643 lines
27 KiB
Python
643 lines
27 KiB
Python
import numpy as np
|
|
|
|
from .rotation import Rotation
|
|
from . import Lambert
|
|
|
|
P = -1
|
|
|
|
# ******************************************************************************************
|
|
class Symmetry:
|
|
"""
|
|
Symmetry operations for lattice systems.
|
|
|
|
References
|
|
----------
|
|
https://en.wikipedia.org/wiki/Crystal_system
|
|
|
|
"""
|
|
|
|
lattices = [None,'orthorhombic','tetragonal','hexagonal','cubic',]
|
|
|
|
def __init__(self, symmetry = None):
|
|
"""
|
|
Symmetry Definition.
|
|
|
|
Parameters
|
|
----------
|
|
symmetry : str, optional
|
|
label of the crystal system
|
|
|
|
"""
|
|
if symmetry is not None and symmetry.lower() not in Symmetry.lattices:
|
|
raise KeyError('Symmetry/crystal system "{}" is unknown'.format(symmetry))
|
|
|
|
self.lattice = symmetry.lower() if isinstance(symmetry,str) else symmetry
|
|
|
|
|
|
def __copy__(self):
|
|
"""Copy."""
|
|
return self.__class__(self.lattice)
|
|
|
|
copy = __copy__
|
|
|
|
|
|
def __repr__(self):
|
|
"""Readable string."""
|
|
return '{}'.format(self.lattice)
|
|
|
|
|
|
def __eq__(self, other):
|
|
"""
|
|
Equal to other.
|
|
|
|
Parameters
|
|
----------
|
|
other : Symmetry
|
|
Symmetry to check for equality.
|
|
|
|
"""
|
|
return self.lattice == other.lattice
|
|
|
|
def __neq__(self, other):
|
|
"""
|
|
Not Equal to other.
|
|
|
|
Parameters
|
|
----------
|
|
other : Symmetry
|
|
Symmetry to check for inequality.
|
|
|
|
"""
|
|
return not self.__eq__(other)
|
|
|
|
def __cmp__(self,other):
|
|
"""
|
|
Linear ordering.
|
|
|
|
Parameters
|
|
----------
|
|
other : Symmetry
|
|
Symmetry to check for for order.
|
|
|
|
"""
|
|
myOrder = Symmetry.lattices.index(self.lattice)
|
|
otherOrder = Symmetry.lattices.index(other.lattice)
|
|
return (myOrder > otherOrder) - (myOrder < otherOrder)
|
|
|
|
def symmetryOperations(self,members=[]):
|
|
"""List (or single element) of symmetry operations as rotations."""
|
|
if self.lattice == 'cubic':
|
|
symQuats = [
|
|
[ 1.0, 0.0, 0.0, 0.0 ],
|
|
[ 0.0, 1.0, 0.0, 0.0 ],
|
|
[ 0.0, 0.0, 1.0, 0.0 ],
|
|
[ 0.0, 0.0, 0.0, 1.0 ],
|
|
[ 0.0, 0.0, 0.5*np.sqrt(2), 0.5*np.sqrt(2) ],
|
|
[ 0.0, 0.0, 0.5*np.sqrt(2),-0.5*np.sqrt(2) ],
|
|
[ 0.0, 0.5*np.sqrt(2), 0.0, 0.5*np.sqrt(2) ],
|
|
[ 0.0, 0.5*np.sqrt(2), 0.0, -0.5*np.sqrt(2) ],
|
|
[ 0.0, 0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0 ],
|
|
[ 0.0, -0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0 ],
|
|
[ 0.5, 0.5, 0.5, 0.5 ],
|
|
[-0.5, 0.5, 0.5, 0.5 ],
|
|
[-0.5, 0.5, 0.5, -0.5 ],
|
|
[-0.5, 0.5, -0.5, 0.5 ],
|
|
[-0.5, -0.5, 0.5, 0.5 ],
|
|
[-0.5, -0.5, 0.5, -0.5 ],
|
|
[-0.5, -0.5, -0.5, 0.5 ],
|
|
[-0.5, 0.5, -0.5, -0.5 ],
|
|
[-0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
|
[ 0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
|
[-0.5*np.sqrt(2), 0.0, 0.5*np.sqrt(2), 0.0 ],
|
|
[-0.5*np.sqrt(2), 0.0, -0.5*np.sqrt(2), 0.0 ],
|
|
[-0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0, 0.0 ],
|
|
[-0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0, 0.0 ],
|
|
]
|
|
elif self.lattice == 'hexagonal':
|
|
symQuats = [
|
|
[ 1.0, 0.0, 0.0, 0.0 ],
|
|
[-0.5*np.sqrt(3), 0.0, 0.0, -0.5 ],
|
|
[ 0.5, 0.0, 0.0, 0.5*np.sqrt(3) ],
|
|
[ 0.0, 0.0, 0.0, 1.0 ],
|
|
[-0.5, 0.0, 0.0, 0.5*np.sqrt(3) ],
|
|
[-0.5*np.sqrt(3), 0.0, 0.0, 0.5 ],
|
|
[ 0.0, 1.0, 0.0, 0.0 ],
|
|
[ 0.0, -0.5*np.sqrt(3), 0.5, 0.0 ],
|
|
[ 0.0, 0.5, -0.5*np.sqrt(3), 0.0 ],
|
|
[ 0.0, 0.0, 1.0, 0.0 ],
|
|
[ 0.0, -0.5, -0.5*np.sqrt(3), 0.0 ],
|
|
[ 0.0, 0.5*np.sqrt(3), 0.5, 0.0 ],
|
|
]
|
|
elif self.lattice == 'tetragonal':
|
|
symQuats = [
|
|
[ 1.0, 0.0, 0.0, 0.0 ],
|
|
[ 0.0, 1.0, 0.0, 0.0 ],
|
|
[ 0.0, 0.0, 1.0, 0.0 ],
|
|
[ 0.0, 0.0, 0.0, 1.0 ],
|
|
[ 0.0, 0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0 ],
|
|
[ 0.0, -0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0 ],
|
|
[ 0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
|
[-0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
|
|
]
|
|
elif self.lattice == 'orthorhombic':
|
|
symQuats = [
|
|
[ 1.0,0.0,0.0,0.0 ],
|
|
[ 0.0,1.0,0.0,0.0 ],
|
|
[ 0.0,0.0,1.0,0.0 ],
|
|
[ 0.0,0.0,0.0,1.0 ],
|
|
]
|
|
else:
|
|
symQuats = [
|
|
[ 1.0,0.0,0.0,0.0 ],
|
|
]
|
|
|
|
symOps = list(map(Rotation,
|
|
np.array(symQuats)[np.atleast_1d(members) if members != [] else range(len(symQuats))]))
|
|
try:
|
|
iter(members) # asking for (even empty) list of members?
|
|
except TypeError:
|
|
return symOps[0] # no, return rotation object
|
|
else:
|
|
return symOps # yes, return list of rotations
|
|
|
|
|
|
def inFZ(self,rodrigues):
|
|
"""
|
|
Check whether given Rodriques-Frank vector falls into fundamental zone of own symmetry.
|
|
|
|
Fundamental zone in Rodrigues space is point symmetric around origin.
|
|
"""
|
|
if (len(rodrigues) != 3):
|
|
raise ValueError('Input is not a Rodriques-Frank vector.\n')
|
|
|
|
if np.any(rodrigues == np.inf): return False
|
|
|
|
Rabs = abs(rodrigues)
|
|
|
|
if self.lattice == 'cubic':
|
|
return np.sqrt(2.0)-1.0 >= Rabs[0] \
|
|
and np.sqrt(2.0)-1.0 >= Rabs[1] \
|
|
and np.sqrt(2.0)-1.0 >= Rabs[2] \
|
|
and 1.0 >= Rabs[0] + Rabs[1] + Rabs[2]
|
|
elif self.lattice == 'hexagonal':
|
|
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2] \
|
|
and 2.0 >= np.sqrt(3)*Rabs[0] + Rabs[1] \
|
|
and 2.0 >= np.sqrt(3)*Rabs[1] + Rabs[0] \
|
|
and 2.0 >= np.sqrt(3) + Rabs[2]
|
|
elif self.lattice == 'tetragonal':
|
|
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] \
|
|
and np.sqrt(2.0) >= Rabs[0] + Rabs[1] \
|
|
and np.sqrt(2.0) >= Rabs[2] + 1.0
|
|
elif self.lattice == 'orthorhombic':
|
|
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2]
|
|
else:
|
|
return True
|
|
|
|
|
|
def inDisorientationSST(self,rodrigues):
|
|
"""
|
|
Check whether given Rodriques-Frank vector (of misorientation) falls into standard stereographic triangle of own symmetry.
|
|
|
|
References
|
|
----------
|
|
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
|
|
https://doi.org/10.1107/S0108767391006864
|
|
|
|
"""
|
|
if (len(rodrigues) != 3):
|
|
raise ValueError('Input is not a Rodriques-Frank vector.\n')
|
|
R = rodrigues
|
|
|
|
epsilon = 0.0
|
|
if self.lattice == 'cubic':
|
|
return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon
|
|
elif self.lattice == 'hexagonal':
|
|
return R[0] >= np.sqrt(3)*(R[1]-epsilon) and R[1] >= epsilon and R[2] >= epsilon
|
|
elif self.lattice == 'tetragonal':
|
|
return R[0] >= R[1]-epsilon and R[1] >= epsilon and R[2] >= epsilon
|
|
elif self.lattice == 'orthorhombic':
|
|
return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon
|
|
else:
|
|
return True
|
|
|
|
|
|
def inSST(self,
|
|
vector,
|
|
proper = False,
|
|
color = False):
|
|
"""
|
|
Check whether given vector falls into standard stereographic triangle of own symmetry.
|
|
|
|
proper considers only vectors with z >= 0, hence uses two neighboring SSTs.
|
|
Return inverse pole figure color if requested.
|
|
Bases are computed from
|
|
|
|
basis = {'cubic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
|
[1.,0.,1.]/np.sqrt(2.), # direction of green
|
|
[1.,1.,1.]/np.sqrt(3.)]).T), # direction of blue
|
|
'hexagonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
|
[1.,0.,0.], # direction of green
|
|
[np.sqrt(3.),1.,0.]/np.sqrt(4.)]).T), # direction of blue
|
|
'tetragonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
|
[1.,0.,0.], # direction of green
|
|
[1.,1.,0.]/np.sqrt(2.)]).T), # direction of blue
|
|
'orthorhombic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
|
[1.,0.,0.], # direction of green
|
|
[0.,1.,0.]]).T), # direction of blue
|
|
}
|
|
"""
|
|
if self.lattice == 'cubic':
|
|
basis = {'improper':np.array([ [-1. , 0. , 1. ],
|
|
[ np.sqrt(2.) , -np.sqrt(2.) , 0. ],
|
|
[ 0. , np.sqrt(3.) , 0. ] ]),
|
|
'proper':np.array([ [ 0. , -1. , 1. ],
|
|
[-np.sqrt(2.) , np.sqrt(2.) , 0. ],
|
|
[ np.sqrt(3.) , 0. , 0. ] ]),
|
|
}
|
|
elif self.lattice == 'hexagonal':
|
|
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
|
[ 1. , -np.sqrt(3.) , 0. ],
|
|
[ 0. , 2. , 0. ] ]),
|
|
'proper':np.array([ [ 0. , 0. , 1. ],
|
|
[-1. , np.sqrt(3.) , 0. ],
|
|
[ np.sqrt(3.) , -1. , 0. ] ]),
|
|
}
|
|
elif self.lattice == 'tetragonal':
|
|
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
|
[ 1. , -1. , 0. ],
|
|
[ 0. , np.sqrt(2.) , 0. ] ]),
|
|
'proper':np.array([ [ 0. , 0. , 1. ],
|
|
[-1. , 1. , 0. ],
|
|
[ np.sqrt(2.) , 0. , 0. ] ]),
|
|
}
|
|
elif self.lattice == 'orthorhombic':
|
|
basis = {'improper':np.array([ [ 0., 0., 1.],
|
|
[ 1., 0., 0.],
|
|
[ 0., 1., 0.] ]),
|
|
'proper':np.array([ [ 0., 0., 1.],
|
|
[-1., 0., 0.],
|
|
[ 0., 1., 0.] ]),
|
|
}
|
|
else: # direct exit for unspecified symmetry
|
|
if color:
|
|
return (True,np.zeros(3,'d'))
|
|
else:
|
|
return True
|
|
|
|
v = np.array(vector,dtype=float)
|
|
if proper: # check both improper ...
|
|
theComponents = np.around(np.dot(basis['improper'],v),12)
|
|
inSST = np.all(theComponents >= 0.0)
|
|
if not inSST: # ... and proper SST
|
|
theComponents = np.around(np.dot(basis['proper'],v),12)
|
|
inSST = np.all(theComponents >= 0.0)
|
|
else:
|
|
v[2] = abs(v[2]) # z component projects identical
|
|
theComponents = np.around(np.dot(basis['improper'],v),12) # for positive and negative values
|
|
inSST = np.all(theComponents >= 0.0)
|
|
|
|
if color: # have to return color array
|
|
if inSST:
|
|
rgb = np.power(theComponents/np.linalg.norm(theComponents),0.5) # smoothen color ramps
|
|
rgb = np.minimum(np.ones(3,dtype=float),rgb) # limit to maximum intensity
|
|
rgb /= max(rgb) # normalize to (HS)V = 1
|
|
else:
|
|
rgb = np.zeros(3,dtype=float)
|
|
return (inSST,rgb)
|
|
else:
|
|
return inSST
|
|
|
|
# code derived from https://github.com/ezag/pyeuclid
|
|
# suggested reading: http://web.mit.edu/2.998/www/QuaternionReport1.pdf
|
|
|
|
|
|
# ******************************************************************************************
|
|
class Lattice:
|
|
"""
|
|
Lattice system.
|
|
|
|
Currently, this contains only a mapping from Bravais lattice to symmetry
|
|
and orientation relationships. It could include twin and slip systems.
|
|
|
|
References
|
|
----------
|
|
https://en.wikipedia.org/wiki/Bravais_lattice
|
|
|
|
"""
|
|
|
|
lattices = {
|
|
'triclinic':{'symmetry':None},
|
|
'bct':{'symmetry':'tetragonal'},
|
|
'hex':{'symmetry':'hexagonal'},
|
|
'fcc':{'symmetry':'cubic','c/a':1.0},
|
|
'bcc':{'symmetry':'cubic','c/a':1.0},
|
|
}
|
|
|
|
|
|
def __init__(self, lattice):
|
|
"""
|
|
New lattice of given type.
|
|
|
|
Parameters
|
|
----------
|
|
lattice : str
|
|
Bravais lattice.
|
|
|
|
"""
|
|
self.lattice = lattice
|
|
self.symmetry = Symmetry(self.lattices[lattice]['symmetry'])
|
|
|
|
|
|
def __repr__(self):
|
|
"""Report basic lattice information."""
|
|
return 'Bravais lattice {} ({} symmetry)'.format(self.lattice,self.symmetry)
|
|
|
|
|
|
# Kurdjomov--Sachs orientation relationship for fcc <-> bcc transformation
|
|
# from S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
|
|
# also see K. Kitahara et al., Acta Materialia 54:1279-1288, 2006
|
|
KS = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ -1, 0, 1],[ -1, -1, 1]],
|
|
[[ -1, 0, 1],[ -1, 1, -1]],
|
|
[[ 0, 1, -1],[ -1, -1, 1]],
|
|
[[ 0, 1, -1],[ -1, 1, -1]],
|
|
[[ 1, -1, 0],[ -1, -1, 1]],
|
|
[[ 1, -1, 0],[ -1, 1, -1]],
|
|
[[ 1, 0, -1],[ -1, -1, 1]],
|
|
[[ 1, 0, -1],[ -1, 1, -1]],
|
|
[[ -1, -1, 0],[ -1, -1, 1]],
|
|
[[ -1, -1, 0],[ -1, 1, -1]],
|
|
[[ 0, 1, 1],[ -1, -1, 1]],
|
|
[[ 0, 1, 1],[ -1, 1, -1]],
|
|
[[ 0, -1, 1],[ -1, -1, 1]],
|
|
[[ 0, -1, 1],[ -1, 1, -1]],
|
|
[[ -1, 0, -1],[ -1, -1, 1]],
|
|
[[ -1, 0, -1],[ -1, 1, -1]],
|
|
[[ 1, 1, 0],[ -1, -1, 1]],
|
|
[[ 1, 1, 0],[ -1, 1, -1]],
|
|
[[ -1, 1, 0],[ -1, -1, 1]],
|
|
[[ -1, 1, 0],[ -1, 1, -1]],
|
|
[[ 0, -1, -1],[ -1, -1, 1]],
|
|
[[ 0, -1, -1],[ -1, 1, -1]],
|
|
[[ 1, 0, 1],[ -1, -1, 1]],
|
|
[[ 1, 0, 1],[ -1, 1, -1]]],dtype='float')}
|
|
|
|
# Greninger--Troiano orientation relationship for fcc <-> bcc transformation
|
|
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
|
GT = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 1, 1, 1],[ 1, 0, 1]],
|
|
[[ 1, 1, 1],[ 1, 1, 0]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, -1, 1],[ -1, 0, 1]],
|
|
[[ -1, -1, 1],[ -1, -1, 0]],
|
|
[[ -1, -1, 1],[ 0, -1, 1]],
|
|
[[ -1, 1, 1],[ -1, 0, 1]],
|
|
[[ -1, 1, 1],[ -1, 1, 0]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 1, 0, 1]],
|
|
[[ 1, -1, 1],[ 1, -1, 0]],
|
|
[[ 1, -1, 1],[ 0, -1, 1]],
|
|
[[ 1, 1, 1],[ 1, 1, 0]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 1, 0, 1]],
|
|
[[ -1, -1, 1],[ -1, -1, 0]],
|
|
[[ -1, -1, 1],[ 0, -1, 1]],
|
|
[[ -1, -1, 1],[ -1, 0, 1]],
|
|
[[ -1, 1, 1],[ -1, 1, 0]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ -1, 0, 1]],
|
|
[[ 1, -1, 1],[ 1, -1, 0]],
|
|
[[ 1, -1, 1],[ 0, -1, 1]],
|
|
[[ 1, -1, 1],[ 1, 0, 1]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ -5,-12, 17],[-17, -7, 17]],
|
|
[[ 17, -5,-12],[ 17,-17, -7]],
|
|
[[-12, 17, -5],[ -7, 17,-17]],
|
|
[[ 5, 12, 17],[ 17, 7, 17]],
|
|
[[-17, 5,-12],[-17, 17, -7]],
|
|
[[ 12,-17, -5],[ 7,-17,-17]],
|
|
[[ -5, 12,-17],[-17, 7,-17]],
|
|
[[ 17, 5, 12],[ 17, 17, 7]],
|
|
[[-12,-17, 5],[ -7,-17, 17]],
|
|
[[ 5,-12,-17],[ 17, -7,-17]],
|
|
[[-17, -5, 12],[-17,-17, 7]],
|
|
[[ 12, 17, 5],[ 7, 17, 17]],
|
|
[[ -5, 17,-12],[-17, 17, -7]],
|
|
[[-12, -5, 17],[ -7,-17, 17]],
|
|
[[ 17,-12, -5],[ 17, -7,-17]],
|
|
[[ 5,-17,-12],[ 17,-17, -7]],
|
|
[[ 12, 5, 17],[ 7, 17, 17]],
|
|
[[-17, 12, -5],[-17, 7,-17]],
|
|
[[ -5,-17, 12],[-17,-17, 7]],
|
|
[[-12, 5,-17],[ -7, 17,-17]],
|
|
[[ 17, 12, 5],[ 17, 7, 17]],
|
|
[[ 5, 17, 12],[ 17, 17, 7]],
|
|
[[ 12, -5,-17],[ 7,-17,-17]],
|
|
[[-17,-12, 5],[-17,-7, 17]]],dtype='float')}
|
|
|
|
# Greninger--Troiano' orientation relationship for fcc <-> bcc transformation
|
|
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
|
GTprime = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 7, 17, 17],[ 12, 5, 17]],
|
|
[[ 17, 7, 17],[ 17, 12, 5]],
|
|
[[ 17, 17, 7],[ 5, 17, 12]],
|
|
[[ -7,-17, 17],[-12, -5, 17]],
|
|
[[-17, -7, 17],[-17,-12, 5]],
|
|
[[-17,-17, 7],[ -5,-17, 12]],
|
|
[[ 7,-17,-17],[ 12, -5,-17]],
|
|
[[ 17, -7,-17],[ 17,-12, -5]],
|
|
[[ 17,-17, -7],[ 5,-17,-12]],
|
|
[[ -7, 17,-17],[-12, 5,-17]],
|
|
[[-17, 7,-17],[-17, 12, -5]],
|
|
[[-17, 17, -7],[ -5, 17,-12]],
|
|
[[ 7, 17, 17],[ 12, 17, 5]],
|
|
[[ 17, 7, 17],[ 5, 12, 17]],
|
|
[[ 17, 17, 7],[ 17, 5, 12]],
|
|
[[ -7,-17, 17],[-12,-17, 5]],
|
|
[[-17, -7, 17],[ -5,-12, 17]],
|
|
[[-17,-17, 7],[-17, -5, 12]],
|
|
[[ 7,-17,-17],[ 12,-17, -5]],
|
|
[[ 17, -7,-17],[ 5, -12,-17]],
|
|
[[ 17,-17, -7],[ 17, -5,-12]],
|
|
[[ -7, 17,-17],[-12, 17, -5]],
|
|
[[-17, 7,-17],[ -5, 12,-17]],
|
|
[[-17, 17, -7],[-17, 5,-12]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ 0, 1, -1],[ 1, 1, -1]],
|
|
[[ -1, 0, 1],[ -1, 1, 1]],
|
|
[[ 1, -1, 0],[ 1, -1, 1]],
|
|
[[ 0, -1, -1],[ -1, -1, -1]],
|
|
[[ 1, 0, 1],[ 1, -1, 1]],
|
|
[[ 1, -1, 0],[ 1, -1, -1]],
|
|
[[ 0, 1, -1],[ -1, 1, -1]],
|
|
[[ 1, 0, 1],[ 1, 1, 1]],
|
|
[[ -1, -1, 0],[ -1, -1, 1]],
|
|
[[ 0, -1, -1],[ 1, -1, -1]],
|
|
[[ -1, 0, 1],[ -1, -1, 1]],
|
|
[[ -1, -1, 0],[ -1, -1, -1]],
|
|
[[ 0, -1, 1],[ 1, -1, 1]],
|
|
[[ 1, 0, -1],[ 1, 1, -1]],
|
|
[[ -1, 1, 0],[ -1, 1, 1]],
|
|
[[ 0, 1, 1],[ -1, 1, 1]],
|
|
[[ -1, 0, -1],[ -1, -1, -1]],
|
|
[[ -1, 1, 0],[ -1, 1, -1]],
|
|
[[ 0, -1, 1],[ -1, -1, 1]],
|
|
[[ -1, 0, -1],[ -1, 1, -1]],
|
|
[[ 1, 1, 0],[ 1, 1, 1]],
|
|
[[ 0, 1, 1],[ 1, 1, 1]],
|
|
[[ 1, 0, -1],[ 1, -1, -1]],
|
|
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
|
|
|
|
# Nishiyama--Wassermann orientation relationship for fcc <-> bcc transformation
|
|
# from H. Kitahara et al., Materials Characterization 54:378-386, 2005
|
|
NW = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ -1, -1, 1],[ 0, 1, 1]],
|
|
[[ -1, -1, 1],[ 0, 1, 1]],
|
|
[[ -1, -1, 1],[ 0, 1, 1]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ 2, -1, -1],[ 0, -1, 1]],
|
|
[[ -1, 2, -1],[ 0, -1, 1]],
|
|
[[ -1, -1, 2],[ 0, -1, 1]],
|
|
[[ -2, -1, -1],[ 0, -1, 1]],
|
|
[[ 1, 2, -1],[ 0, -1, 1]],
|
|
[[ 1, -1, 2],[ 0, -1, 1]],
|
|
[[ 2, 1, -1],[ 0, -1, 1]],
|
|
[[ -1, -2, -1],[ 0, -1, 1]],
|
|
[[ -1, 1, 2],[ 0, -1, 1]],
|
|
[[ 2, -1, 1],[ 0, -1, 1]], #It is wrong in the paper, but matrix is correct
|
|
[[ -1, 2, 1],[ 0, -1, 1]],
|
|
[[ -1, -1, -2],[ 0, -1, 1]]],dtype='float')}
|
|
|
|
# Pitsch orientation relationship for fcc <-> bcc transformation
|
|
# from Y. He et al., Acta Materialia 53:1179-1190, 2005
|
|
Pitsch = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 0, 1, 0],[ -1, 0, 1]],
|
|
[[ 0, 0, 1],[ 1, -1, 0]],
|
|
[[ 1, 0, 0],[ 0, 1, -1]],
|
|
[[ 1, 0, 0],[ 0, -1, -1]],
|
|
[[ 0, 1, 0],[ -1, 0, -1]],
|
|
[[ 0, 0, 1],[ -1, -1, 0]],
|
|
[[ 0, 1, 0],[ -1, 0, -1]],
|
|
[[ 0, 0, 1],[ -1, -1, 0]],
|
|
[[ 1, 0, 0],[ 0, -1, -1]],
|
|
[[ 1, 0, 0],[ 0, -1, 1]],
|
|
[[ 0, 1, 0],[ 1, 0, -1]],
|
|
[[ 0, 0, 1],[ -1, 1, 0]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ 1, 0, 1],[ 1, -1, 1]],
|
|
[[ 1, 1, 0],[ 1, 1, -1]],
|
|
[[ 0, 1, 1],[ -1, 1, 1]],
|
|
[[ 0, 1, -1],[ -1, 1, -1]],
|
|
[[ -1, 0, 1],[ -1, -1, 1]],
|
|
[[ 1, -1, 0],[ 1, -1, -1]],
|
|
[[ 1, 0, -1],[ 1, -1, -1]],
|
|
[[ -1, 1, 0],[ -1, 1, -1]],
|
|
[[ 0, -1, 1],[ -1, -1, 1]],
|
|
[[ 0, 1, 1],[ -1, 1, 1]],
|
|
[[ 1, 0, 1],[ 1, -1, 1]],
|
|
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
|
|
|
|
# Bain orientation relationship for fcc <-> bcc transformation
|
|
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
|
Bain = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 1, 0, 0],[ 1, 0, 0]],
|
|
[[ 0, 1, 0],[ 0, 1, 0]],
|
|
[[ 0, 0, 1],[ 0, 0, 1]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ 0, 1, 0],[ 0, 1, 1]],
|
|
[[ 0, 0, 1],[ 1, 0, 1]],
|
|
[[ 1, 0, 0],[ 1, 1, 0]]],dtype='float')}
|
|
|
|
def relationOperations(self,model):
|
|
"""
|
|
Crystallographic orientation relationships for phase transformations.
|
|
|
|
References
|
|
----------
|
|
S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
|
|
https://doi.org/10.1016/j.jallcom.2012.02.004
|
|
|
|
K. Kitahara et al., Acta Materialia 54(5):1279-1288, 2006
|
|
https://doi.org/10.1016/j.actamat.2005.11.001
|
|
|
|
Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
|
|
https://doi.org/10.1107/S0021889805038276
|
|
|
|
H. Kitahara et al., Materials Characterization 54(4-5):378-386, 2005
|
|
https://doi.org/10.1016/j.matchar.2004.12.015
|
|
|
|
Y. He et al., Acta Materialia 53(4):1179-1190, 2005
|
|
https://doi.org/10.1016/j.actamat.2004.11.021
|
|
|
|
"""
|
|
models={'KS':self.KS, 'GT':self.GT, 'GT_prime':self.GTprime,
|
|
'NW':self.NW, 'Pitsch': self.Pitsch, 'Bain':self.Bain}
|
|
try:
|
|
relationship = models[model]
|
|
except KeyError :
|
|
raise KeyError('Orientation relationship "{}" is unknown'.format(model))
|
|
|
|
if self.lattice not in relationship['mapping']:
|
|
raise ValueError('Relationship "{}" not supported for lattice "{}"'.format(model,self.lattice))
|
|
|
|
r = {'lattice':Lattice((set(relationship['mapping'])-{self.lattice}).pop()), # target lattice
|
|
'rotations':[] }
|
|
|
|
myPlane_id = relationship['mapping'][self.lattice]
|
|
otherPlane_id = (myPlane_id+1)%2
|
|
myDir_id = myPlane_id +2
|
|
otherDir_id = otherPlane_id +2
|
|
|
|
for miller in np.hstack((relationship['planes'],relationship['directions'])):
|
|
myPlane = miller[myPlane_id]/ np.linalg.norm(miller[myPlane_id])
|
|
myDir = miller[myDir_id]/ np.linalg.norm(miller[myDir_id])
|
|
myMatrix = np.array([myDir,np.cross(myPlane,myDir),myPlane])
|
|
|
|
otherPlane = miller[otherPlane_id]/ np.linalg.norm(miller[otherPlane_id])
|
|
otherDir = miller[otherDir_id]/ np.linalg.norm(miller[otherDir_id])
|
|
otherMatrix = np.array([otherDir,np.cross(otherPlane,otherDir),otherPlane])
|
|
|
|
r['rotations'].append(Rotation.fromMatrix(np.dot(otherMatrix.T,myMatrix)))
|
|
|
|
return r
|