcc_systemSlip(1:3,i)
|
||
sn(1:3,i) = lattice_bcc_systemSlip(4:6,i)
|
||
sdU = sd(1:3,i) / math_norm3(sd(1:3,i))
|
||
snU = sn(1:3,i) / math_norm3(sn(1:3,i))
|
||
np = math_mul33x3(math_axisAngleToR(sdU,60.0_pReal*INRAD), snU)
|
||
nn = math_mul33x3(math_axisAngleToR(-sdU,60.0_pReal*INRAD), snU)
|
||
sns(1:3,1:3,1,1,i) = math_tensorproduct(sdU, np)
|
||
sns(1:3,1:3,2,1,i) = math_tensorproduct(-sdU, nn)
|
||
sns(1:3,1:3,1,2,i) = math_tensorproduct(math_vectorproduct(snU, sdU), snU)
|
||
sns(1:3,1:3,2,2,i) = math_tensorproduct(math_vectorproduct(snU, -sdU), snU)
|
||
sns(1:3,1:3,1,3,i) = math_tensorproduct(math_vectorproduct(np, sdU), np)
|
||
sns(1:3,1:3,2,3,i) = math_tensorproduct(math_vectorproduct(nn, -sdU), nn)
|
||
sns(1:3,1:3,1,4,i) = math_tensorproduct(snU, snU)
|
||
sns(1:3,1:3,2,4,i) = math_tensorproduct(snU, snU)
|
||
sns(1:3,1:3,1,5,i) = math_tensorproduct(math_vectorproduct(snU, sdU), math_vectorproduct(snU, sdU))
|
||
sns(1:3,1:3,2,5,i) = math_tensorproduct(math_vectorproduct(snU, -sdU), math_vectorproduct(snU, -sdU))
|
||
sns(1:3,1:3,1,6,i) = math_tensorproduct(sdU, sdU)
|
||
sns(1:3,1:3,2,6,i) = math_tensorproduct(-sdU, -sdU)
|
||
enddo
|
||
do i = 1_pInt,myNtwin ! assign twin system vectors and shears
|
||
td(1:3,i) = lattice_bcc_systemTwin(1:3,i)
|
||
tn(1:3,i) = lattice_bcc_systemTwin(4:6,i)
|
||
ts(i) = lattice_bcc_shearTwin(i)
|
||
enddo
|
||
interactionSlipSlip => lattice_bcc_interactionSlipSlip
|
||
interactionSlipTwin => lattice_bcc_interactionSlipTwin
|
||
interactionTwinSlip => lattice_bcc_interactionTwinSlip
|
||
interactionTwinTwin => lattice_bcc_interactionTwinTwin
|
||
endif
|
||
|
||
case ('hex')
|
||
if (CoverA < 1.0_pReal .or. CoverA > 2.0_pReal) call IO_error(206_pInt) ! checking physical significance of c/a
|
||
|
||
lattice_hex_Nstructure = lattice_hex_Nstructure + 1_pInt ! count instances of hex structures
|
||
myStructure = 2_pInt + lattice_hex_Nstructure ! 3,4,5,.. for hex
|
||
myNslipSystem = lattice_hex_NslipSystem ! size of slip system families
|
||
myNtwinSystem = lattice_hex_NtwinSystem ! size of twin system families
|
||
myNslip = lattice_hex_Nslip ! overall number of slip systems
|
||
myNtwin = lattice_hex_Ntwin ! overall number of twin systems
|
||
processMe = .true.
|
||
lattice_NnonSchmid(myStructure) = lattice_hex_NnonSchmid ! Currently no known non schmid contributions for hex (to be changed later)
|
||
|
||
! converting from 4 axes coordinate system (a1=a2=a3=c) to ortho-hexgonal system (a, b, c)
|
||
do i = 1_pInt,myNslip
|
||
sd(1,i) = lattice_hex_systemSlip(1,i)*1.5_pReal ! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(c/a)]
|
||
sd(2,i) = (lattice_hex_systemSlip(1,i)+2.0_pReal*lattice_hex_systemSlip(2,i))*(0.5_pReal*sqrt(3.0_pReal))
|
||
sd(3,i) = lattice_hex_systemSlip(4,i)*CoverA
|
||
sn(1,i) = lattice_hex_systemSlip(5,i) ! plane (hkil)->(h (h+2k)/sqrt(3) l/(c/a))
|
||
sn(2,i) = (lattice_hex_systemSlip(5,i)+2.0_pReal*lattice_hex_systemSlip(6,i))/sqrt(3.0_pReal)
|
||
sn(3,i) = lattice_hex_systemSlip(8,i)/CoverA
|
||
do j = 1_pInt,lattice_hex_NnonSchmid
|
||
sns(1:3,1:3,1,j,i) = 0.0_pReal
|
||
sns(1:3,1:3,2,j,i) = 0.0_pReal
|
||
enddo
|
||
enddo
|
||
do i = 1_pInt,myNtwin
|
||
td(1,i) = lattice_hex_systemTwin(1,i)*1.5_pReal
|
||
td(2,i) = (lattice_hex_systemTwin(1,i)+2.0_pReal*lattice_hex_systemTwin(2,i))*(0.5_pReal*sqrt(3.0_pReal))
|
||
td(3,i) = lattice_hex_systemTwin(4,i)*CoverA
|
||
tn(1,i) = lattice_hex_systemTwin(5,i)
|
||
tn(2,i) = (lattice_hex_systemTwin(5,i)+2.0_pReal*lattice_hex_systemTwin(6,i))/sqrt(3.0_pReal)
|
||
tn(3,i) = lattice_hex_systemTwin(8,i)/CoverA
|
||
select case(lattice_hex_shearTwin(i)) ! from Christian & Mahajan 1995 p.29
|
||
case (1_pInt) ! <-10.1>{10.2}
|
||
ts(i) = (3.0_pReal-CoverA*CoverA)/sqrt(3.0_pReal)/CoverA
|
||
case (2_pInt) ! <11.6>{-1-1.1}
|
||
ts(i) = 1.0_pReal/CoverA
|
||
case (3_pInt) ! <10.-2>{10.1}
|
||
ts(i) = (4.0_pReal*CoverA*CoverA-9.0_pReal)/4.0_pReal/sqrt(3.0_pReal)/CoverA
|
||
case (4_pInt) ! <11.-3>{11.2}
|
||
ts(i) = 2.0_pReal*(CoverA*CoverA-2.0_pReal)/3.0_pReal/CoverA
|
||
end select
|
||
enddo
|
||
|
||
interactionSlipSlip => lattice_hex_interactionSlipSlip
|
||
interactionSlipTwin => lattice_hex_interactionSlipTwin
|
||
interactionTwinSlip => lattice_hex_interactionTwinSlip
|
||
interactionTwinTwin => lattice_hex_interactionTwinTwin
|
||
end select
|
||
|
||
if (processMe) then
|
||
if (myStructure > lattice_Nstructure) &
|
||
call IO_error(666_pInt,myStructure,ext_msg = 'structure index out of bounds') ! check for memory leakage
|
||
do i = 1_pInt,myNslip ! store slip system vectors and Schmid matrix for my structure
|
||
lattice_sd(1:3,i,myStructure) = sd(1:3,i)/math_norm3(sd(1:3,i)) ! make unit vector
|
||
lattice_sn(1:3,i,myStructure) = sn(1:3,i)/math_norm3(sn(1:3,i)) ! make unit vector
|
||
lattice_st(1:3,i,myStructure) = math_vectorproduct(lattice_sd(1:3,i,myStructure), &
|
||
lattice_sn(1:3,i,myStructure))
|
||
lattice_Sslip(1:3,1:3,1,i,myStructure) = math_tensorproduct(lattice_sd(1:3,i,myStructure), &
|
||
lattice_sn(1:3,i,myStructure))
|
||
do j = 1_pInt,lattice_NnonSchmid(myStructure)
|
||
lattice_Sslip(1:3,1:3,2*j ,i,myStructure) = sns(1:3,1:3,1,j,i)
|
||
lattice_Sslip(1:3,1:3,2*j+1,i,myStructure) = sns(1:3,1:3,2,j,i)
|
||
enddo
|
||
do j = 1_pInt,1_pInt+2_pInt*lattice_NnonSchmid(myStructure)
|
||
lattice_Sslip_v(1:6,j,i,myStructure) = &
|
||
math_Mandel33to6(math_symmetric33(lattice_Sslip(1:3,1:3,j,i,myStructure)))
|
||
enddo
|
||
if (abs(math_trace33(lattice_Sslip(1:3,1:3,1,i,myStructure))) > 1.0e-8_pReal) &
|
||
call IO_error(0_pInt,myStructure,i,0_pInt,ext_msg = 'dilatational slip Schmid matrix')
|
||
enddo
|
||
do i = 1_pInt,myNtwin ! store twin system vectors and Schmid plus rotation matrix for my structure
|
||
lattice_td(1:3,i,myStructure) = td(1:3,i)/math_norm3(td(1:3,i)) ! make unit vector
|
||
lattice_tn(1:3,i,myStructure) = tn(1:3,i)/math_norm3(tn(1:3,i)) ! make unit vector
|
||
lattice_tt(1:3,i,myStructure) = math_vectorproduct(lattice_td(1:3,i,myStructure), &
|
||
lattice_tn(1:3,i,myStructure))
|
||
lattice_Stwin(1:3,1:3,i,myStructure) = math_tensorproduct(lattice_td(1:3,i,myStructure), &
|
||
lattice_tn(1:3,i,myStructure))
|
||
lattice_Stwin_v(1:6,i,myStructure) = math_Mandel33to6(math_symmetric33(lattice_Stwin(1:3,1:3,i,myStructure)))
|
||
lattice_Qtwin(1:3,1:3,i,myStructure) = math_axisAngleToR(tn(1:3,i),180.0_pReal*INRAD)
|
||
lattice_shearTwin(i,myStructure) = ts(i)
|
||
if (abs(math_trace33(lattice_Stwin(1:3,1:3,i,myStructure))) > 1.0e-8_pReal) &
|
||
call IO_error(0_pInt,myStructure,i,0_pInt,ext_msg = 'dilatational twin Schmid matrix')
|
||
enddo
|
||
lattice_NslipSystem(1:lattice_maxNslipFamily,myStructure) = myNslipSystem ! number of slip systems in each family
|
||
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myStructure) = myNtwinSystem ! number of twin systems in each family
|
||
lattice_interactionSlipSlip(1:myNslip,1:myNslip,myStructure) = interactionSlipSlip(1:myNslip,1:myNslip)
|
||
lattice_interactionSlipTwin(1:myNslip,1:myNtwin,myStructure) = interactionSlipTwin(1:myNslip,1:myNtwin)
|
||
lattice_interactionTwinSlip(1:myNtwin,1:myNslip,myStructure) = interactionTwinSlip(1:myNtwin,1:myNslip)
|
||
lattice_interactionTwinTwin(1:myNtwin,1:myNtwin,myStructure) = interactionTwinTwin(1:myNtwin,1:myNtwin)
|
||
endif
|
||
|
||
lattice_initializeStructure = myStructure ! report my structure index back
|
||
|
||
end function lattice_initializeStructure
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Maps structure to symmetry type
|
||
!> @details fcc(1) and bcc(2) are cubic(1) hex(3+) is hexagonal(2)
|
||
!--------------------------------------------------------------------------------------------------
|
||
integer(pInt) pure function lattice_symmetryType(structName)
|
||
|
||
implicit none
|
||
character(len=32), intent(in) :: structName
|
||
|
||
select case(structName(1:3))
|
||
case ('fcc','bcc')
|
||
lattice_symmetryType = 1_pInt
|
||
case ('hex')
|
||
lattice_symmetryType = 2_pInt
|
||
case default
|
||
lattice_symmetryType = 0_pInt
|
||
end select
|
||
|
||
return
|
||
|
||
end function lattice_symmetryType
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Symmetrizes stiffness matrix according to lattice type
|
||
!--------------------------------------------------------------------------------------------------
|
||
pure function lattice_symmetrizeC66(structName,C66)
|
||
|
||
implicit none
|
||
character(len=32), intent(in) :: structName
|
||
real(pReal), dimension(6,6), intent(in) :: C66
|
||
real(pReal), dimension(6,6) :: lattice_symmetrizeC66
|
||
integer(pInt) :: j,k
|
||
|
||
lattice_symmetrizeC66 = 0.0_pReal
|
||
|
||
select case(structName(1:3))
|
||
case ('iso')
|
||
forall(k=1_pInt:3_pInt)
|
||
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
|
||
lattice_symmetrizeC66(k,k) = C66(1,1)
|
||
lattice_symmetrizeC66(k+3,k+3) = 0.5_pReal*(C66(1,1)-C66(1,2))
|
||
end forall
|
||
case ('fcc','bcc')
|
||
forall(k=1_pInt:3_pInt)
|
||
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
|
||
lattice_symmetrizeC66(k,k) = C66(1,1)
|
||
lattice_symmetrizeC66(k+3_pInt,k+3_pInt) = C66(4,4)
|
||
end forall
|
||
case ('hex')
|
||
lattice_symmetrizeC66(1,1) = C66(1,1)
|
||
lattice_symmetrizeC66(2,2) = C66(1,1)
|
||
lattice_symmetrizeC66(3,3) = C66(3,3)
|
||
lattice_symmetrizeC66(1,2) = C66(1,2)
|
||
lattice_symmetrizeC66(2,1) = C66(1,2)
|
||
lattice_symmetrizeC66(1,3) = C66(1,3)
|
||
lattice_symmetrizeC66(3,1) = C66(1,3)
|
||
lattice_symmetrizeC66(2,3) = C66(1,3)
|
||
lattice_symmetrizeC66(3,2) = C66(1,3)
|
||
lattice_symmetrizeC66(4,4) = C66(4,4)
|
||
lattice_symmetrizeC66(5,5) = C66(4,4)
|
||
lattice_symmetrizeC66(6,6) = 0.5_pReal*(C66(1,1)-C66(1,2))
|
||
case ('ort')
|
||
lattice_symmetrizeC66(1,1) = C66(1,1)
|
||
lattice_symmetrizeC66(2,2) = C66(2,2)
|
||
lattice_symmetrizeC66(3,3) = C66(3,3)
|
||
lattice_symmetrizeC66(1,2) = C66(1,2)
|
||
lattice_symmetrizeC66(2,1) = C66(1,2)
|
||
lattice_symmetrizeC66(1,3) = C66(1,3)
|
||
lattice_symmetrizeC66(3,1) = C66(1,3)
|
||
lattice_symmetrizeC66(2,3) = C66(2,3)
|
||
lattice_symmetrizeC66(3,2) = C66(2,3)
|
||
lattice_symmetrizeC66(4,4) = C66(4,4)
|
||
lattice_symmetrizeC66(5,5) = C66(5,5)
|
||
lattice_symmetrizeC66(6,6) = C66(6,6)
|
||
end select
|
||
|
||
end function lattice_symmetrizeC66
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief Number of parameters to expect in material.config section
|
||
! NslipFamilies
|
||
! NtwinFamilies
|
||
! SlipSlipInteraction
|
||
! SlipTwinInteraction
|
||
! TwinSlipInteraction
|
||
! TwinTwinInteraction
|
||
! NnonSchmid
|
||
!--------------------------------------------------------------------------------------------------
|
||
function lattice_configNchunks(struct)
|
||
use prec, only: &
|
||
pInt
|
||
|
||
implicit none
|
||
integer(pInt), dimension(7) :: lattice_configNchunks
|
||
character(len=*), intent(in) :: struct
|
||
|
||
select case(struct(1:3)) ! check first three chars of structure name
|
||
case ('fcc')
|
||
lattice_configNchunks(1) = count(lattice_fcc_NslipSystem > 0_pInt)
|
||
lattice_configNchunks(2) = count(lattice_fcc_NtwinSystem > 0_pInt)
|
||
lattice_configNchunks(3) = maxval(lattice_fcc_interactionSlipSlip)
|
||
lattice_configNchunks(4) = maxval(lattice_fcc_interactionSlipTwin)
|
||
lattice_configNchunks(5) = maxval(lattice_fcc_interactionTwinSlip)
|
||
lattice_configNchunks(6) = maxval(lattice_fcc_interactionTwinTwin)
|
||
lattice_configNchunks(7) = lattice_fcc_NnonSchmid
|
||
case ('bcc')
|
||
lattice_configNchunks(1) = count(lattice_bcc_NslipSystem > 0_pInt)
|
||
lattice_configNchunks(2) = count(lattice_bcc_NtwinSystem > 0_pInt)
|
||
lattice_configNchunks(3) = maxval(lattice_bcc_interactionSlipSlip)
|
||
lattice_configNchunks(4) = maxval(lattice_bcc_interactionSlipTwin)
|
||
lattice_configNchunks(5) = maxval(lattice_bcc_interactionTwinSlip)
|
||
lattice_configNchunks(6) = maxval(lattice_bcc_interactionTwinTwin)
|
||
lattice_configNchunks(7) = lattice_bcc_NnonSchmid
|
||
case ('hex')
|
||
lattice_configNchunks(1) = count(lattice_hex_NslipSystem > 0_pInt)
|
||
lattice_configNchunks(2) = count(lattice_hex_NtwinSystem > 0_pInt)
|
||
lattice_configNchunks(3) = maxval(lattice_hex_interactionSlipSlip)
|
||
lattice_configNchunks(4) = maxval(lattice_hex_interactionSlipTwin)
|
||
lattice_configNchunks(5) = maxval(lattice_hex_interactionTwinSlip)
|
||
lattice_configNchunks(6) = maxval(lattice_hex_interactionTwinTwin)
|
||
lattice_configNchunks(7) = lattice_hex_NnonSchmid
|
||
end select
|
||
|
||
end function lattice_configNchunks
|
||
|
||
end module lattice
|