800 lines
41 KiB
Fortran
800 lines
41 KiB
Fortran
! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
|
|
!
|
|
! This file is part of DAMASK,
|
|
! the Düsseldorf Advanced MAterial Simulation Kit.
|
|
!
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
! it under the terms of the GNU General Public License as published by
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
! (at your option) any later version.
|
|
!
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
! GNU General Public License for more details.
|
|
!
|
|
! You should have received a copy of the GNU General Public License
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
!
|
|
!##############################################################
|
|
!* $Id$
|
|
!***************************************
|
|
!* Module: HOMOGENIZATION *
|
|
!***************************************
|
|
!* contains: *
|
|
!* - _init *
|
|
!* - materialpoint_stressAndItsTangent *
|
|
!* - _partitionDeformation *
|
|
!* - _updateState *
|
|
!* - _averageStressAndItsTangent *
|
|
!* - _postResults *
|
|
!***************************************
|
|
|
|
MODULE homogenization
|
|
|
|
!*** Include other modules ***
|
|
use prec, only: pInt,pReal,p_vec
|
|
use IO, only: IO_write_jobBinaryFile
|
|
implicit none
|
|
|
|
! ****************************************************************
|
|
! *** General variables for the homogenization at a ***
|
|
! *** material point ***
|
|
! ****************************************************************
|
|
type(p_vec), dimension(:,:), allocatable :: homogenization_state0, & ! pointer array to homogenization state at start of FE increment
|
|
homogenization_subState0, & ! pointer array to homogenization state at start of homogenization increment
|
|
homogenization_state ! pointer array to current homogenization state (end of converged time step)
|
|
integer(pInt), dimension(:,:), allocatable :: homogenization_sizeState, & ! size of state array per grain
|
|
homogenization_sizePostResults ! size of postResults array per material point
|
|
|
|
real(pReal), dimension(:,:,:,:,:,:), allocatable :: materialpoint_dPdF ! tangent of first P--K stress at IP
|
|
real(pReal), dimension(:,:,:,:), allocatable :: materialpoint_F0, & ! def grad of IP at start of FE increment
|
|
materialpoint_F, & ! def grad of IP to be reached at end of FE increment
|
|
materialpoint_subF0, & ! def grad of IP at beginning of homogenization increment
|
|
materialpoint_subF, & ! def grad of IP to be reached at end of homog inc
|
|
materialpoint_P ! first P--K stress of IP
|
|
real(pReal), dimension(:,:), allocatable :: materialpoint_Temperature, & ! temperature at IP
|
|
materialpoint_subFrac, &
|
|
materialpoint_subStep, &
|
|
materialpoint_subdt
|
|
|
|
real(pReal), dimension(:,:,:), allocatable :: materialpoint_results ! results array of material point
|
|
|
|
logical, dimension(:,:), allocatable :: materialpoint_requested, &
|
|
materialpoint_converged
|
|
logical, dimension(:,:,:), allocatable :: materialpoint_doneAndHappy
|
|
integer(pInt) homogenization_maxSizeState, &
|
|
homogenization_maxSizePostResults, &
|
|
materialpoint_sizeResults
|
|
|
|
CONTAINS
|
|
|
|
!**************************************
|
|
!* Module initialization *
|
|
!**************************************
|
|
subroutine homogenization_init(Temperature)
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
|
use math, only: math_I3
|
|
use debug, only: debug_what, debug_homogenization, debug_levelBasic
|
|
use IO, only: IO_error, IO_open_file, IO_open_jobFile_stat, IO_write_jobFile
|
|
use mesh, only: mesh_maxNips,mesh_NcpElems,mesh_element,FE_Nips
|
|
use material
|
|
use constitutive, only: constitutive_maxSizePostResults
|
|
use crystallite, only: crystallite_maxSizePostResults
|
|
use homogenization_isostrain
|
|
use homogenization_RGC
|
|
|
|
implicit none
|
|
|
|
real(pReal) Temperature
|
|
integer(pInt), parameter :: fileunit = 200
|
|
integer(pInt) e,i,p,myInstance
|
|
integer(pInt), dimension(:,:), pointer :: thisSize
|
|
character(len=64), dimension(:,:), pointer :: thisOutput
|
|
logical knownHomogenization
|
|
|
|
|
|
! --- PARSE HOMOGENIZATIONS FROM CONFIG FILE ---
|
|
|
|
if (.not. IO_open_jobFile_stat(fileunit,material_localFileExt)) then ! no local material configuration present...
|
|
call IO_open_file(fileunit,material_configFile) ! ... open material.config file
|
|
endif
|
|
call homogenization_isostrain_init(fileunit)
|
|
call homogenization_RGC_init(fileunit)
|
|
close(fileunit)
|
|
|
|
|
|
! --- WRITE DESCRIPTION FILE FOR HOMOGENIZATION OUTPUT ---
|
|
|
|
call IO_write_jobFile(fileunit,'outputHomogenization')
|
|
do p = 1,material_Nhomogenization
|
|
i = homogenization_typeInstance(p) ! which instance of this homogenization type
|
|
knownHomogenization = .true. ! assume valid
|
|
select case(homogenization_type(p)) ! split per homogenization type
|
|
case (homogenization_isostrain_label)
|
|
thisOutput => homogenization_isostrain_output
|
|
thisSize => homogenization_isostrain_sizePostResult
|
|
case (homogenization_RGC_label)
|
|
thisOutput => homogenization_RGC_output
|
|
thisSize => homogenization_RGC_sizePostResult
|
|
case default
|
|
knownHomogenization = .false.
|
|
end select
|
|
write(fileunit,*)
|
|
write(fileunit,'(a)') '['//trim(homogenization_name(p))//']'
|
|
write(fileunit,*)
|
|
if (knownHomogenization) then
|
|
write(fileunit,'(a)') '(type)'//char(9)//trim(homogenization_type(p))
|
|
write(fileunit,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p)
|
|
do e = 1,homogenization_Noutput(p)
|
|
write(fileunit,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
|
|
enddo
|
|
endif
|
|
enddo
|
|
close(fileunit)
|
|
|
|
|
|
! --- ALLOCATE AND INITIALIZE GLOBAL VARIABLES ---
|
|
|
|
allocate(homogenization_state0(mesh_maxNips,mesh_NcpElems))
|
|
allocate(homogenization_subState0(mesh_maxNips,mesh_NcpElems))
|
|
allocate(homogenization_state(mesh_maxNips,mesh_NcpElems))
|
|
allocate(homogenization_sizeState(mesh_maxNips,mesh_NcpElems)); homogenization_sizeState = 0_pInt
|
|
allocate(homogenization_sizePostResults(mesh_maxNips,mesh_NcpElems)); homogenization_sizePostResults = 0_pInt
|
|
|
|
allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_dPdF = 0.0_pReal
|
|
allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems));
|
|
allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_F = 0.0_pReal
|
|
allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF0 = 0.0_pReal
|
|
allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF = 0.0_pReal
|
|
allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_P = 0.0_pReal
|
|
allocate(materialpoint_Temperature(mesh_maxNips,mesh_NcpElems)); materialpoint_Temperature = Temperature
|
|
allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems)); materialpoint_subFrac = 0.0_pReal
|
|
allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems)); materialpoint_subStep = 0.0_pReal
|
|
allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems)); materialpoint_subdt = 0.0_pReal
|
|
allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems)); materialpoint_requested = .false.
|
|
allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems)); materialpoint_converged = .true.
|
|
allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems)); materialpoint_doneAndHappy = .true.
|
|
|
|
forall (i = 1:mesh_maxNips,e = 1:mesh_NcpElems)
|
|
materialpoint_F0(1:3,1:3,i,e) = math_I3
|
|
materialpoint_F(1:3,1:3,i,e) = math_I3
|
|
end forall
|
|
|
|
|
|
! --- ALLOCATE AND INITIALIZE GLOBAL STATE AND POSTRESULTS VARIABLES ----------
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myInstance)
|
|
do e = 1,mesh_NcpElems ! loop over elements
|
|
myInstance = homogenization_typeInstance(mesh_element(3,e))
|
|
do i = 1,FE_Nips(mesh_element(2,e)) ! loop over IPs
|
|
select case(homogenization_type(mesh_element(3,e)))
|
|
case (homogenization_isostrain_label)
|
|
if (homogenization_isostrain_sizeState(myInstance) > 0_pInt) then
|
|
allocate(homogenization_state0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
|
|
allocate(homogenization_subState0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
|
|
allocate(homogenization_state(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
|
|
homogenization_state0(i,e)%p = homogenization_isostrain_stateInit(myInstance)
|
|
homogenization_sizeState(i,e) = homogenization_isostrain_sizeState(myInstance)
|
|
endif
|
|
homogenization_sizePostResults(i,e) = homogenization_isostrain_sizePostResults(myInstance)
|
|
case (homogenization_RGC_label)
|
|
if (homogenization_RGC_sizeState(myInstance) > 0_pInt) then
|
|
allocate(homogenization_state0(i,e)%p(homogenization_RGC_sizeState(myInstance)))
|
|
allocate(homogenization_subState0(i,e)%p(homogenization_RGC_sizeState(myInstance)))
|
|
allocate(homogenization_state(i,e)%p(homogenization_RGC_sizeState(myInstance)))
|
|
homogenization_state0(i,e)%p = homogenization_RGC_stateInit(myInstance)
|
|
homogenization_sizeState(i,e) = homogenization_RGC_sizeState(myInstance)
|
|
endif
|
|
homogenization_sizePostResults(i,e) = homogenization_RGC_sizePostResults(myInstance)
|
|
case default
|
|
call IO_error(500_pInt,ext_msg=homogenization_type(mesh_element(3,e))) ! unknown homogenization
|
|
end select
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
!---write state size file out---------------------------------------
|
|
open(777)
|
|
call IO_write_jobBinaryFile(777,'sizeStateHomog',size(homogenization_sizeState))
|
|
write (777,rec=1) homogenization_sizeState
|
|
close(777)
|
|
!--------------------------------------------------------------
|
|
|
|
homogenization_maxSizeState = maxval(homogenization_sizeState)
|
|
homogenization_maxSizePostResults = maxval(homogenization_sizePostResults)
|
|
materialpoint_sizeResults = 1 & ! grain count
|
|
+ 1 + homogenization_maxSizePostResults & ! homogSize & homogResult
|
|
+ homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results
|
|
+ 1 + constitutive_maxSizePostResults) ! constitutive size & constitutive results
|
|
allocate(materialpoint_results(materialpoint_sizeResults,mesh_maxNips,mesh_NcpElems))
|
|
|
|
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*)
|
|
write(6,*) '<<<+- homogenization init -+>>>'
|
|
write(6,*) '$Id$'
|
|
#include "compilation_info.f90"
|
|
if (iand(debug_what(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state0: ', shape(homogenization_state0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_subState0: ', shape(homogenization_subState0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state: ', shape(homogenization_state)
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_sizeState: ', shape(homogenization_sizeState)
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_sizePostResults: ', shape(homogenization_sizePostResults)
|
|
write(6,*)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F0: ', shape(materialpoint_F0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F: ', shape(materialpoint_F)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF0: ', shape(materialpoint_subF0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF: ', shape(materialpoint_subF)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_P: ', shape(materialpoint_P)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_Temperature: ', shape(materialpoint_Temperature)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subStep: ', shape(materialpoint_subStep)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subdt: ', shape(materialpoint_subdt)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
|
|
write(6,*)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_results: ', shape(materialpoint_results)
|
|
write(6,*)
|
|
write(6,'(a32,1x,7(i8,1x))') 'maxSizeState: ', homogenization_maxSizeState
|
|
write(6,'(a32,1x,7(i8,1x))') 'maxSizePostResults: ', homogenization_maxSizePostResults
|
|
endif
|
|
call flush(6)
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
endsubroutine
|
|
|
|
|
|
!********************************************************************
|
|
!* parallelized calculation of
|
|
!* stress and corresponding tangent
|
|
!* at material points
|
|
!********************************************************************
|
|
subroutine materialpoint_stressAndItsTangent(&
|
|
updateJaco,& ! flag to initiate Jacobian updating
|
|
dt & ! time increment
|
|
)
|
|
|
|
use numerics, only: subStepMinHomog, &
|
|
subStepSizeHomog, &
|
|
stepIncreaseHomog, &
|
|
nHomog, &
|
|
nMPstate
|
|
use math, only: math_transpose33
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP, &
|
|
terminallyIll
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: homogenization_Ngrains
|
|
use constitutive, only: constitutive_state0, &
|
|
constitutive_partionedState0, &
|
|
constitutive_state
|
|
use crystallite, only: crystallite_Temperature, &
|
|
crystallite_F0, &
|
|
crystallite_Fp0, &
|
|
crystallite_Fp, &
|
|
crystallite_Lp0, &
|
|
crystallite_Lp, &
|
|
crystallite_dPdF, &
|
|
crystallite_dPdF0, &
|
|
crystallite_Tstar0_v, &
|
|
crystallite_Tstar_v, &
|
|
crystallite_partionedTemperature0, &
|
|
crystallite_partionedF0, &
|
|
crystallite_partionedF, &
|
|
crystallite_partionedFp0, &
|
|
crystallite_partionedLp0, &
|
|
crystallite_partioneddPdF0, &
|
|
crystallite_partionedTstar0_v, &
|
|
crystallite_dt, &
|
|
crystallite_requested, &
|
|
crystallite_converged, &
|
|
crystallite_stressAndItsTangent, &
|
|
crystallite_orientations
|
|
use debug, only: debug_what, &
|
|
debug_homogenization, &
|
|
debug_levelBasic, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_MaterialpointLoopDistribution, &
|
|
debug_MaterialpointStateLoopDistribution
|
|
use math, only: math_pDecomposition
|
|
|
|
implicit none
|
|
|
|
real(pReal), intent(in) :: dt
|
|
logical, intent(in) :: updateJaco
|
|
logical :: rate_sensitivity
|
|
integer(pInt) NiterationHomog,NiterationMPstate
|
|
integer(pInt) g,i,e,myNgrains
|
|
|
|
! ------ initialize to starting condition ------
|
|
|
|
if (iand(debug_what(debug_homogenization), debug_levelBasic) /= 0_pInt &
|
|
.and. debug_e > 0 .and. debug_e <= mesh_NcpElems .and. debug_i > 0 .and. debug_i <= mesh_maxNips) then
|
|
!$OMP CRITICAL (write2out)
|
|
write (6,*)
|
|
write (6,'(a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i
|
|
write (6,'(a,/,12x,f14.9)') '<< HOMOG >> Temp0', materialpoint_Temperature(debug_i,debug_e)
|
|
write (6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', math_transpose33(materialpoint_F0(1:3,1:3,debug_i,debug_e))
|
|
write (6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', math_transpose33(materialpoint_F(1:3,1:3,debug_i,debug_e))
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
|
|
! initialize restoration points of grain...
|
|
forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state0(g,i,e)%p ! ...microstructures
|
|
crystallite_partionedTemperature0(1:myNgrains,i,e) = materialpoint_Temperature(i,e) ! ...temperatures
|
|
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
|
|
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
|
|
crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_F0(1:3,1:3,1:myNgrains,i,e) ! ...def grads
|
|
crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
|
|
|
|
! initialize restoration points of ...
|
|
if (homogenization_sizeState(i,e) > 0_pInt) &
|
|
homogenization_subState0(i,e)%p = homogenization_state0(i,e)%p ! ...internal homogenization state
|
|
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) ! ...def grad
|
|
|
|
materialpoint_subFrac(i,e) = 0.0_pReal
|
|
materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <<added to adopt flexibility in cutback size>>
|
|
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
|
|
materialpoint_requested(i,e) = .true. ! everybody requires calculation
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
NiterationHomog = 0_pInt
|
|
|
|
! ------ cutback loop ------
|
|
|
|
do while (.not. terminallyIll .and. &
|
|
any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog)) ! cutback loop for material points
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
|
|
if ( materialpoint_converged(i,e) ) then
|
|
#ifndef _OPENMP
|
|
if (iand(debug_what(debug_homogenization), debug_levelBasic) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i) &
|
|
.or. .not. iand(debug_what(debug_homogenization),debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,/)') '<< HOMOG >> winding forward from', &
|
|
materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', &
|
|
materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent'
|
|
endif
|
|
#endif
|
|
|
|
! calculate new subStep and new subFrac
|
|
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
|
|
!$OMP FLUSH(materialpoint_subFrac)
|
|
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), &
|
|
stepIncreaseHomog*materialpoint_subStep(i,e)) ! <<introduce flexibility for step increase/acceleration>>
|
|
!$OMP FLUSH(materialpoint_subStep)
|
|
|
|
! still stepping needed
|
|
if (materialpoint_subStep(i,e) > subStepMinHomog) then
|
|
|
|
! wind forward grain starting point of...
|
|
crystallite_partionedTemperature0(1:myNgrains,i,e) = crystallite_Temperature(1:myNgrains,i,e) ! ...temperatures
|
|
crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads
|
|
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
|
|
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e)! ...stiffness
|
|
crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
|
|
forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructures
|
|
if (homogenization_sizeState(i,e) > 0_pInt) &
|
|
homogenization_subState0(i,e)%p = homogenization_state(i,e)%p ! ...internal state of homog scheme
|
|
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) ! ...def grad
|
|
!$OMP FLUSH(materialpoint_subF0)
|
|
elseif (materialpoint_requested(i,e)) then ! this materialpoint just converged ! already at final time (??)
|
|
if (iand(debug_what(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionHomog)
|
|
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = &
|
|
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1
|
|
!$OMP END CRITICAL (distributionHomog)
|
|
endif
|
|
endif
|
|
|
|
! materialpoint didn't converge, so we need a cutback here
|
|
else
|
|
if ( (myNgrains == 1_pInt .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
|
|
subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep
|
|
! cutback makes no sense and...
|
|
!$OMP CRITICAL (setTerminallyIll)
|
|
write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill'
|
|
terminallyIll = .true. ! ...one kills all
|
|
!$OMP END CRITICAL (setTerminallyIll)
|
|
else ! cutback makes sense
|
|
materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
|
|
!$OMP FLUSH(materialpoint_subStep)
|
|
|
|
#ifndef _OPENMP
|
|
if (iand(debug_what(debug_homogenization), debug_levelBasic) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i) &
|
|
.or. .not. iand(debug_what(debug_homogenization), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,1x,f12.8,/)') &
|
|
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',&
|
|
materialpoint_subStep(i,e)
|
|
endif
|
|
#endif
|
|
|
|
! restore...
|
|
crystallite_Temperature(1:myNgrains,i,e) = crystallite_partionedTemperature0(1:myNgrains,i,e) ! ...temperatures
|
|
! ...initial def grad unchanged
|
|
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
|
|
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
|
|
crystallite_Tstar_v(1:6,1:myNgrains,i,e) = crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
|
|
forall (g = 1:myNgrains) constitutive_state(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructures
|
|
if (homogenization_sizeState(i,e) > 0_pInt) &
|
|
homogenization_state(i,e)%p = homogenization_subState0(i,e)%p ! ...internal state of homog scheme
|
|
endif
|
|
endif
|
|
|
|
materialpoint_requested(i,e) = materialpoint_subStep(i,e) > subStepMinHomog
|
|
if (materialpoint_requested(i,e)) then
|
|
materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) + &
|
|
materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) - materialpoint_F0(1:3,1:3,i,e))
|
|
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
|
|
materialpoint_doneAndHappy(1:2,i,e) = (/.false.,.true./)
|
|
endif
|
|
enddo ! loop IPs
|
|
enddo ! loop elements
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
! ------ convergence loop material point homogenization ------
|
|
|
|
NiterationMPstate = 0_pInt
|
|
|
|
do while (.not. terminallyIll .and. &
|
|
any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
|
|
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
|
|
) .and. &
|
|
NiterationMPstate < nMPstate) ! convergence loop for materialpoint
|
|
NiterationMPstate = NiterationMPstate + 1
|
|
|
|
! --+>> deformation partitioning <<+--
|
|
!
|
|
! based on materialpoint_subF0,.._subF,
|
|
! crystallite_partionedF0,
|
|
! homogenization_state
|
|
! results in crystallite_partionedF
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
if ( materialpoint_requested(i,e) .and. & ! process requested but...
|
|
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points
|
|
call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents
|
|
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains
|
|
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
|
|
else
|
|
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
! --+>> crystallite integration <<+--
|
|
!
|
|
! based on crystallite_partionedF0,.._partionedF
|
|
! incrementing by crystallite_dt
|
|
rate_sensitivity = .false. ! request rate sensitive contribution to dPdF
|
|
call crystallite_stressAndItsTangent(updateJaco,rate_sensitivity) ! request stress and tangent calculation for constituent grains
|
|
|
|
|
|
! --+>> state update <<+--
|
|
|
|
!$OMP PARALLEL DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
if ( materialpoint_requested(i,e) .and. &
|
|
.not. materialpoint_doneAndHappy(1,i,e)) then
|
|
if (.not. all(crystallite_converged(:,i,e))) then
|
|
materialpoint_doneAndHappy(1:2,i,e) = (/.true.,.false./)
|
|
materialpoint_converged(i,e) = .false.
|
|
else
|
|
materialpoint_doneAndHappy(1:2,i,e) = homogenization_updateState(i,e)
|
|
materialpoint_converged(i,e) = all(homogenization_updateState(i,e)) ! converged if done and happy
|
|
endif
|
|
!$OMP FLUSH(materialpoint_converged)
|
|
if (materialpoint_converged(i,e)) then
|
|
if (iand(debug_what(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionMPState)
|
|
debug_MaterialpointStateLoopdistribution(NiterationMPstate) = &
|
|
debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1
|
|
!$OMP END CRITICAL (distributionMPState)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
enddo ! homogenization convergence loop
|
|
|
|
NiterationHomog = NiterationHomog + 1_pInt
|
|
|
|
enddo ! cutback loop
|
|
|
|
|
|
if (.not. terminallyIll ) then
|
|
call crystallite_orientations() ! calculate crystal orientations
|
|
!$OMP PARALLEL DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
call homogenization_averageStressAndItsTangent(i,e)
|
|
call homogenization_averageTemperature(i,e)
|
|
enddo; enddo
|
|
!$OMP END PARALLEL DO
|
|
else
|
|
!$OMP CRITICAL (write2out)
|
|
write (6,*)
|
|
write (6,'(a)') '<< HOMOG >> Material Point terminally ill'
|
|
write (6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
return
|
|
|
|
endsubroutine
|
|
|
|
|
|
!********************************************************************
|
|
!* parallelized calculation of
|
|
!* result array at material points
|
|
!********************************************************************
|
|
subroutine materialpoint_postResults(dt)
|
|
|
|
use FEsolving, only: FEsolving_execElem, FEsolving_execIP
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_Ngrains, microstructure_crystallite
|
|
use constitutive, only: constitutive_sizePostResults, constitutive_postResults
|
|
use crystallite, only: crystallite_sizePostResults, crystallite_postResults
|
|
implicit none
|
|
|
|
real(pReal), intent(in) :: dt
|
|
integer(pInt) g,i,e,thePos,theSize,myNgrains,myCrystallite
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
myCrystallite = microstructure_crystallite(mesh_element(4,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
thePos = 0_pInt
|
|
|
|
theSize = homogenization_sizePostResults(i,e)
|
|
materialpoint_results(thePos+1,i,e) = real(theSize,pReal) ! tell size of homogenization results
|
|
thePos = thePos + 1_pInt
|
|
|
|
if (theSize > 0_pInt) then ! any homogenization results to mention?
|
|
materialpoint_results(thePos+1:thePos+theSize,i,e) = homogenization_postResults(i,e) ! tell homogenization results
|
|
thePos = thePos + theSize
|
|
endif
|
|
|
|
materialpoint_results(thePos+1,i,e) = real(myNgrains,pReal) ! tell number of grains at materialpoint
|
|
thePos = thePos + 1_pInt
|
|
|
|
do g = 1,myNgrains ! loop over all grains
|
|
theSize = (1 + crystallite_sizePostResults(myCrystallite)) + (1 + constitutive_sizePostResults(g,i,e))
|
|
materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(dt,g,i,e) ! tell crystallite results
|
|
thePos = thePos + theSize
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
endsubroutine
|
|
|
|
|
|
!********************************************************************
|
|
! partition material point def grad onto constituents
|
|
!********************************************************************
|
|
subroutine homogenization_partitionDeformation(&
|
|
ip, & ! integration point
|
|
el & ! element
|
|
)
|
|
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_type, homogenization_maxNgrains
|
|
use crystallite, only: crystallite_partionedF0,crystallite_partionedF
|
|
use homogenization_isostrain
|
|
use homogenization_RGC
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ip,el
|
|
|
|
select case(homogenization_type(mesh_element(3,el)))
|
|
case (homogenization_isostrain_label)
|
|
!* isostrain
|
|
call homogenization_isostrain_partitionDeformation(crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
|
|
materialpoint_subF(1:3,1:3,ip,el),&
|
|
homogenization_state(ip,el), &
|
|
ip, &
|
|
el)
|
|
!* RGC homogenization
|
|
case (homogenization_RGC_label)
|
|
call homogenization_RGC_partitionDeformation(crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
|
|
materialpoint_subF(1:3,1:3,ip,el),&
|
|
homogenization_state(ip,el), &
|
|
ip, &
|
|
el)
|
|
end select
|
|
|
|
endsubroutine
|
|
|
|
|
|
!********************************************************************
|
|
! update the internal state of the homogenization scheme
|
|
! and tell whether "done" and "happy" with result
|
|
!********************************************************************
|
|
function homogenization_updateState(&
|
|
ip, & ! integration point
|
|
el & ! element
|
|
)
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_type, homogenization_maxNgrains
|
|
use crystallite, only: crystallite_P,crystallite_dPdF,crystallite_partionedF,crystallite_partionedF0 ! modified <<<updated 31.07.2009>>>
|
|
|
|
use homogenization_isostrain
|
|
use homogenization_RGC
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ip,el
|
|
logical, dimension(2) :: homogenization_updateState
|
|
|
|
select case(homogenization_type(mesh_element(3,el)))
|
|
!* isostrain
|
|
case (homogenization_isostrain_label)
|
|
homogenization_updateState = &
|
|
homogenization_isostrain_updateState( homogenization_state(ip,el), &
|
|
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
ip, &
|
|
el)
|
|
!* RGC homogenization
|
|
case (homogenization_RGC_label)
|
|
homogenization_updateState = &
|
|
homogenization_RGC_updateState( homogenization_state(ip,el), &
|
|
homogenization_subState0(ip,el), &
|
|
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
|
|
materialpoint_subF(1:3,1:3,ip,el),&
|
|
materialpoint_subdt(ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
ip, &
|
|
el)
|
|
end select
|
|
|
|
return
|
|
|
|
endfunction
|
|
|
|
|
|
!********************************************************************
|
|
! derive average stress and stiffness from constituent quantities
|
|
!********************************************************************
|
|
subroutine homogenization_averageStressAndItsTangent(&
|
|
ip, & ! integration point
|
|
el & ! element
|
|
)
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_type, homogenization_maxNgrains
|
|
use crystallite, only: crystallite_P,crystallite_dPdF
|
|
|
|
use homogenization_RGC
|
|
use homogenization_isostrain
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ip,el
|
|
|
|
select case(homogenization_type(mesh_element(3,el)))
|
|
!* isostrain
|
|
case (homogenization_isostrain_label)
|
|
call homogenization_isostrain_averageStressAndItsTangent(materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
|
|
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
ip, &
|
|
el)
|
|
!* RGC homogenization
|
|
case (homogenization_RGC_label)
|
|
call homogenization_RGC_averageStressAndItsTangent( materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
|
|
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
ip, &
|
|
el)
|
|
end select
|
|
|
|
return
|
|
|
|
endsubroutine
|
|
|
|
|
|
!********************************************************************
|
|
! derive average stress and stiffness from constituent quantities
|
|
!********************************************************************
|
|
subroutine homogenization_averageTemperature(&
|
|
ip, & ! integration point
|
|
el & ! element
|
|
)
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_type, homogenization_maxNgrains
|
|
use crystallite, only: crystallite_Temperature
|
|
|
|
use homogenization_isostrain
|
|
use homogenization_RGC
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ip,el
|
|
|
|
select case(homogenization_type(mesh_element(3,el)))
|
|
!* isostrain
|
|
case (homogenization_isostrain_label)
|
|
materialpoint_Temperature(ip,el) = &
|
|
homogenization_isostrain_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,ip,el), ip, el)
|
|
!* RGC homogenization
|
|
case (homogenization_RGC_label)
|
|
materialpoint_Temperature(ip,el) = &
|
|
homogenization_RGC_averageTemperature(crystallite_Temperature(1:homogenization_maxNgrains,ip,el), ip, el)
|
|
end select
|
|
|
|
return
|
|
|
|
endsubroutine
|
|
|
|
|
|
!********************************************************************
|
|
! return array of homogenization results for post file inclusion
|
|
! call only, if homogenization_sizePostResults(ip,el) > 0 !!
|
|
!********************************************************************
|
|
function homogenization_postResults(&
|
|
ip, & ! integration point
|
|
el & ! element
|
|
)
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_type
|
|
use homogenization_isostrain
|
|
use homogenization_RGC
|
|
implicit none
|
|
|
|
!* Definition of variables
|
|
integer(pInt), intent(in) :: ip,el
|
|
real(pReal), dimension(homogenization_sizePostResults(ip,el)) :: homogenization_postResults
|
|
|
|
homogenization_postResults = 0.0_pReal
|
|
select case (homogenization_type(mesh_element(3,el)))
|
|
!* isostrain
|
|
case (homogenization_isostrain_label)
|
|
homogenization_postResults = homogenization_isostrain_postResults(homogenization_state(ip,el),ip,el)
|
|
!* RGC homogenization
|
|
case (homogenization_RGC_label)
|
|
homogenization_postResults = homogenization_RGC_postResults(homogenization_state(ip,el),ip,el)
|
|
end select
|
|
|
|
return
|
|
|
|
endfunction
|
|
|
|
END MODULE
|