DAMASK_EICMD/src/homogenization.f90

616 lines
33 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
!--------------------------------------------------------------------------------------------------
module homogenization
use prec
use IO
use config
use debug
use math
use material
use numerics
use constitutive
use crystallite
use FEsolving
use discretization
use thermal_isothermal
use thermal_adiabatic
use thermal_conduction
use damage_none
use damage_local
use damage_nonlocal
use results
implicit none
private
logical, public :: &
terminallyIll = .false. !< at least one material point is terminally ill
!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point
real(pReal), dimension(:,:,:,:), allocatable, public :: &
materialpoint_F0, & !< def grad of IP at start of FE increment
materialpoint_F !< def grad of IP to be reached at end of FE increment
real(pReal), dimension(:,:,:,:), allocatable, public, protected :: &
materialpoint_P !< first P--K stress of IP
real(pReal), dimension(:,:,:,:,:,:), allocatable, public, protected :: &
materialpoint_dPdF !< tangent of first P--K stress at IP
type :: tNumerics
integer :: &
nMPstate !< materialpoint state loop limit
real(pReal) :: &
subStepMinHomog, & !< minimum (relative) size of sub-step allowed during cutback in homogenization
subStepSizeHomog, & !< size of first substep when cutback in homogenization
stepIncreaseHomog !< increase of next substep size when previous substep converged in homogenization
end type tNumerics
type(tNumerics) :: num
interface
module subroutine mech_none_init
end subroutine mech_none_init
module subroutine mech_isostrain_init
end subroutine mech_isostrain_init
module subroutine mech_RGC_init
end subroutine mech_RGC_init
module subroutine mech_isostrain_partitionDeformation(F,avgF)
real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient
real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point
end subroutine mech_isostrain_partitionDeformation
module subroutine mech_RGC_partitionDeformation(F,avgF,instance,of)
real(pReal), dimension (:,:,:), intent(out) :: F !< partitioned deformation gradient
real(pReal), dimension (3,3), intent(in) :: avgF !< average deformation gradient at material point
integer, intent(in) :: &
instance, &
of
end subroutine mech_RGC_partitionDeformation
module subroutine mech_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
end subroutine mech_isostrain_averageStressAndItsTangent
module subroutine mech_RGC_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,instance)
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (:,:,:), intent(in) :: P !< partitioned stresses
real(pReal), dimension (:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
integer, intent(in) :: instance
end subroutine mech_RGC_averageStressAndItsTangent
module function mech_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el)
logical, dimension(2) :: mech_RGC_updateState
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< partitioned stresses
F,& !< partitioned deformation gradients
F0 !< partitioned initial deformation gradients
real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
end function mech_RGC_updateState
module subroutine mech_RGC_results(instance,group)
integer, intent(in) :: instance !< homogenization instance
character(len=*), intent(in) :: group !< group name in HDF5 file
end subroutine mech_RGC_results
end interface
public :: &
homogenization_init, &
materialpoint_stressAndItsTangent, &
homogenization_results
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init
if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) call mech_none_init
if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) call mech_isostrain_init
if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) call mech_RGC_init
if (any(thermal_type == THERMAL_isothermal_ID)) call thermal_isothermal_init
if (any(thermal_type == THERMAL_adiabatic_ID)) call thermal_adiabatic_init
if (any(thermal_type == THERMAL_conduction_ID)) call thermal_conduction_init
if (any(damage_type == DAMAGE_none_ID)) call damage_none_init
if (any(damage_type == DAMAGE_local_ID)) call damage_local_init
if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init
call config_deallocate('material.config/homogenization')
!--------------------------------------------------------------------------------------------------
! allocate and initialize global variables
allocate(materialpoint_dPdF(3,3,3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
materialpoint_F0 = spread(spread(math_I3,3,discretization_nIP),4,discretization_nElem) ! initialize to identity
materialpoint_F = materialpoint_F0 ! initialize to identity
allocate(materialpoint_P(3,3,discretization_nIP,discretization_nElem), source=0.0_pReal)
write(6,'(/,a)') ' <<<+- homogenization init -+>>>'; flush(6)
if (debug_g < 1 .or. debug_g > homogenization_Ngrains(material_homogenizationAt(debug_e))) &
call IO_error(602,ext_msg='constituent', el=debug_e, g=debug_g)
num%nMPstate = config_numerics%getInt( 'nmpstate', defaultVal=10)
num%subStepMinHomog = config_numerics%getFloat('substepminhomog', defaultVal=1.0e-3_pReal)
num%subStepSizeHomog = config_numerics%getFloat('substepsizehomog', defaultVal=0.25_pReal)
num%stepIncreaseHomog = config_numerics%getFloat('stepincreasehomog', defaultVal=1.5_pReal)
if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate')
if (num%subStepMinHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinHomog')
if (num%subStepSizeHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeHomog')
if (num%stepIncreaseHomog <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseHomog')
end subroutine homogenization_init
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of stress and corresponding tangent at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
real(pReal), intent(in) :: dt !< time increment
logical, intent(in) :: updateJaco !< initiating Jacobian update
integer :: &
NiterationHomog, &
NiterationMPstate, &
g, & !< grain number
i, & !< integration point number
e, & !< element number
mySource, &
myNgrains
real(pReal), dimension(discretization_nIP,discretization_nElem) :: &
subFrac, &
subStep
logical, dimension(discretization_nIP,discretization_nElem) :: &
requested, &
converged
logical, dimension(2,discretization_nIP,discretization_nElem) :: &
doneAndHappy
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0) then
write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', &
transpose(materialpoint_F0(1:3,1:3,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', &
transpose(materialpoint_F(1:3,1:3,debug_i,debug_e))
endif
#endif
!--------------------------------------------------------------------------------------------------
! initialize restoration points
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
do i = FEsolving_execIP(1),FEsolving_execIP(2);
do g = 1,myNgrains
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%state0( :,material_phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(material_phaseAt(g,e))
sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = &
sourceState(material_phaseAt(g,e))%p(mySource)%state0( :,material_phasememberAt(g,i,e))
enddo
crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e)
crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e)
crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e)
crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e)
crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e)
crystallite_partionedS0(1:3,1:3,g,i,e) = crystallite_S0(1:3,1:3,g,i,e)
enddo
subFrac(i,e) = 0.0_pReal
converged(i,e) = .false. ! pretend failed step ...
subStep(i,e) = 1.0_pReal/num%subStepSizeHomog ! ... larger then the requested calculation
requested(i,e) = .true. ! everybody requires calculation
if (homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
if (thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
thermalState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
if (damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
enddo
enddo
NiterationHomog = 0
cutBackLooping: do while (.not. terminallyIll .and. &
any(subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > num%subStepMinHomog))
!$OMP PARALLEL DO PRIVATE(myNgrains)
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
IpLooping1: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if (converged(i,e)) then
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0)) then
write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', &
subFrac(i,e), 'to current subFrac', &
subFrac(i,e)+subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i
endif
#endif
!---------------------------------------------------------------------------------------------------
! calculate new subStep and new subFrac
subFrac(i,e) = subFrac(i,e) + subStep(i,e)
subStep(i,e) = min(1.0_pReal-subFrac(i,e),num%stepIncreaseHomog*subStep(i,e)) ! introduce flexibility for step increase/acceleration
steppingNeeded: if (subStep(i,e) > num%subStepMinHomog) then
! wind forward grain starting point
crystallite_partionedF0 (1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fi (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Li (1:3,1:3,1:myNgrains,i,e)
crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e) = crystallite_S (1:3,1:3,1:myNgrains,i,e)
do g = 1,myNgrains
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%state (:,material_phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(material_phaseAt(g,e))
sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e)) = &
sourceState(material_phaseAt(g,e))%p(mySource)%state (:,material_phasememberAt(g,i,e))
enddo
enddo
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
if(thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
thermalState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
if(damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
endif steppingNeeded
else
if ( (myNgrains == 1 .and. subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
num%subStepSizeHomog * subStep(i,e) <= num%subStepMinHomog ) then ! would require too small subStep
! cutback makes no sense
if (.not. terminallyIll) then ! so first signals terminally ill...
!$OMP CRITICAL (write2out)
write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill'
!$OMP END CRITICAL (write2out)
endif
terminallyIll = .true. ! ...and kills all others
else ! cutback makes sense
subStep(i,e) = num%subStepSizeHomog * subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
#ifdef DEBUG
if (iand(debug_level(debug_homogenization), debug_levelExtensive) /= 0 &
.and. ((e == debug_e .and. i == debug_i) &
.or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0)) then
write(6,'(a,1x,f12.8,a,i8,1x,i2/)') &
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new subStep:',&
subStep(i,e),' at el ip',e,i
endif
#endif
!--------------------------------------------------------------------------------------------------
! restore
if (subStep(i,e) < 1.0_pReal) then ! protect against fake cutback from \Delta t = 2 to 1. Maybe that "trick" is not necessary anymore at all? I.e. start with \Delta t = 1
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e)
crystallite_Li(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e)
endif ! maybe protecting everything from overwriting (not only L) makes even more sense
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e)
crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e)
crystallite_S (1:3,1:3,1:myNgrains,i,e) = crystallite_partionedS0 (1:3,1:3,1:myNgrains,i,e)
do g = 1, myNgrains
plasticState (material_phaseAt(g,e))%state( :,material_phasememberAt(g,i,e)) = &
plasticState (material_phaseAt(g,e))%partionedState0(:,material_phasememberAt(g,i,e))
do mySource = 1, phase_Nsources(material_phaseAt(g,e))
sourceState(material_phaseAt(g,e))%p(mySource)%state( :,material_phasememberAt(g,i,e)) = &
sourceState(material_phaseAt(g,e))%p(mySource)%partionedState0(:,material_phasememberAt(g,i,e))
enddo
enddo
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
if(thermalState(material_homogenizationAt(e))%sizeState > 0) &
thermalState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
thermalState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
if(damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
endif
endif
if (subStep(i,e) > num%subStepMinHomog) then
requested(i,e) = .true.
doneAndHappy(1:2,i,e) = [.false.,.true.]
endif
enddo IpLooping1
enddo elementLooping1
!$OMP END PARALLEL DO
NiterationMPstate = 0
convergenceLooping: do while (.not. terminallyIll .and. &
any( requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
.and. .not. doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
) .and. &
NiterationMPstate < num%nMPstate)
NiterationMPstate = NiterationMPstate + 1
!--------------------------------------------------------------------------------------------------
! deformation partitioning
!$OMP PARALLEL DO PRIVATE(myNgrains)
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(material_homogenizationAt(e))
IpLooping2: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if(requested(i,e) .and. .not. doneAndHappy(1,i,e)) then ! requested but not yet done
call partitionDeformation(materialpoint_F0(1:3,1:3,i,e) &
+ (materialpoint_F(1:3,1:3,i,e)-materialpoint_F0(1:3,1:3,i,e))&
*(subStep(i,e)+subFrac(i,e)), &
i,e)
crystallite_dt(1:myNgrains,i,e) = dt*subStep(i,e) ! propagate materialpoint dt to grains
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
else
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
endif
enddo IpLooping2
enddo elementLooping2
!$OMP END PARALLEL DO
!--------------------------------------------------------------------------------------------------
! crystallite integration
converged = crystallite_stress() !ToDo: MD not sure if that is the best logic
!--------------------------------------------------------------------------------------------------
! state update
!$OMP PARALLEL DO
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping3: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if (requested(i,e) .and. .not. doneAndHappy(1,i,e)) then
if (.not. converged(i,e)) then
doneAndHappy(1:2,i,e) = [.true.,.false.]
else
doneAndHappy(1:2,i,e) = updateState(dt*subStep(i,e), &
materialpoint_F0(1:3,1:3,i,e) &
+ (materialpoint_F(1:3,1:3,i,e)-materialpoint_F0(1:3,1:3,i,e)) &
*(subStep(i,e)+subFrac(i,e)), &
i,e)
converged(i,e) = all(doneAndHappy(1:2,i,e)) ! converged if done and happy
endif
endif
enddo IpLooping3
enddo elementLooping3
!$OMP END PARALLEL DO
enddo convergenceLooping
NiterationHomog = NiterationHomog + 1
enddo cutBackLooping
if(updateJaco) call crystallite_stressTangent
if (.not. terminallyIll ) then
call crystallite_orientations() ! calculate crystal orientations
!$OMP PARALLEL DO
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping4: do i = FEsolving_execIP(1),FEsolving_execIP(2)
call averageStressAndItsTangent(i,e)
enddo IpLooping4
enddo elementLooping4
!$OMP END PARALLEL DO
else
write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill'
endif
end subroutine materialpoint_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief partition material point def grad onto constituents
!--------------------------------------------------------------------------------------------------
subroutine partitionDeformation(subF,ip,el)
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
crystallite_partionedF(1:3,1:3,1,ip,el) = subF
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call mech_isostrain_partitionDeformation(&
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
subF)
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call mech_RGC_partitionDeformation(&
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
subF,&
ip, &
el)
end select chosenHomogenization
end subroutine partitionDeformation
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result
!--------------------------------------------------------------------------------------------------
function updateState(subdt,subF,ip,el)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
logical, dimension(2) :: updateState
updateState = .true.
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
updateState = &
updateState .and. &
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_partionedF(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_partionedF0(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el),&
subF,&
subdt, &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
ip, &
el)
end select chosenHomogenization
chosenThermal: select case (thermal_type(material_homogenizationAt(el)))
case (THERMAL_adiabatic_ID) chosenThermal
updateState = &
updateState .and. &
thermal_adiabatic_updateState(subdt, &
ip, &
el)
end select chosenThermal
chosenDamage: select case (damage_type(material_homogenizationAt(el)))
case (DAMAGE_local_ID) chosenDamage
updateState = &
updateState .and. &
damage_local_updateState(subdt, &
ip, &
el)
end select chosenDamage
end function updateState
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine averageStressAndItsTangent(ip,el)
integer, intent(in) :: &
ip, & !< integration point
el !< element number
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
materialpoint_P(1:3,1:3,ip,el) = crystallite_P(1:3,1:3,1,ip,el)
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) = crystallite_dPdF(1:3,1:3,1:3,1:3,1,ip,el)
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
call mech_isostrain_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
homogenization_typeInstance(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
call mech_RGC_averageStressAndItsTangent(&
materialpoint_P(1:3,1:3,ip,el), &
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
crystallite_P(1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_Ngrains(material_homogenizationAt(el)),ip,el), &
homogenization_typeInstance(material_homogenizationAt(el)))
end select chosenHomogenization
end subroutine averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief writes homogenization results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_results
use material, only: &
material_homogenization_type => homogenization_type
integer :: p
character(len=pStringLen) :: group_base,group
!real(pReal), dimension(:,:,:), allocatable :: temp
do p=1,size(config_name_homogenization)
group_base = 'current/materialpoint/'//trim(config_name_homogenization(p))
call results_closeGroup(results_addGroup(group_base))
group = trim(group_base)//'/generic'
call results_closeGroup(results_addGroup(group))
!temp = reshape(materialpoint_F,[3,3,discretization_nIP*discretization_nElem])
!call results_writeDataset(group,temp,'F',&
! 'deformation gradient','1')
!temp = reshape(materialpoint_P,[3,3,discretization_nIP*discretization_nElem])
!call results_writeDataset(group,temp,'P',&
! '1st Piola-Kirchoff stress','Pa')
group = trim(group_base)//'/mech'
call results_closeGroup(results_addGroup(group))
select case(material_homogenization_type(p))
case(HOMOGENIZATION_rgc_ID)
call mech_RGC_results(homogenization_typeInstance(p),group)
end select
group = trim(group_base)//'/damage'
call results_closeGroup(results_addGroup(group))
select case(damage_type(p))
case(DAMAGE_LOCAL_ID)
call damage_local_results(p,group)
case(DAMAGE_NONLOCAL_ID)
call damage_nonlocal_results(p,group)
end select
group = trim(group_base)//'/thermal'
call results_closeGroup(results_addGroup(group))
select case(thermal_type(p))
case(THERMAL_ADIABATIC_ID)
call thermal_adiabatic_results(p,group)
case(THERMAL_CONDUCTION_ID)
call thermal_conduction_results(p,group)
end select
enddo
end subroutine homogenization_results
end module homogenization