DAMASK_EICMD/code/DAMASK_spectral_AL.f90

964 lines
61 KiB
Fortran

! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##################################################################################################
!* $Id$
!##################################################################################################
! Material subroutine for BVP solution using spectral method
!
! Run 'DAMASK_spectral.exe --help' to get usage hints
!
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts,
! D.D. Tjahjanto,
! C. Kords,
! M. Diehl,
! R. Lebensohn
!
! MPI fuer Eisenforschung, Duesseldorf
!##################################################################################################
! used modules
!##################################################################################################
program DAMASK_spectral_AL
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use DAMASK_interface
use prec, only: pInt, pReal, DAMASK_NaN
use IO
use debug, only: debug_spectral, &
debug_levelBasic, &
debug_spectralRestart, &
debug_spectralFFTW
use math
use CPFEM, only: CPFEM_general, CPFEM_initAll
use FEsolving, only: restartWrite, restartInc
use numerics, only: err_div_tol, err_stress_tolrel, rotation_tol, itmax, itmin, &
memory_efficient, update_gamma, DAMASK_NumThreadsInt, &
fftw_planner_flag, fftw_timelimit
use homogenization, only: materialpoint_sizeResults, materialpoint_results
!$ use OMP_LIB ! the openMP function library
!##################################################################################################
! variable declaration
!##################################################################################################
implicit none
!--------------------------------------------------------------------------------------------------
! variables to read from load case and geom file
real(pReal), dimension(9) :: temp_valueVector ! stores information temporarily from loadcase file
logical, dimension(9) :: temp_maskVector
integer(pInt), parameter :: maxNchunksLoadcase = (1_pInt + 9_pInt)*3_pInt +& ! deformation, rotation, and stress
(1_pInt + 1_pInt)*5_pInt +& ! time, (log)incs, temp, restartfrequency, and outputfrequency
1_pInt, & ! dropguessing
maxNchunksGeom = 7_pInt, & ! 4 identifiers, 3 values
myUnit = 234_pInt
integer(pInt), dimension(1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing
integer(pInt) :: headerLength,&
N_l = 0_pInt,&
N_t = 0_pInt,&
N_n = 0_pInt,&
N_Fdot = 0_pInt
character(len=1024) :: path, line, keyword
logical :: gotResolution = .false.,&
gotDimension = .false.,&
gotHomogenization = .false.
!--------------------------------------------------------------------------------------------------
! variable storing information from load case file
type bc_type
real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient
P = 0.0_pReal, & ! stress BC (if applicable)
rotation = math_I3 ! rotation of BC (if applicable)
real(pReal) :: time = 0.0_pReal, & ! length of increment
temperature = 300.0_pReal ! isothermal starting conditions
integer(pInt) :: incs = 0_pInt, & ! number of increments
outputfrequency = 1_pInt, & ! frequency of result writes
restartfrequency = 0_pInt, & ! frequency of restart writes
logscale = 0_pInt ! linear/logaritmic time inc flag
logical :: followFormerTrajectory = .true., & ! follow trajectory of former loadcase
velGradApplied = .false. ! decide wether velocity gradient or fdot is given
logical, dimension(3,3) :: maskDeformation = .false., & ! mask of deformation boundary conditions
maskStress = .false. ! mask of stress boundary conditions
logical, dimension(9) :: maskStressVector = .false. ! linear mask of boundary conditions
end type
type(bc_type), allocatable, dimension(:) :: bc
!--------------------------------------------------------------------------------------------------
! variables storing information from geom file
real(pReal) :: wgt
real(pReal), dimension(3) :: geomdim = 0.0_pReal ! physical dimension of volume element per direction
integer(pInt) :: Npoints,& ! number of Fourier points
homog ! homogenization scheme used
integer(pInt), dimension(3) :: res = 1_pInt ! resolution (number of Fourier points) in each direction
integer(pInt) :: res1_red ! to store res(1)/2 +1
!--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc.
real(pReal), dimension(3,3) :: P_star_av = 0.0_pReal, &
F_aim = math_I3, F_aim_lastInc = math_I3, lambda_av, &
mask_stress, mask_defgrad, deltaF, F_star_av, &
F_aim_lab ! quantities rotated to other coordinate system
real(pReal), dimension(3,3,3,3) :: C_inc0, C=0.0_pReal, S_lastInc, C_lastInc ! stiffness and compliance
real(pReal), dimension(6) :: sigma ! cauchy stress
real(pReal), dimension(6,6) :: dsde ! small strain stiffness
real(pReal), dimension(9,9) :: s_prev99, c_prev99 ! compliance and stiffness in matrix notation
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
integer(pInt) :: size_reduced = 0_pInt ! number of stress BCs
!--------------------------------------------------------------------------------------------------
! pointwise data
type(C_PTR) :: tensorField ! fields in real an fourier space
real(pReal), dimension(:,:,:,:,:), pointer :: lambda_real, F_real ! fields in real space (pointer)
complex(pReal), dimension(:,:,:,:,:), pointer :: lambda_fourier, F_fourier ! fields in fourier space (pointer)
real(pReal), dimension(:,:,:,:,:), allocatable :: F_lastInc, F_star, lambda, P, F_star_lastIter
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: dPdF
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
real(pReal), dimension(:,:,:), allocatable :: temperature
!--------------------------------------------------------------------------------------------------
! variables storing information for spectral method and FFTW
type(C_PTR) :: plan_correction, plan_lambda ! plans for fftw
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
integer(pInt), dimension(3) :: k_s
!--------------------------------------------------------------------------------------------------
! loop variables, convergence etc.
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval
real(pReal) :: guessmode, err_stress, err_stress_tol, err_f, err_p, err_crit, &
err_f_point, err_p_point, pstress_av_L2, err_div_rms, err_div
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
complex(pReal), dimension(3,3) :: temp33_Complex
real(pReal), dimension(3,3) :: temp33_Real
integer(pInt) :: i, j, k, l, u, v, w, errorID = 0_pInt, ierr
integer(pInt) :: N_Loadcases, loadcase, inc, iter, ielem, CPFEM_mode, guesses, guessmax=10_pInt,&
totalIncsCounter = 0_pInt,notConvergedCounter = 0_pInt, convergedCounter = 0_pInt
logical :: errmatinv, callCPFEM
character(len=6) :: loadcase_string
!--------------------------------------------------------------------------------------------------
!variables controlling debugging
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
!##################################################################################################
! reading of information from load case file and geometry file
!##################################################################################################
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
open (6, encoding='UTF-8')
call DAMASK_interface_init
print '(a)', ''
print '(a)', ' <<<+- DAMASK_spectral_AL init -+>>>'
print '(a)', ' $Id$'
#include "compilation_info.f90"
print '(a,a)', ' Working Directory: ',trim(getSolverWorkingDirectoryName())
print '(a,a)', ' Solver Job Name: ',trim(getSolverJobName())
print '(a)', ''
!--------------------------------------------------------------------------------------------------
! reading the load case file and allocate data structure containing load cases
path = getLoadcaseName()
call IO_open_file(myUnit,path)
rewind(myUnit)
do
read(myUnit,'(a1024)',END = 100) line
if (IO_isBlank(line)) cycle ! skip empty lines
positions = IO_stringPos(line,maxNchunksLoadcase)
do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase
select case (IO_lc(IO_stringValue(line,positions,i)))
case('l','velocitygrad','velgrad','velocitygradient')
N_l = N_l + 1_pInt
case('fdot','dotf')
N_Fdot = N_Fdot + 1_pInt
case('t','time','delta')
N_t = N_t + 1_pInt
case('n','incs','increments','steps','logincs','logsteps')
N_n = N_n + 1_pInt
end select
enddo ! count all identifiers to allocate memory and do sanity check
enddo
100 N_Loadcases = N_n
if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check
call IO_error(error_ID=837_pInt,ext_msg = trim(path)) ! error message for incomplete loadcase
allocate (bc(N_Loadcases))
!--------------------------------------------------------------------------------------------------
! reading the load case and assign values to the allocated data structure
rewind(myUnit)
loadcase = 0_pInt
do
read(myUnit,'(a1024)',END = 101) line
if (IO_isBlank(line)) cycle ! skip empty lines
loadcase = loadcase + 1_pInt
positions = IO_stringPos(line,maxNchunksLoadcase)
do j = 1_pInt,maxNchunksLoadcase
select case (IO_lc(IO_stringValue(line,positions,j)))
case('fdot','dotf','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix
bc(loadcase)%velGradApplied = &
(IO_lc(IO_stringValue(line,positions,j)) == 'l'.or. & ! in case of given L, set flag to true
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygrad'.or.&
IO_lc(IO_stringValue(line,positions,j)) == 'velgrad'.or.&
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygradient')
temp_valueVector = 0.0_pReal
temp_maskVector = .false.
forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,positions,j+k) /= '*'
do k = 1_pInt,9_pInt
if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
enddo
bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,[ 3,3]))
bc(loadcase)%deformation = math_plain9to33(temp_valueVector)
case('p','pk1','piolakirchhoff','stress')
temp_valueVector = 0.0_pReal
forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) =&
IO_stringValue(line,positions,j+k) /= '*'
do k = 1_pInt,9_pInt
if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) =&
IO_floatValue(line,positions,j+k) ! assign values for the bc(loadcase)%P matrix
enddo
bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,[ 3,3]))
bc(loadcase)%P = math_plain9to33(temp_valueVector)
case('t','time','delta') ! increment time
bc(loadcase)%time = IO_floatValue(line,positions,j+1_pInt)
case('temp','temperature') ! starting temperature
bc(loadcase)%temperature = IO_floatValue(line,positions,j+1_pInt)
case('n','incs','increments','steps') ! number of increments
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
bc(loadcase)%logscale = 1_pInt
case('f','freq','frequency','outputfreq') ! frequency of result writings
bc(loadcase)%outputfrequency = IO_intValue(line,positions,j+1_pInt)
case('r','restart','restartwrite') ! frequency of writing restart information
bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,j+1_pInt))
case('guessreset','dropguessing')
bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory
case('euler') ! rotation of loadcase given in euler angles
u = 0_pInt ! assuming values given in radians
v = 1_pInt ! assuming keyword indicating degree/radians
select case (IO_lc(IO_stringValue(line,positions,j+1_pInt)))
case('deg','degree')
u = 1_pInt ! for conversion from degree to radian
case('rad','radian')
case default
v = 0_pInt ! immediately reading in angles, assuming radians
end select
forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = &
IO_floatValue(line,positions,j+v+k) * real(u,pReal) * inRad
bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1))
case('rotation','rot') ! assign values for the rotation of loadcase matrix
temp_valueVector = 0.0_pReal
forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
bc(loadcase)%rotation = math_plain9to33(temp_valueVector)
end select
enddo; enddo
101 close(myUnit)
!-------------------------------------------------------------------------------------------------- ToDo: if temperature at CPFEM is treated properly, move this up immediately after interface init
! initialization of all related DAMASK modules (e.g. mesh.f90 reads in geometry)
call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt)
if (update_gamma .and. .not. memory_efficient) call IO_error(error_ID = 847_pInt)
!--------------------------------------------------------------------------------------------------
! read header of geom file to get size information. complete geom file is intepretated by mesh.f90
path = getModelName()
call IO_open_file(myUnit,trim(path)//InputFileExtension)
rewind(myUnit)
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,2_pInt)
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
else
call IO_error(error_ID=842_pInt)
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,maxNchunksGeom)
select case ( IO_lc(IO_StringValue(line,positions,1)) )
case ('dimension')
gotDimension = .true.
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,positions,j)))
case('x')
geomdim(1) = IO_floatValue(line,positions,j+1_pInt)
case('y')
geomdim(2) = IO_floatValue(line,positions,j+1_pInt)
case('z')
geomdim(3) = IO_floatValue(line,positions,j+1_pInt)
end select
enddo
case ('homogenization')
gotHomogenization = .true.
homog = IO_intValue(line,positions,2_pInt)
case ('resolution')
gotResolution = .true.
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,positions,j)))
case('a')
res(1) = IO_intValue(line,positions,j+1_pInt)
case('b')
res(2) = IO_intValue(line,positions,j+1_pInt)
case('c')
res(3) = IO_intValue(line,positions,j+1_pInt)
end select
enddo
end select
enddo
close(myUnit)
!--------------------------------------------------------------------------------------------------
! sanity checks of geometry parameters
if (.not.(gotDimension .and. gotHomogenization .and. gotResolution))&
call IO_error(error_ID = 845_pInt)
if (any(geomdim<=0.0_pReal)) call IO_error(error_ID = 802_pInt)
if(mod(res(1),2_pInt)/=0_pInt .or.&
mod(res(2),2_pInt)/=0_pInt .or.&
(mod(res(3),2_pInt)/=0_pInt .and. res(3)/= 1_pInt)) call IO_error(error_ID = 803_pInt)
!--------------------------------------------------------------------------------------------------
! variables derived from resolution
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
Npoints = res(1)*res(2)*res(3)
wgt = 1.0_pReal/real(Npoints, pReal)
!--------------------------------------------------------------------------------------------------
! output of geometry
print '(a)', ''
print '(a)', '#############################################################'
print '(a)', 'DAMASK spectral_AL:'
print '(a)', 'The AL spectral method boundary value problem solver for'
print '(a)', 'the Duesseldorf Advanced Material Simulation Kit'
print '(a)', '#############################################################'
print '(a,a)', 'geometry file: ',trim(path)//'.geom'
print '(a)', '============================================================='
print '(a,3(i12 ))','resolution a b c:', res
print '(a,3(f12.5))','dimension x y z:', geomdim
print '(a,i5)','homogenization: ',homog
print '(a)', '#############################################################'
print '(a,a)', 'loadcase file: ',trim(getLoadcaseName())
!--------------------------------------------------------------------------------------------------
! consistency checks and output of load case
bc(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first loadcase
do loadcase = 1_pInt, N_Loadcases
write (loadcase_string, '(i6)' ) loadcase
print '(a)', '============================================================='
print '(a,i6)', 'loadcase: ', loadcase
if (.not. bc(loadcase)%followFormerTrajectory) print '(a)', 'drop guessing along trajectory'
if (bc(loadcase)%velGradApplied) then
do j = 1_pInt, 3_pInt
if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. &
any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 832_pInt ! each row should be either fully or not at all defined
enddo
print '(a)','velocity gradient:'
else
print '(a)','deformation gradient rate:'
endif
write (*,'(3(3(f12.7,1x)/))',advance='no') merge(math_transpose33(bc(loadcase)%deformation),&
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskDeformation))
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'stress / GPa:',&
1e-9_pReal*merge(math_transpose33(bc(loadcase)%P),&
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskStress))
if (any(bc(loadcase)%rotation /= math_I3)) &
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') ' rotation of loadframe:',&
math_transpose33(bc(loadcase)%rotation)
print '(a,f12.6)','temperature:',bc(loadcase)%temperature
print '(a,f12.6)','time: ',bc(loadcase)%time
print '(a,i5)' ,'increments: ',bc(loadcase)%incs
print '(a,i5)','output frequency: ',bc(loadcase)%outputfrequency
print '(a,i5)','restart frequency: ',bc(loadcase)%restartfrequency
if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 831_pInt ! exclusive or masking only
if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. &
reshape([ .false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false.],[ 3,3]))) &
errorID = 838_pInt ! no rotation is allowed by stress BC
if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose33(bc(loadcase)%rotation))&
-math_I3) > reshape(spread(rotation_tol,1,9),[ 3,3]))&
.or. abs(math_det33(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol)&
errorID = 846_pInt ! given rotation matrix contains strain
if (bc(loadcase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment
if (bc(loadcase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count
if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 836_pInt ! non-positive result frequency
if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string)
enddo
!--------------------------------------------------------------------------------------------------
! debugging parameters
debugRestart = iand(debug_spectral,debug_spectralRestart) > 0_pInt
debugFFTW = iand(debug_spectral,debug_spectralFFTW) > 0_pInt
debugGeneral = .true.
!##################################################################################################
! initialization
!##################################################################################################
!--------------------------------------------------------------------------------------------------
! allocate more memory
allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (dPdF ( res(1), res(2),res(3),3,3,3,3), source = 0.0_pReal)
allocate (F_star ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (F_star_lastIter ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (lambda ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal)
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
allocate (temperature( res(1), res(2),res(3)), source = bc(1)%temperature) ! start out isothermally
tensorField = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) ! allocate continous data using a C function, C_SIZE_T is of type integer(8)
call c_f_pointer(tensorField, lambda_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for the real representation
call c_f_pointer(tensorField, F_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for the real representation
call c_f_pointer(tensorField, lambda_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for the complex representation
call c_f_pointer(tensorField, F_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for the complex representation
!--------------------------------------------------------------------------------------------------
! general initialization of fftw (see manual on fftw.org for more details)
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt) ! check for correct precision in C
#ifdef _OPENMP
if(DAMASK_NumThreadsInt > 0_pInt) then
ierr = fftw_init_threads()
if (ierr == 0_pInt) call IO_error(error_ID = 809_pInt)
call fftw_plan_with_nthreads(DAMASK_NumThreadsInt)
endif
#endif
call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation
!--------------------------------------------------------------------------------------------------
! creating plans
plan_lambda = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order
lambda_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
lambda_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,fftw_planner_flag)
plan_correction = fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,&
F_fourier,[ res(3),res(2) ,res1_red],&
1, res(3)*res(2)* res1_red,&
F_real,[ res(3),res(2) ,res(1)+2_pInt],&
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
if (debugGeneral) print '(a)' , 'FFTW initialized'
!--------------------------------------------------------------------------------------------------
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) and remove the given highest frequencies
do k = 1_pInt, res(3)
k_s(3) = k - 1_pInt
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
do j = 1_pInt, res(2)
k_s(2) = j - 1_pInt
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
do i = 1_pInt, res1_red
k_s(1) = i - 1_pInt
xi(1:3,i,j,k) = real(k_s, pReal)/geomdim
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! calculate the gamma operator
if(memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal)
else ! precalculation of gamma_hat field
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source =0.0_pReal)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
xiDyad(l,u) = xi(l, i,j,k)*xi(u, i,j,k)
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
temp33_Real(l,u) = sum(C_inc0(l,1:3,u,1:3)*xiDyad)
temp33_Real = math_inv33(temp33_Real)
forall(l=1_pInt:3_pInt, u=1_pInt:3_pInt, v=1_pInt:3_pInt, w=1_pInt:3_pInt)&
gamma_hat(i,j,k, l,u,v,w) = temp33_Real(l,v)*xiDyad(u,w)
endif
enddo; enddo; enddo
gamma_hat(1,1,1, 1:3,1:3,1:3,1:3) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
endif
!--------------------------------------------------------------------------------------------------
! init fields to no deformation
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
F_real(i,j,k,1:3,1:3) = math_I3; F_lastInc(i,j,k,1:3,1:3) = math_I3
coordinates(i,j,k,1:3) = geomdim/real(res * [i,j,k], pReal) - geomdim/real(2_pInt*res,pReal)
call CPFEM_general(3_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),&
0.0_pReal,ielem,1_pInt,sigma,dsde,temp33_Real ,dPdF(i,j,k,1:3,1:3,1:3,1:3))
enddo; enddo; enddo
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(2_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),&
0.0_pReal,ielem,1_pInt,sigma,dsde,temp33_Real ,dPdF(i,j,k,1:3,1:3,1:3,1:3))
C = C + dPdF(i,j,k,1:3,1:3,1:3,1:3)
enddo; enddo; enddo
C_inc0 = C * wgt ! linear reference material stiffness
!--------------------------------------------------------------------------------------------------
! possible restore deformation gradient from saved state
if (restartInc > 1_pInt) then ! using old values from file
if (debugRestart) print '(a,i6,a)' , 'Reading values of increment ',&
restartInc - 1_pInt,' from file'
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
trim(getSolverJobName()),size(F_star))
read (777,rec=1) F_star
close (777)
F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_star
F_lastInc = F_star
F_aim = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F_aim = F_aim + F_real(i,j,k,1:3,1:3) ! calculating old average deformation
enddo; enddo; enddo
F_aim = F_aim * wgt
F_aim_lastInc = F_aim
endif
!--------------------------------------------------------------------------------------------------
! write header of output file
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())&
//'.spectralOut',form='UNFORMATTED',status='REPLACE')
write(538) 'load', trim(getLoadcaseName())
write(538) 'workingdir', trim(getSolverWorkingDirectoryName())
write(538) 'geometry', trim(getSolverJobName())//InputFileExtension
write(538) 'resolution', res
write(538) 'dimension', geomdim
write(538) 'materialpoint_sizeResults', materialpoint_sizeResults
write(538) 'loadcases', N_Loadcases
write(538) 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase
write(538) 'times', bc(1:N_Loadcases)%time ! one entry per loadcase
write(538) 'logscales', bc(1:N_Loadcases)%logscale
write(538) 'increments', bc(1:N_Loadcases)%incs ! one entry per loadcase
write(538) 'startingIncrement', restartInc - 1_pInt ! start with writing out the previous inc
write(538) 'eoh' ! end of header
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed or read-in) results
if (debugGeneral) print '(a)' , 'Header of result file written out'
!##################################################################################################
! Loop over loadcases defined in the loadcase file
!##################################################################################################
do loadcase = 1_pInt, N_Loadcases
time0 = time ! loadcase start time
if (bc(loadcase)%followFormerTrajectory .and. &
(restartInc < totalIncsCounter .or. &
restartInc > totalIncsCounter+bc(loadcase)%incs) ) then ! continue to guess along former trajectory where applicable
guessmode = 1.0_pReal
else
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc
endif
!--------------------------------------------------------------------------------------------------
! arrays for mixed boundary conditions
mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation)
mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress)
size_reduced = int(count(bc(loadcase)%maskStressVector), pInt)
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
!##################################################################################################
! loop oper incs defined in input file for current loadcase
!##################################################################################################
do inc = 1_pInt, bc(loadcase)%incs
totalIncsCounter = totalIncsCounter + 1_pInt
if(totalIncsCounter >= restartInc) then ! do calculations (otherwise just forwarding)
!--------------------------------------------------------------------------------------------------
! forwarding time
timeinc_old = timeinc
if (bc(loadcase)%logscale == 0_pInt) then ! linear scale
timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used
else
if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale
if (inc == 1_pInt) then ! 1st inc of 1st loadcase of logarithmic scale
timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
else ! not-1st inc of 1st loadcase of logarithmic scale
timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal))
endif
else ! not-1st loadcase of logarithmic scale
timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**(real( inc,pReal)/&
real(bc(loadcase)%incs ,pReal))&
-(1.0_pReal + bc(loadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/&
real(bc(loadcase)%incs ,pReal)) )
endif
endif
time = time + timeinc
if (bc(loadcase)%velGradApplied) then ! calculate deltaF from given L and current F
deltaF = timeinc * mask_defgrad * math_mul33x33(bc(loadcase)%deformation, F_aim)
else ! deltaF = fDot *timeinc where applicable
deltaF = timeinc * mask_defgrad * bc(loadcase)%deformation
endif
!--------------------------------------------------------------------------------------------------
! coordinates at beginning of inc
!call deformed_fft(res,geomdim,1.0_pReal,F_real(1:res(1),1:res(2),1:res(3),1:3,1:3),coordinates)! calculate current coordinates
!--------------------------------------------------------------------------------------------------
! winding forward of deformation aim in loadcase system
temp33_Real = F_aim
F_aim = F_aim &
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
+ deltaF
F_aim_lastInc = temp33_Real
F_star_av = F_aim
!--------------------------------------------------------------------------------------------------
! update local deformation gradient
deltaF = math_rotate_backward33(deltaF,bc(loadcase)%rotation)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_Real = F_real(i,j,k,1:3,1:3)
F_real(i,j,k,1:3,1:3) = F_real(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
+ guessmode * (F_real(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))& ! guessing...
*timeinc/timeinc_old &
+ (1.0_pReal-guessmode) * deltaF ! if not guessing, use prescribed average deformation where applicable
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! Initialize / Update lambda to useful value
P_star_av = P_star_av + math_mul3333xx33(C*wgt, F_aim-F_aim_lastInc)
lambda_av = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
lambda(i,j,k,1:3,1:3) = P(i,j,k,1:3,1:3) + math_mul3333xx33(dPdF(i,j,k,1:3,1:3,1:3,1:3), &
F_real(i,j,k,1:3,1:3)-F_lastInc(i,j,k,1:3,1:3))
lambda_av = lambda_av + lambda(i,j,k,1:3,1:3)
enddo; enddo; enddo
lambda_av=lambda_av*wgt
!--------------------------------------------------------------------------------------------------
!Initialize pointwise data for AL scheme: ToDo: good choice?
F_star(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_real(1:res(1),1:res(2),1:res(3),1:3,1:3)
!--------------------------------------------------------------------------------------------------
! calculate reduced compliance
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
C_lastInc = math_rotate_forward3333(C*wgt,bc(loadcase)%rotation) ! calculate stiffness from former inc
c_prev99 = math_Plain3333to99(C_lastInc)
k = 0_pInt ! build reduced stiffness
do v = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(v)) then
k = k + 1_pInt
j = 0_pInt
do u = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(u)) then
j = j + 1_pInt
c_reduced(k,j) = c_prev99(v,u)
endif; enddo; endif; enddo
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
if(errmatinv) call IO_error(error_ID=400_pInt)
s_prev99 = 0.0_pReal ! build full compliance
k = 0_pInt
do v = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(v)) then
k = k + 1_pInt
j = 0_pInt
do u = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(u)) then
j = j + 1_pInt
s_prev99(v,u) = s_reduced(k,j)
endif; enddo; endif; enddo
S_lastInc = (math_Plain99to3333(s_prev99))
endif
!--------------------------------------------------------------------------------------------------
! report begin of new increment
print '(a)', '##################################################################'
print '(A,I5.5,A,es12.5)', 'Increment ', totalIncsCounter, ' Time ',time
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
CPFEM_mode = 1_pInt ! winding forward
iter = 0_pInt
err_crit = huge(1.0_pReal) ! go into loop
callCPFEM=.true.
guessmax = 13
guesses = 0
!##################################################################################################
! convergence loop (looping over iterations)
!##################################################################################################
do while((iter < itmax .and. (err_crit > 1.0_pReal)) .or. iter < itmin)
iter = iter + 1_pInt
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
print '(a)', ''
print '(a)', '=================================================================='
print '(5(a,i6.6))', 'Loadcase ',loadcase,' Increment ',inc,'/',bc(loadcase)%incs,&
' @ Iteration ',iter,'/',itmax
!--------------------------------------------------------------------------------------------------
! stress BC handling
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
err_stress = maxval(abs(mask_stress * (lambda_av - bc(loadcase)%P))) ! maximum deviaton (tensor norm not applicable)
F_aim = F_aim + math_mul3333xx33(S_lastInc,bc(loadcase)%P- lambda_av)
err_stress_tol = maxval(abs(lambda_av)) * err_stress_tolrel ! don't use any tensor norm because the comparison should be coherent
else
err_stress_tol = + huge(1.0_pReal)
endif
F_aim_lab = math_rotate_backward33(F_aim,bc(loadcase)%rotation)
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F aim =',&
math_transpose33(F_aim)
!--------------------------------------------------------------------------------------------------
! doing Fourier transform
print '(a)', '... spectral method ...............................................'
lambda_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = lambda(1:res(1),1:res(2),1:res(3),1:3,1:3)
call fftw_execute_dft_r2c(plan_lambda,lambda_real,lambda_fourier)
lambda_fourier( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
lambda_fourier(1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
if(res(3)>1_pInt) &
lambda_fourier(1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
= cmplx(0.0_pReal,0.0_pReal,pReal)
!--------------------------------------------------------------------------------------------------
! calculating RMS divergence criterion in Fourier space
pstress_av_L2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(lambda_av,& ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html)
math_transpose33(lambda_av)))))
err_div_RMS = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2)
do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
err_div_RMS = err_div_RMS &
+ 2.0_pReal*(sum (real(math_mul33x3_complex(lambda_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(math_mul33x3_complex(lambda_fourier(i,j,k,1:3,1:3),&
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
enddo
err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart
+ sum( real(math_mul33x3_complex(lambda_fourier(1 ,j,k,1:3,1:3),&
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum(aimag(math_mul33x3_complex(lambda_fourier(1 ,j,k,1:3,1:3),&
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum( real(math_mul33x3_complex(lambda_fourier(res1_red,j,k,1:3,1:3),&
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)&
+ sum(aimag(math_mul33x3_complex(lambda_fourier(res1_red,j,k,1:3,1:3),&
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)
enddo; enddo
err_div_RMS = sqrt(err_div_RMS)*wgt
! if (err_div < err_div_RMS/pstress_av_L2 .and. guessmax<0) then
! print*, 'increasing div, stopping calc'
! iter = huge(1_pInt)
! endif
err_div = err_div_RMS/pstress_av_L2
!--------------------------------------------------------------------------------------------------
! using gamma operator to update F
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
xiDyad(l,u) = xi(l, i,j,k)*xi(u, i,j,k)
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
temp33_Real(l,u) = sum(C_inc0(l,1:3,u,1:3)*xiDyad)
temp33_Real = math_inv33(temp33_Real)
forall(l=1_pInt:3_pInt, u=1_pInt:3_pInt, v=1_pInt:3_pInt, w=1_pInt:3_pInt)&
gamma_hat(1,1,1, l,u,v,w) = temp33_Real(l,v)*xiDyad(u,w)
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
temp33_Complex(l,u) = sum(gamma_hat(1,1,1, l,u, 1:3,1:3) *&
lambda_fourier(i,j,k,1:3,1:3))
F_fourier(i,j,k,1:3,1:3) = - temp33_Complex
endif
enddo; enddo; enddo
else ! use precalculated gamma-operator
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
forall( u = 1_pInt:3_pInt, v = 1_pInt:3_pInt) &
temp33_Complex(u,v) = sum(gamma_hat(i,j,k, u,v, 1:3,1:3) *&
lambda_fourier(i,j,k,1:3,1:3))
F_fourier(i,j,k, 1:3,1:3) = - temp33_Complex
enddo; enddo; enddo
endif
F_fourier(1,1,1,1:3,1:3) = cmplx((F_aim_lab - F_star_av)*real(Npoints,pReal),0.0_pReal,pReal)
!--------------------------------------------------------------------------------------------------
! doing inverse Fourier transform
call fftw_execute_dft_c2r(plan_correction,F_fourier,F_real) ! back transform of fluct deformation gradient
F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) * wgt + &
F_star(1:res(1),1:res(2),1:res(3),1:3,1:3)
!--------------------------------------------------------------------------------------------------
!
if(callCPFEM) then
print '(a)', '... calling CPFEM to update P(F*) and F*.........................'
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(3_pInt,& ! collect cycle
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),&
F_star(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,&
sigma,dsde, P(i,j,k,1:3,1:3), dPdF(i,j,k,1:3,1:3,1:3,1:3))
enddo; enddo; enddo
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(CPFEM_mode,&
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),&
F_star(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,&
sigma,dsde, P(i,j,k,1:3,1:3), dPdF(i,j,k,1:3,1:3,1:3,1:3))
CPFEM_mode = 2_pInt ! winding forward
temp33_Real = lambda(i,j,k,1:3,1:3) - P(i,j,k,1:3,1:3) &
+ math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3)- F_star(i,j,k,1:3,1:3))
F_star(i,j,k,1:3,1:3) = F_star(i,j,k,1:3,1:3) + math_mul3333xx33(math_invSym3333(&
C_inc0 + dPdF(i,j,k,1:3,1:3,1:3,1:3)), temp33_Real)
enddo; enddo; enddo
F_star_lastIter = F_star
else
guesses = guesses +1_pInt
print '(a)', '... .linear solution.P(F*) and update F*........................'
print*, '... linear approximation ', guesses, ' of ', guessmax, ' for P(F*) and F*'
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_Real = lambda(i,j,k,1:3,1:3) - (P(i,j,k,1:3,1:3) + math_mul3333xx33(dPdF(i,j,k,1:3,1:3,1:3,1:3),&
F_star(i,j,k,1:3,1:3) -F_star_lastIter(i,j,k,1:3,1:3)))&
+ math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3)- F_star(i,j,k,1:3,1:3))
F_star(i,j,k,1:3,1:3) = F_star(i,j,k,1:3,1:3) + math_mul3333xx33(math_invSym3333(&
C_inc0 + dPdF(i,j,k,1:3,1:3,1:3,1:3)), temp33_Real)
enddo; enddo; enddo
endif
print '(a)', '... update λ..........................'
err_f = 0.0_pReal
err_f_point = 0.0_pReal
err_p = 0.0_pReal
err_p_point = 0.0_pReal
F_star_av = 0.0_pReal
P_star_av = 0.0_pReal
lambda_av = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
lambda(i,j,k,1:3,1:3) = lambda(i,j,k,1:3,1:3) + math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3) &
- F_star(i,j,k,1:3,1:3))
F_star_av = F_star_av + F_star(i,j,k,1:3,1:3)
lambda_av = lambda_av + lambda(i,j,k,1:3,1:3)
P_star_av = P_star_av + P(i,j,k,1:3,1:3)
temp33_real = F_star(i,j,k,1:3,1:3) - F_real(i,j,k,1:3,1:3)
err_f_point = max(err_f_point, maxval(abs(temp33_real)))
err_f = max(err_f, sqrt(math_mul33xx33(temp33_real,temp33_real)))
temp33_real = lambda(i,j,k,1:3,1:3) - (P(i,j,k,1:3,1:3) + math_mul3333xx33(dPdF(i,j,k,1:3,1:3,1:3,1:3),&
F_star(i,j,k,1:3,1:3) -F_star_lastIter(i,j,k,1:3,1:3)))
err_p_point = max(err_p_point, maxval(abs(temp33_real)))
err_p = max(err_p, sqrt(math_mul33xx33(temp33_real,temp33_real)))
enddo; enddo; enddo
F_star_av = F_star_av *wgt
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F* =',&
math_transpose33(F_star_av)
P_star_av = P_star_av *wgt
write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'P(F*) / GPa =',&
math_transpose33(P_star_av) /1.e6_pReal
lambda_av = lambda_av *wgt
write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'λ / GPa =',&
math_transpose33(lambda_av) /1.e6_pReal
err_f = err_f/sqrt(math_mul33xx33(F_star_av,F_star_av))
err_p = err_p/sqrt(math_mul33xx33(P_star_av,P_star_av))
write(6,'(a,es14.7,es14.7)') 'error F', err_f/1e-4, err_f
write(6,'(a,es14.7,es14.7)') 'error P', err_p/1e-3, err_p
write(6,'(a,es14.7,es14.7)') 'error stress = ',err_stress/err_stress_tol, err_stress
write(6,'(a,es14.7,es14.7)') 'error divergence = ',err_div/err_div_tol, err_div
write(6,*) ' '
write(6,'(a,es14.7)') 'error divergence FT RMS = ',err_div_RMS
write(6,'(a,es14.7)') 'max abs err F', err_f_point
write(6,'(a,es14.7)') 'max abs err P', err_p_point
err_crit = max(err_p/1e-3, err_f/1e-4,err_div/err_div_tol,err_stress/err_stress_tol)
print*, 'critical error', err_crit
if (.not. callCPFEM) then
if(err_crit < 1.0_pReal .or. guesses >= guessmax) callCPFEM = .true.
err_crit =huge(1.0_pReal)
else
if(guessmax > 1 .and. iter>2) callCPFEM=.false.
guesses = 0_pInt
guessmax = guessmax -1
endif
enddo ! end looping when convergency is achieved
print '(a)', ''
print '(a)', '=================================================================='
if(err_crit > 1.0_pReal) then
print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' NOT converged'
notConvergedCounter = notConvergedCounter + 1_pInt
else
convergedCounter = convergedCounter + 1_pInt
print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' converged'
endif
if (mod(totalIncsCounter -1_pInt,bc(loadcase)%outputfrequency) == 0_pInt) then ! at output frequency
print '(a)', ''
print '(a)', '... writing results to file ......................................'
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
endif
if( bc(loadcase)%restartFrequency > 0_pInt .and. &
mod(inc - 1_pInt,bc(loadcase)%restartFrequency) == 0_pInt) then ! at frequency of writing restart information set restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?)
restartWrite = .true.
print '(A)', 'writing converged results for restart'
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_star)) ! writing deformation gradient field to file
write (777,rec=1) F_star
close (777)
restartInc=totalIncsCounter
endif
endif ! end calculation/forwarding
enddo ! end looping over incs in current loadcase
deallocate(c_reduced)
deallocate(s_reduced)
enddo ! end looping over loadcases
print '(a)', ''
print '(a)', '##################################################################'
print '(i6.6,a,i6.6,a)', notConvergedCounter, ' out of ', &
notConvergedCounter + convergedCounter, ' increments did not converge!'
close(538)
call fftw_destroy_plan(plan_lambda); call fftw_destroy_plan(plan_correction)
call quit(1_pInt)
end program DAMASK_spectral_AL
!********************************************************************
! quit subroutine to satisfy IO_error
!
!********************************************************************
subroutine quit(stop_id)
use prec, only: &
pInt
implicit none
integer(pInt), intent(in) :: stop_id
integer, dimension(8) :: dateAndTime ! type default integer
call date_and_time(values = dateAndTime)
write(6,'(/,a)') 'DAMASK_spectral_AL terminated on:'
write(6,'(a,2(i2.2,a),i4.4)') 'Date: ',dateAndTime(3),'/',&
dateAndTime(2),'/',&
dateAndTime(1)
write(6,'(a,2(i2.2,a),i2.2)') 'Time: ',dateAndTime(5),':',&
dateAndTime(6),':',&
dateAndTime(7)
write(6,'(/,a)') 'Exit code:'
if (stop_id == 1_pInt) stop 1 ! normal termination
if (stop_id <= 0_pInt) then ! trigger regridding
write(6,'(a,i6)') 'restart a', stop_id*(-1_pInt)
stop 2
endif
stop 0 ! error
end subroutine