964 lines
61 KiB
Fortran
964 lines
61 KiB
Fortran
! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
|
|
!
|
|
! This file is part of DAMASK,
|
|
! the Düsseldorf Advanced MAterial Simulation Kit.
|
|
!
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
! it under the terms of the GNU General Public License as published by
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
! (at your option) any later version.
|
|
!
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
! GNU General Public License for more details.
|
|
!
|
|
! You should have received a copy of the GNU General Public License
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
!
|
|
!##################################################################################################
|
|
!* $Id$
|
|
!##################################################################################################
|
|
! Material subroutine for BVP solution using spectral method
|
|
!
|
|
! Run 'DAMASK_spectral.exe --help' to get usage hints
|
|
!
|
|
! written by P. Eisenlohr,
|
|
! F. Roters,
|
|
! L. Hantcherli,
|
|
! W.A. Counts,
|
|
! D.D. Tjahjanto,
|
|
! C. Kords,
|
|
! M. Diehl,
|
|
! R. Lebensohn
|
|
!
|
|
! MPI fuer Eisenforschung, Duesseldorf
|
|
!##################################################################################################
|
|
! used modules
|
|
!##################################################################################################
|
|
program DAMASK_spectral_AL
|
|
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
|
|
use DAMASK_interface
|
|
use prec, only: pInt, pReal, DAMASK_NaN
|
|
use IO
|
|
use debug, only: debug_spectral, &
|
|
debug_levelBasic, &
|
|
debug_spectralRestart, &
|
|
debug_spectralFFTW
|
|
use math
|
|
use CPFEM, only: CPFEM_general, CPFEM_initAll
|
|
use FEsolving, only: restartWrite, restartInc
|
|
use numerics, only: err_div_tol, err_stress_tolrel, rotation_tol, itmax, itmin, &
|
|
memory_efficient, update_gamma, DAMASK_NumThreadsInt, &
|
|
fftw_planner_flag, fftw_timelimit
|
|
use homogenization, only: materialpoint_sizeResults, materialpoint_results
|
|
!$ use OMP_LIB ! the openMP function library
|
|
!##################################################################################################
|
|
! variable declaration
|
|
!##################################################################################################
|
|
implicit none
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! variables to read from load case and geom file
|
|
real(pReal), dimension(9) :: temp_valueVector ! stores information temporarily from loadcase file
|
|
logical, dimension(9) :: temp_maskVector
|
|
integer(pInt), parameter :: maxNchunksLoadcase = (1_pInt + 9_pInt)*3_pInt +& ! deformation, rotation, and stress
|
|
(1_pInt + 1_pInt)*5_pInt +& ! time, (log)incs, temp, restartfrequency, and outputfrequency
|
|
1_pInt, & ! dropguessing
|
|
maxNchunksGeom = 7_pInt, & ! 4 identifiers, 3 values
|
|
myUnit = 234_pInt
|
|
integer(pInt), dimension(1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing
|
|
integer(pInt) :: headerLength,&
|
|
N_l = 0_pInt,&
|
|
N_t = 0_pInt,&
|
|
N_n = 0_pInt,&
|
|
N_Fdot = 0_pInt
|
|
character(len=1024) :: path, line, keyword
|
|
logical :: gotResolution = .false.,&
|
|
gotDimension = .false.,&
|
|
gotHomogenization = .false.
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! variable storing information from load case file
|
|
type bc_type
|
|
real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient
|
|
P = 0.0_pReal, & ! stress BC (if applicable)
|
|
rotation = math_I3 ! rotation of BC (if applicable)
|
|
real(pReal) :: time = 0.0_pReal, & ! length of increment
|
|
temperature = 300.0_pReal ! isothermal starting conditions
|
|
integer(pInt) :: incs = 0_pInt, & ! number of increments
|
|
outputfrequency = 1_pInt, & ! frequency of result writes
|
|
restartfrequency = 0_pInt, & ! frequency of restart writes
|
|
logscale = 0_pInt ! linear/logaritmic time inc flag
|
|
logical :: followFormerTrajectory = .true., & ! follow trajectory of former loadcase
|
|
velGradApplied = .false. ! decide wether velocity gradient or fdot is given
|
|
logical, dimension(3,3) :: maskDeformation = .false., & ! mask of deformation boundary conditions
|
|
maskStress = .false. ! mask of stress boundary conditions
|
|
logical, dimension(9) :: maskStressVector = .false. ! linear mask of boundary conditions
|
|
end type
|
|
|
|
type(bc_type), allocatable, dimension(:) :: bc
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! variables storing information from geom file
|
|
real(pReal) :: wgt
|
|
real(pReal), dimension(3) :: geomdim = 0.0_pReal ! physical dimension of volume element per direction
|
|
integer(pInt) :: Npoints,& ! number of Fourier points
|
|
homog ! homogenization scheme used
|
|
integer(pInt), dimension(3) :: res = 1_pInt ! resolution (number of Fourier points) in each direction
|
|
integer(pInt) :: res1_red ! to store res(1)/2 +1
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! stress, stiffness and compliance average etc.
|
|
real(pReal), dimension(3,3) :: P_star_av = 0.0_pReal, &
|
|
F_aim = math_I3, F_aim_lastInc = math_I3, lambda_av, &
|
|
mask_stress, mask_defgrad, deltaF, F_star_av, &
|
|
F_aim_lab ! quantities rotated to other coordinate system
|
|
real(pReal), dimension(3,3,3,3) :: C_inc0, C=0.0_pReal, S_lastInc, C_lastInc ! stiffness and compliance
|
|
real(pReal), dimension(6) :: sigma ! cauchy stress
|
|
real(pReal), dimension(6,6) :: dsde ! small strain stiffness
|
|
real(pReal), dimension(9,9) :: s_prev99, c_prev99 ! compliance and stiffness in matrix notation
|
|
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
|
|
integer(pInt) :: size_reduced = 0_pInt ! number of stress BCs
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! pointwise data
|
|
type(C_PTR) :: tensorField ! fields in real an fourier space
|
|
real(pReal), dimension(:,:,:,:,:), pointer :: lambda_real, F_real ! fields in real space (pointer)
|
|
complex(pReal), dimension(:,:,:,:,:), pointer :: lambda_fourier, F_fourier ! fields in fourier space (pointer)
|
|
real(pReal), dimension(:,:,:,:,:), allocatable :: F_lastInc, F_star, lambda, P, F_star_lastIter
|
|
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: dPdF
|
|
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
|
|
real(pReal), dimension(:,:,:), allocatable :: temperature
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! variables storing information for spectral method and FFTW
|
|
type(C_PTR) :: plan_correction, plan_lambda ! plans for fftw
|
|
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
|
|
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
|
|
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
|
|
integer(pInt), dimension(3) :: k_s
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! loop variables, convergence etc.
|
|
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc = 1.0_pReal, timeinc_old = 0.0_pReal ! elapsed time, begin of interval, time interval
|
|
real(pReal) :: guessmode, err_stress, err_stress_tol, err_f, err_p, err_crit, &
|
|
err_f_point, err_p_point, pstress_av_L2, err_div_rms, err_div
|
|
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
|
complex(pReal), dimension(3,3) :: temp33_Complex
|
|
real(pReal), dimension(3,3) :: temp33_Real
|
|
integer(pInt) :: i, j, k, l, u, v, w, errorID = 0_pInt, ierr
|
|
integer(pInt) :: N_Loadcases, loadcase, inc, iter, ielem, CPFEM_mode, guesses, guessmax=10_pInt,&
|
|
totalIncsCounter = 0_pInt,notConvergedCounter = 0_pInt, convergedCounter = 0_pInt
|
|
logical :: errmatinv, callCPFEM
|
|
character(len=6) :: loadcase_string
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!variables controlling debugging
|
|
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
|
|
|
|
!##################################################################################################
|
|
! reading of information from load case file and geometry file
|
|
!##################################################################################################
|
|
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
|
|
open (6, encoding='UTF-8')
|
|
call DAMASK_interface_init
|
|
|
|
print '(a)', ''
|
|
print '(a)', ' <<<+- DAMASK_spectral_AL init -+>>>'
|
|
print '(a)', ' $Id$'
|
|
#include "compilation_info.f90"
|
|
print '(a,a)', ' Working Directory: ',trim(getSolverWorkingDirectoryName())
|
|
print '(a,a)', ' Solver Job Name: ',trim(getSolverJobName())
|
|
print '(a)', ''
|
|
!--------------------------------------------------------------------------------------------------
|
|
! reading the load case file and allocate data structure containing load cases
|
|
path = getLoadcaseName()
|
|
call IO_open_file(myUnit,path)
|
|
rewind(myUnit)
|
|
do
|
|
read(myUnit,'(a1024)',END = 100) line
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
positions = IO_stringPos(line,maxNchunksLoadcase)
|
|
do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase
|
|
select case (IO_lc(IO_stringValue(line,positions,i)))
|
|
case('l','velocitygrad','velgrad','velocitygradient')
|
|
N_l = N_l + 1_pInt
|
|
case('fdot','dotf')
|
|
N_Fdot = N_Fdot + 1_pInt
|
|
case('t','time','delta')
|
|
N_t = N_t + 1_pInt
|
|
case('n','incs','increments','steps','logincs','logsteps')
|
|
N_n = N_n + 1_pInt
|
|
end select
|
|
enddo ! count all identifiers to allocate memory and do sanity check
|
|
enddo
|
|
|
|
100 N_Loadcases = N_n
|
|
if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check
|
|
call IO_error(error_ID=837_pInt,ext_msg = trim(path)) ! error message for incomplete loadcase
|
|
allocate (bc(N_Loadcases))
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! reading the load case and assign values to the allocated data structure
|
|
rewind(myUnit)
|
|
loadcase = 0_pInt
|
|
do
|
|
read(myUnit,'(a1024)',END = 101) line
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
loadcase = loadcase + 1_pInt
|
|
positions = IO_stringPos(line,maxNchunksLoadcase)
|
|
do j = 1_pInt,maxNchunksLoadcase
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('fdot','dotf','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix
|
|
bc(loadcase)%velGradApplied = &
|
|
(IO_lc(IO_stringValue(line,positions,j)) == 'l'.or. & ! in case of given L, set flag to true
|
|
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygrad'.or.&
|
|
IO_lc(IO_stringValue(line,positions,j)) == 'velgrad'.or.&
|
|
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygradient')
|
|
temp_valueVector = 0.0_pReal
|
|
temp_maskVector = .false.
|
|
forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,positions,j+k) /= '*'
|
|
do k = 1_pInt,9_pInt
|
|
if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
|
|
enddo
|
|
bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,[ 3,3]))
|
|
bc(loadcase)%deformation = math_plain9to33(temp_valueVector)
|
|
case('p','pk1','piolakirchhoff','stress')
|
|
temp_valueVector = 0.0_pReal
|
|
forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) =&
|
|
IO_stringValue(line,positions,j+k) /= '*'
|
|
do k = 1_pInt,9_pInt
|
|
if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) =&
|
|
IO_floatValue(line,positions,j+k) ! assign values for the bc(loadcase)%P matrix
|
|
enddo
|
|
bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,[ 3,3]))
|
|
bc(loadcase)%P = math_plain9to33(temp_valueVector)
|
|
case('t','time','delta') ! increment time
|
|
bc(loadcase)%time = IO_floatValue(line,positions,j+1_pInt)
|
|
case('temp','temperature') ! starting temperature
|
|
bc(loadcase)%temperature = IO_floatValue(line,positions,j+1_pInt)
|
|
case('n','incs','increments','steps') ! number of increments
|
|
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
|
|
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
|
|
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
|
|
bc(loadcase)%logscale = 1_pInt
|
|
case('f','freq','frequency','outputfreq') ! frequency of result writings
|
|
bc(loadcase)%outputfrequency = IO_intValue(line,positions,j+1_pInt)
|
|
case('r','restart','restartwrite') ! frequency of writing restart information
|
|
bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,j+1_pInt))
|
|
case('guessreset','dropguessing')
|
|
bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory
|
|
case('euler') ! rotation of loadcase given in euler angles
|
|
u = 0_pInt ! assuming values given in radians
|
|
v = 1_pInt ! assuming keyword indicating degree/radians
|
|
select case (IO_lc(IO_stringValue(line,positions,j+1_pInt)))
|
|
case('deg','degree')
|
|
u = 1_pInt ! for conversion from degree to radian
|
|
case('rad','radian')
|
|
case default
|
|
v = 0_pInt ! immediately reading in angles, assuming radians
|
|
end select
|
|
forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = &
|
|
IO_floatValue(line,positions,j+v+k) * real(u,pReal) * inRad
|
|
bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1))
|
|
case('rotation','rot') ! assign values for the rotation of loadcase matrix
|
|
temp_valueVector = 0.0_pReal
|
|
forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
|
|
bc(loadcase)%rotation = math_plain9to33(temp_valueVector)
|
|
end select
|
|
enddo; enddo
|
|
101 close(myUnit)
|
|
|
|
!-------------------------------------------------------------------------------------------------- ToDo: if temperature at CPFEM is treated properly, move this up immediately after interface init
|
|
! initialization of all related DAMASK modules (e.g. mesh.f90 reads in geometry)
|
|
call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt)
|
|
if (update_gamma .and. .not. memory_efficient) call IO_error(error_ID = 847_pInt)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! read header of geom file to get size information. complete geom file is intepretated by mesh.f90
|
|
path = getModelName()
|
|
call IO_open_file(myUnit,trim(path)//InputFileExtension)
|
|
rewind(myUnit)
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,2_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=842_pInt)
|
|
endif
|
|
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,maxNchunksGeom)
|
|
select case ( IO_lc(IO_StringValue(line,positions,1)) )
|
|
case ('dimension')
|
|
gotDimension = .true.
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('x')
|
|
geomdim(1) = IO_floatValue(line,positions,j+1_pInt)
|
|
case('y')
|
|
geomdim(2) = IO_floatValue(line,positions,j+1_pInt)
|
|
case('z')
|
|
geomdim(3) = IO_floatValue(line,positions,j+1_pInt)
|
|
end select
|
|
enddo
|
|
case ('homogenization')
|
|
gotHomogenization = .true.
|
|
homog = IO_intValue(line,positions,2_pInt)
|
|
case ('resolution')
|
|
gotResolution = .true.
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('a')
|
|
res(1) = IO_intValue(line,positions,j+1_pInt)
|
|
case('b')
|
|
res(2) = IO_intValue(line,positions,j+1_pInt)
|
|
case('c')
|
|
res(3) = IO_intValue(line,positions,j+1_pInt)
|
|
end select
|
|
enddo
|
|
end select
|
|
enddo
|
|
close(myUnit)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! sanity checks of geometry parameters
|
|
if (.not.(gotDimension .and. gotHomogenization .and. gotResolution))&
|
|
call IO_error(error_ID = 845_pInt)
|
|
if (any(geomdim<=0.0_pReal)) call IO_error(error_ID = 802_pInt)
|
|
if(mod(res(1),2_pInt)/=0_pInt .or.&
|
|
mod(res(2),2_pInt)/=0_pInt .or.&
|
|
(mod(res(3),2_pInt)/=0_pInt .and. res(3)/= 1_pInt)) call IO_error(error_ID = 803_pInt)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! variables derived from resolution
|
|
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
|
Npoints = res(1)*res(2)*res(3)
|
|
wgt = 1.0_pReal/real(Npoints, pReal)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! output of geometry
|
|
print '(a)', ''
|
|
print '(a)', '#############################################################'
|
|
print '(a)', 'DAMASK spectral_AL:'
|
|
print '(a)', 'The AL spectral method boundary value problem solver for'
|
|
print '(a)', 'the Duesseldorf Advanced Material Simulation Kit'
|
|
print '(a)', '#############################################################'
|
|
print '(a,a)', 'geometry file: ',trim(path)//'.geom'
|
|
print '(a)', '============================================================='
|
|
print '(a,3(i12 ))','resolution a b c:', res
|
|
print '(a,3(f12.5))','dimension x y z:', geomdim
|
|
print '(a,i5)','homogenization: ',homog
|
|
print '(a)', '#############################################################'
|
|
print '(a,a)', 'loadcase file: ',trim(getLoadcaseName())
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! consistency checks and output of load case
|
|
bc(1)%followFormerTrajectory = .false. ! cannot guess along trajectory for first inc of first loadcase
|
|
|
|
do loadcase = 1_pInt, N_Loadcases
|
|
write (loadcase_string, '(i6)' ) loadcase
|
|
|
|
print '(a)', '============================================================='
|
|
print '(a,i6)', 'loadcase: ', loadcase
|
|
|
|
if (.not. bc(loadcase)%followFormerTrajectory) print '(a)', 'drop guessing along trajectory'
|
|
if (bc(loadcase)%velGradApplied) then
|
|
do j = 1_pInt, 3_pInt
|
|
if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. &
|
|
any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 832_pInt ! each row should be either fully or not at all defined
|
|
enddo
|
|
print '(a)','velocity gradient:'
|
|
else
|
|
print '(a)','deformation gradient rate:'
|
|
endif
|
|
write (*,'(3(3(f12.7,1x)/))',advance='no') merge(math_transpose33(bc(loadcase)%deformation),&
|
|
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskDeformation))
|
|
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'stress / GPa:',&
|
|
1e-9_pReal*merge(math_transpose33(bc(loadcase)%P),&
|
|
reshape(spread(DAMASK_NaN,1,9),[ 3,3]),transpose(bc(loadcase)%maskStress))
|
|
if (any(bc(loadcase)%rotation /= math_I3)) &
|
|
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') ' rotation of loadframe:',&
|
|
math_transpose33(bc(loadcase)%rotation)
|
|
print '(a,f12.6)','temperature:',bc(loadcase)%temperature
|
|
print '(a,f12.6)','time: ',bc(loadcase)%time
|
|
print '(a,i5)' ,'increments: ',bc(loadcase)%incs
|
|
print '(a,i5)','output frequency: ',bc(loadcase)%outputfrequency
|
|
print '(a,i5)','restart frequency: ',bc(loadcase)%restartfrequency
|
|
if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 831_pInt ! exclusive or masking only
|
|
if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. &
|
|
reshape([ .false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false.],[ 3,3]))) &
|
|
errorID = 838_pInt ! no rotation is allowed by stress BC
|
|
if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose33(bc(loadcase)%rotation))&
|
|
-math_I3) > reshape(spread(rotation_tol,1,9),[ 3,3]))&
|
|
.or. abs(math_det33(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol)&
|
|
errorID = 846_pInt ! given rotation matrix contains strain
|
|
if (bc(loadcase)%time < 0.0_pReal) errorID = 834_pInt ! negative time increment
|
|
if (bc(loadcase)%incs < 1_pInt) errorID = 835_pInt ! non-positive incs count
|
|
if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 836_pInt ! non-positive result frequency
|
|
if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string)
|
|
enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! debugging parameters
|
|
debugRestart = iand(debug_spectral,debug_spectralRestart) > 0_pInt
|
|
debugFFTW = iand(debug_spectral,debug_spectralFFTW) > 0_pInt
|
|
debugGeneral = .true.
|
|
|
|
!##################################################################################################
|
|
! initialization
|
|
!##################################################################################################
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocate more memory
|
|
allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
|
allocate (dPdF ( res(1), res(2),res(3),3,3,3,3), source = 0.0_pReal)
|
|
allocate (F_star ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
|
allocate (F_star_lastIter ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
|
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
|
allocate (lambda ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
|
|
allocate (xi (3,res1_red,res(2),res(3)), source = 0.0_pReal)
|
|
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
|
|
allocate (temperature( res(1), res(2),res(3)), source = bc(1)%temperature) ! start out isothermally
|
|
tensorField = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) ! allocate continous data using a C function, C_SIZE_T is of type integer(8)
|
|
call c_f_pointer(tensorField, lambda_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for the real representation
|
|
call c_f_pointer(tensorField, F_real, [ res(1)+2_pInt,res(2),res(3),3,3]) ! place a pointer for the real representation
|
|
call c_f_pointer(tensorField, lambda_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for the complex representation
|
|
call c_f_pointer(tensorField, F_fourier, [ res1_red, res(2),res(3),3,3]) ! place a pointer for the complex representation
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! general initialization of fftw (see manual on fftw.org for more details)
|
|
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=808_pInt) ! check for correct precision in C
|
|
#ifdef _OPENMP
|
|
if(DAMASK_NumThreadsInt > 0_pInt) then
|
|
ierr = fftw_init_threads()
|
|
if (ierr == 0_pInt) call IO_error(error_ID = 809_pInt)
|
|
call fftw_plan_with_nthreads(DAMASK_NumThreadsInt)
|
|
endif
|
|
#endif
|
|
call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! creating plans
|
|
plan_lambda = fftw_plan_many_dft_r2c(3,[ res(3),res(2) ,res(1)],9,& ! dimensions , length in each dimension in reversed order
|
|
lambda_real,[ res(3),res(2) ,res(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
|
|
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
|
lambda_fourier,[ res(3),res(2) ,res1_red],&
|
|
1, res(3)*res(2)* res1_red,fftw_planner_flag)
|
|
|
|
plan_correction = fftw_plan_many_dft_c2r(3,[ res(3),res(2) ,res(1)],9,&
|
|
F_fourier,[ res(3),res(2) ,res1_red],&
|
|
1, res(3)*res(2)* res1_red,&
|
|
F_real,[ res(3),res(2) ,res(1)+2_pInt],&
|
|
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
|
if (debugGeneral) print '(a)' , 'FFTW initialized'
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) and remove the given highest frequencies
|
|
do k = 1_pInt, res(3)
|
|
k_s(3) = k - 1_pInt
|
|
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
|
|
do j = 1_pInt, res(2)
|
|
k_s(2) = j - 1_pInt
|
|
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
|
do i = 1_pInt, res1_red
|
|
k_s(1) = i - 1_pInt
|
|
xi(1:3,i,j,k) = real(k_s, pReal)/geomdim
|
|
enddo; enddo; enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate the gamma operator
|
|
if(memory_efficient) then ! allocate just single fourth order tensor
|
|
allocate (gamma_hat(1,1,1,3,3,3,3), source = 0.0_pReal)
|
|
else ! precalculation of gamma_hat field
|
|
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3), source =0.0_pReal)
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
|
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
|
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
|
xiDyad(l,u) = xi(l, i,j,k)*xi(u, i,j,k)
|
|
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
|
temp33_Real(l,u) = sum(C_inc0(l,1:3,u,1:3)*xiDyad)
|
|
temp33_Real = math_inv33(temp33_Real)
|
|
forall(l=1_pInt:3_pInt, u=1_pInt:3_pInt, v=1_pInt:3_pInt, w=1_pInt:3_pInt)&
|
|
gamma_hat(i,j,k, l,u,v,w) = temp33_Real(l,v)*xiDyad(u,w)
|
|
endif
|
|
enddo; enddo; enddo
|
|
gamma_hat(1,1,1, 1:3,1:3,1:3,1:3) = 0.0_pReal ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! init fields to no deformation
|
|
ielem = 0_pInt
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
F_real(i,j,k,1:3,1:3) = math_I3; F_lastInc(i,j,k,1:3,1:3) = math_I3
|
|
coordinates(i,j,k,1:3) = geomdim/real(res * [i,j,k], pReal) - geomdim/real(2_pInt*res,pReal)
|
|
call CPFEM_general(3_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),&
|
|
0.0_pReal,ielem,1_pInt,sigma,dsde,temp33_Real ,dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
|
enddo; enddo; enddo
|
|
|
|
ielem = 0_pInt
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
call CPFEM_general(2_pInt,coordinates(i,j,k,1:3),math_I3,math_I3,temperature(i,j,k),&
|
|
0.0_pReal,ielem,1_pInt,sigma,dsde,temp33_Real ,dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
|
C = C + dPdF(i,j,k,1:3,1:3,1:3,1:3)
|
|
enddo; enddo; enddo
|
|
C_inc0 = C * wgt ! linear reference material stiffness
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! possible restore deformation gradient from saved state
|
|
if (restartInc > 1_pInt) then ! using old values from file
|
|
if (debugRestart) print '(a,i6,a)' , 'Reading values of increment ',&
|
|
restartInc - 1_pInt,' from file'
|
|
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
|
|
trim(getSolverJobName()),size(F_star))
|
|
read (777,rec=1) F_star
|
|
close (777)
|
|
F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_star
|
|
F_lastInc = F_star
|
|
F_aim = 0.0_pReal
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
F_aim = F_aim + F_real(i,j,k,1:3,1:3) ! calculating old average deformation
|
|
enddo; enddo; enddo
|
|
F_aim = F_aim * wgt
|
|
F_aim_lastInc = F_aim
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! write header of output file
|
|
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())&
|
|
//'.spectralOut',form='UNFORMATTED',status='REPLACE')
|
|
write(538) 'load', trim(getLoadcaseName())
|
|
write(538) 'workingdir', trim(getSolverWorkingDirectoryName())
|
|
write(538) 'geometry', trim(getSolverJobName())//InputFileExtension
|
|
write(538) 'resolution', res
|
|
write(538) 'dimension', geomdim
|
|
write(538) 'materialpoint_sizeResults', materialpoint_sizeResults
|
|
write(538) 'loadcases', N_Loadcases
|
|
write(538) 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase
|
|
write(538) 'times', bc(1:N_Loadcases)%time ! one entry per loadcase
|
|
write(538) 'logscales', bc(1:N_Loadcases)%logscale
|
|
write(538) 'increments', bc(1:N_Loadcases)%incs ! one entry per loadcase
|
|
write(538) 'startingIncrement', restartInc - 1_pInt ! start with writing out the previous inc
|
|
write(538) 'eoh' ! end of header
|
|
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed or read-in) results
|
|
if (debugGeneral) print '(a)' , 'Header of result file written out'
|
|
|
|
!##################################################################################################
|
|
! Loop over loadcases defined in the loadcase file
|
|
!##################################################################################################
|
|
do loadcase = 1_pInt, N_Loadcases
|
|
time0 = time ! loadcase start time
|
|
if (bc(loadcase)%followFormerTrajectory .and. &
|
|
(restartInc < totalIncsCounter .or. &
|
|
restartInc > totalIncsCounter+bc(loadcase)%incs) ) then ! continue to guess along former trajectory where applicable
|
|
guessmode = 1.0_pReal
|
|
else
|
|
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! arrays for mixed boundary conditions
|
|
mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation)
|
|
mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress)
|
|
size_reduced = int(count(bc(loadcase)%maskStressVector), pInt)
|
|
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
|
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
|
|
|
|
!##################################################################################################
|
|
! loop oper incs defined in input file for current loadcase
|
|
!##################################################################################################
|
|
do inc = 1_pInt, bc(loadcase)%incs
|
|
totalIncsCounter = totalIncsCounter + 1_pInt
|
|
if(totalIncsCounter >= restartInc) then ! do calculations (otherwise just forwarding)
|
|
!--------------------------------------------------------------------------------------------------
|
|
! forwarding time
|
|
timeinc_old = timeinc
|
|
if (bc(loadcase)%logscale == 0_pInt) then ! linear scale
|
|
timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used
|
|
else
|
|
if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale
|
|
if (inc == 1_pInt) then ! 1st inc of 1st loadcase of logarithmic scale
|
|
timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
|
|
else ! not-1st inc of 1st loadcase of logarithmic scale
|
|
timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal))
|
|
endif
|
|
else ! not-1st loadcase of logarithmic scale
|
|
timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**(real( inc,pReal)/&
|
|
real(bc(loadcase)%incs ,pReal))&
|
|
-(1.0_pReal + bc(loadcase)%time/time0 )**(real( (inc-1_pInt),pReal)/&
|
|
real(bc(loadcase)%incs ,pReal)) )
|
|
endif
|
|
endif
|
|
time = time + timeinc
|
|
|
|
if (bc(loadcase)%velGradApplied) then ! calculate deltaF from given L and current F
|
|
deltaF = timeinc * mask_defgrad * math_mul33x33(bc(loadcase)%deformation, F_aim)
|
|
else ! deltaF = fDot *timeinc where applicable
|
|
deltaF = timeinc * mask_defgrad * bc(loadcase)%deformation
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! coordinates at beginning of inc
|
|
!call deformed_fft(res,geomdim,1.0_pReal,F_real(1:res(1),1:res(2),1:res(3),1:3,1:3),coordinates)! calculate current coordinates
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! winding forward of deformation aim in loadcase system
|
|
temp33_Real = F_aim
|
|
F_aim = F_aim &
|
|
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
|
|
+ deltaF
|
|
F_aim_lastInc = temp33_Real
|
|
F_star_av = F_aim
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! update local deformation gradient
|
|
deltaF = math_rotate_backward33(deltaF,bc(loadcase)%rotation)
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
temp33_Real = F_real(i,j,k,1:3,1:3)
|
|
F_real(i,j,k,1:3,1:3) = F_real(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
|
|
+ guessmode * (F_real(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))& ! guessing...
|
|
*timeinc/timeinc_old &
|
|
+ (1.0_pReal-guessmode) * deltaF ! if not guessing, use prescribed average deformation where applicable
|
|
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
|
|
enddo; enddo; enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Initialize / Update lambda to useful value
|
|
P_star_av = P_star_av + math_mul3333xx33(C*wgt, F_aim-F_aim_lastInc)
|
|
lambda_av = 0.0_pReal
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
lambda(i,j,k,1:3,1:3) = P(i,j,k,1:3,1:3) + math_mul3333xx33(dPdF(i,j,k,1:3,1:3,1:3,1:3), &
|
|
F_real(i,j,k,1:3,1:3)-F_lastInc(i,j,k,1:3,1:3))
|
|
lambda_av = lambda_av + lambda(i,j,k,1:3,1:3)
|
|
enddo; enddo; enddo
|
|
lambda_av=lambda_av*wgt
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!Initialize pointwise data for AL scheme: ToDo: good choice?
|
|
F_star(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_real(1:res(1),1:res(2),1:res(3),1:3,1:3)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate reduced compliance
|
|
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
|
|
C_lastInc = math_rotate_forward3333(C*wgt,bc(loadcase)%rotation) ! calculate stiffness from former inc
|
|
c_prev99 = math_Plain3333to99(C_lastInc)
|
|
k = 0_pInt ! build reduced stiffness
|
|
do v = 1_pInt,9_pInt
|
|
if(bc(loadcase)%maskStressVector(v)) then
|
|
k = k + 1_pInt
|
|
j = 0_pInt
|
|
do u = 1_pInt,9_pInt
|
|
if(bc(loadcase)%maskStressVector(u)) then
|
|
j = j + 1_pInt
|
|
c_reduced(k,j) = c_prev99(v,u)
|
|
endif; enddo; endif; enddo
|
|
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
|
|
if(errmatinv) call IO_error(error_ID=400_pInt)
|
|
s_prev99 = 0.0_pReal ! build full compliance
|
|
k = 0_pInt
|
|
do v = 1_pInt,9_pInt
|
|
if(bc(loadcase)%maskStressVector(v)) then
|
|
k = k + 1_pInt
|
|
j = 0_pInt
|
|
do u = 1_pInt,9_pInt
|
|
if(bc(loadcase)%maskStressVector(u)) then
|
|
j = j + 1_pInt
|
|
s_prev99(v,u) = s_reduced(k,j)
|
|
endif; enddo; endif; enddo
|
|
S_lastInc = (math_Plain99to3333(s_prev99))
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! report begin of new increment
|
|
print '(a)', '##################################################################'
|
|
print '(A,I5.5,A,es12.5)', 'Increment ', totalIncsCounter, ' Time ',time
|
|
|
|
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
|
|
CPFEM_mode = 1_pInt ! winding forward
|
|
iter = 0_pInt
|
|
err_crit = huge(1.0_pReal) ! go into loop
|
|
callCPFEM=.true.
|
|
guessmax = 13
|
|
guesses = 0
|
|
|
|
!##################################################################################################
|
|
! convergence loop (looping over iterations)
|
|
!##################################################################################################
|
|
do while((iter < itmax .and. (err_crit > 1.0_pReal)) .or. iter < itmin)
|
|
iter = iter + 1_pInt
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! report begin of new iteration
|
|
print '(a)', ''
|
|
print '(a)', '=================================================================='
|
|
print '(5(a,i6.6))', 'Loadcase ',loadcase,' Increment ',inc,'/',bc(loadcase)%incs,&
|
|
' @ Iteration ',iter,'/',itmax
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! stress BC handling
|
|
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
|
|
err_stress = maxval(abs(mask_stress * (lambda_av - bc(loadcase)%P))) ! maximum deviaton (tensor norm not applicable)
|
|
F_aim = F_aim + math_mul3333xx33(S_lastInc,bc(loadcase)%P- lambda_av)
|
|
err_stress_tol = maxval(abs(lambda_av)) * err_stress_tolrel ! don't use any tensor norm because the comparison should be coherent
|
|
else
|
|
err_stress_tol = + huge(1.0_pReal)
|
|
endif
|
|
F_aim_lab = math_rotate_backward33(F_aim,bc(loadcase)%rotation)
|
|
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F aim =',&
|
|
math_transpose33(F_aim)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! doing Fourier transform
|
|
print '(a)', '... spectral method ...............................................'
|
|
lambda_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = lambda(1:res(1),1:res(2),1:res(3),1:3,1:3)
|
|
call fftw_execute_dft_r2c(plan_lambda,lambda_real,lambda_fourier)
|
|
lambda_fourier( res1_red,1:res(2) , 1:res(3) ,1:3,1:3)&
|
|
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
lambda_fourier(1:res1_red, res(2)/2_pInt+1_pInt,1:res(3) ,1:3,1:3)&
|
|
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
if(res(3)>1_pInt) &
|
|
lambda_fourier(1:res1_red,1:res(2), res(3)/2_pInt+1_pInt,1:3,1:3)&
|
|
= cmplx(0.0_pReal,0.0_pReal,pReal)
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculating RMS divergence criterion in Fourier space
|
|
pstress_av_L2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(lambda_av,& ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html)
|
|
math_transpose33(lambda_av)))))
|
|
err_div_RMS = 0.0_pReal
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2)
|
|
do i = 2_pInt, res1_red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
|
err_div_RMS = err_div_RMS &
|
|
+ 2.0_pReal*(sum (real(math_mul33x3_complex(lambda_fourier(i,j,k,1:3,1:3),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
|
|
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector
|
|
+sum(aimag(math_mul33x3_complex(lambda_fourier(i,j,k,1:3,1:3),&
|
|
xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal))
|
|
enddo
|
|
err_div_RMS = err_div_RMS & ! Those two layers (DC and Nyquist) do not have a conjugate complex counterpart
|
|
+ sum( real(math_mul33x3_complex(lambda_fourier(1 ,j,k,1:3,1:3),&
|
|
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
|
+ sum(aimag(math_mul33x3_complex(lambda_fourier(1 ,j,k,1:3,1:3),&
|
|
xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal)&
|
|
+ sum( real(math_mul33x3_complex(lambda_fourier(res1_red,j,k,1:3,1:3),&
|
|
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)&
|
|
+ sum(aimag(math_mul33x3_complex(lambda_fourier(res1_red,j,k,1:3,1:3),&
|
|
xi(1:3,res1_red,j,k))*TWOPIIMG)**2.0_pReal)
|
|
enddo; enddo
|
|
|
|
err_div_RMS = sqrt(err_div_RMS)*wgt
|
|
! if (err_div < err_div_RMS/pstress_av_L2 .and. guessmax<0) then
|
|
! print*, 'increasing div, stopping calc'
|
|
! iter = huge(1_pInt)
|
|
! endif
|
|
err_div = err_div_RMS/pstress_av_L2
|
|
!--------------------------------------------------------------------------------------------------
|
|
! using gamma operator to update F
|
|
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
|
|
if(any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
|
|
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
|
xiDyad(l,u) = xi(l, i,j,k)*xi(u, i,j,k)
|
|
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
|
temp33_Real(l,u) = sum(C_inc0(l,1:3,u,1:3)*xiDyad)
|
|
temp33_Real = math_inv33(temp33_Real)
|
|
forall(l=1_pInt:3_pInt, u=1_pInt:3_pInt, v=1_pInt:3_pInt, w=1_pInt:3_pInt)&
|
|
gamma_hat(1,1,1, l,u,v,w) = temp33_Real(l,v)*xiDyad(u,w)
|
|
forall(l = 1_pInt:3_pInt, u = 1_pInt:3_pInt) &
|
|
temp33_Complex(l,u) = sum(gamma_hat(1,1,1, l,u, 1:3,1:3) *&
|
|
lambda_fourier(i,j,k,1:3,1:3))
|
|
F_fourier(i,j,k,1:3,1:3) = - temp33_Complex
|
|
endif
|
|
enddo; enddo; enddo
|
|
else ! use precalculated gamma-operator
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt,res1_red
|
|
forall( u = 1_pInt:3_pInt, v = 1_pInt:3_pInt) &
|
|
temp33_Complex(u,v) = sum(gamma_hat(i,j,k, u,v, 1:3,1:3) *&
|
|
lambda_fourier(i,j,k,1:3,1:3))
|
|
F_fourier(i,j,k, 1:3,1:3) = - temp33_Complex
|
|
enddo; enddo; enddo
|
|
endif
|
|
F_fourier(1,1,1,1:3,1:3) = cmplx((F_aim_lab - F_star_av)*real(Npoints,pReal),0.0_pReal,pReal)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! doing inverse Fourier transform
|
|
call fftw_execute_dft_c2r(plan_correction,F_fourier,F_real) ! back transform of fluct deformation gradient
|
|
F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = F_real(1:res(1),1:res(2),1:res(3),1:3,1:3) * wgt + &
|
|
F_star(1:res(1),1:res(2),1:res(3),1:3,1:3)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!
|
|
if(callCPFEM) then
|
|
print '(a)', '... calling CPFEM to update P(F*) and F*.........................'
|
|
ielem = 0_pInt
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
call CPFEM_general(3_pInt,& ! collect cycle
|
|
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),&
|
|
F_star(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,&
|
|
sigma,dsde, P(i,j,k,1:3,1:3), dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
|
enddo; enddo; enddo
|
|
ielem = 0_pInt
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
call CPFEM_general(CPFEM_mode,&
|
|
coordinates(i,j,k,1:3), F_lastInc(i,j,k,1:3,1:3),&
|
|
F_star(i,j,k,1:3,1:3),temperature(i,j,k),timeinc,ielem,1_pInt,&
|
|
sigma,dsde, P(i,j,k,1:3,1:3), dPdF(i,j,k,1:3,1:3,1:3,1:3))
|
|
CPFEM_mode = 2_pInt ! winding forward
|
|
temp33_Real = lambda(i,j,k,1:3,1:3) - P(i,j,k,1:3,1:3) &
|
|
+ math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3)- F_star(i,j,k,1:3,1:3))
|
|
|
|
F_star(i,j,k,1:3,1:3) = F_star(i,j,k,1:3,1:3) + math_mul3333xx33(math_invSym3333(&
|
|
C_inc0 + dPdF(i,j,k,1:3,1:3,1:3,1:3)), temp33_Real)
|
|
enddo; enddo; enddo
|
|
F_star_lastIter = F_star
|
|
else
|
|
guesses = guesses +1_pInt
|
|
print '(a)', '... .linear solution.P(F*) and update F*........................'
|
|
print*, '... linear approximation ', guesses, ' of ', guessmax, ' for P(F*) and F*'
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
temp33_Real = lambda(i,j,k,1:3,1:3) - (P(i,j,k,1:3,1:3) + math_mul3333xx33(dPdF(i,j,k,1:3,1:3,1:3,1:3),&
|
|
F_star(i,j,k,1:3,1:3) -F_star_lastIter(i,j,k,1:3,1:3)))&
|
|
+ math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3)- F_star(i,j,k,1:3,1:3))
|
|
|
|
F_star(i,j,k,1:3,1:3) = F_star(i,j,k,1:3,1:3) + math_mul3333xx33(math_invSym3333(&
|
|
C_inc0 + dPdF(i,j,k,1:3,1:3,1:3,1:3)), temp33_Real)
|
|
enddo; enddo; enddo
|
|
endif
|
|
|
|
print '(a)', '... update λ..........................'
|
|
|
|
err_f = 0.0_pReal
|
|
err_f_point = 0.0_pReal
|
|
err_p = 0.0_pReal
|
|
err_p_point = 0.0_pReal
|
|
|
|
F_star_av = 0.0_pReal
|
|
P_star_av = 0.0_pReal
|
|
lambda_av = 0.0_pReal
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
lambda(i,j,k,1:3,1:3) = lambda(i,j,k,1:3,1:3) + math_mul3333xx33(C_inc0,F_real(i,j,k,1:3,1:3) &
|
|
- F_star(i,j,k,1:3,1:3))
|
|
F_star_av = F_star_av + F_star(i,j,k,1:3,1:3)
|
|
lambda_av = lambda_av + lambda(i,j,k,1:3,1:3)
|
|
P_star_av = P_star_av + P(i,j,k,1:3,1:3)
|
|
|
|
temp33_real = F_star(i,j,k,1:3,1:3) - F_real(i,j,k,1:3,1:3)
|
|
err_f_point = max(err_f_point, maxval(abs(temp33_real)))
|
|
err_f = max(err_f, sqrt(math_mul33xx33(temp33_real,temp33_real)))
|
|
|
|
temp33_real = lambda(i,j,k,1:3,1:3) - (P(i,j,k,1:3,1:3) + math_mul3333xx33(dPdF(i,j,k,1:3,1:3,1:3,1:3),&
|
|
F_star(i,j,k,1:3,1:3) -F_star_lastIter(i,j,k,1:3,1:3)))
|
|
err_p_point = max(err_p_point, maxval(abs(temp33_real)))
|
|
err_p = max(err_p, sqrt(math_mul33xx33(temp33_real,temp33_real)))
|
|
enddo; enddo; enddo
|
|
|
|
F_star_av = F_star_av *wgt
|
|
write (*,'(a,/,3(3(f12.7,1x)/))',advance='no') 'F* =',&
|
|
math_transpose33(F_star_av)
|
|
P_star_av = P_star_av *wgt
|
|
write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'P(F*) / GPa =',&
|
|
math_transpose33(P_star_av) /1.e6_pReal
|
|
lambda_av = lambda_av *wgt
|
|
write (*,'(a,/,3(3(es14.7,1x)/))',advance='no') 'λ / GPa =',&
|
|
math_transpose33(lambda_av) /1.e6_pReal
|
|
|
|
err_f = err_f/sqrt(math_mul33xx33(F_star_av,F_star_av))
|
|
err_p = err_p/sqrt(math_mul33xx33(P_star_av,P_star_av))
|
|
|
|
write(6,'(a,es14.7,es14.7)') 'error F', err_f/1e-4, err_f
|
|
write(6,'(a,es14.7,es14.7)') 'error P', err_p/1e-3, err_p
|
|
write(6,'(a,es14.7,es14.7)') 'error stress = ',err_stress/err_stress_tol, err_stress
|
|
write(6,'(a,es14.7,es14.7)') 'error divergence = ',err_div/err_div_tol, err_div
|
|
write(6,*) ' '
|
|
write(6,'(a,es14.7)') 'error divergence FT RMS = ',err_div_RMS
|
|
write(6,'(a,es14.7)') 'max abs err F', err_f_point
|
|
write(6,'(a,es14.7)') 'max abs err P', err_p_point
|
|
err_crit = max(err_p/1e-3, err_f/1e-4,err_div/err_div_tol,err_stress/err_stress_tol)
|
|
print*, 'critical error', err_crit
|
|
|
|
if (.not. callCPFEM) then
|
|
if(err_crit < 1.0_pReal .or. guesses >= guessmax) callCPFEM = .true.
|
|
err_crit =huge(1.0_pReal)
|
|
else
|
|
if(guessmax > 1 .and. iter>2) callCPFEM=.false.
|
|
guesses = 0_pInt
|
|
guessmax = guessmax -1
|
|
endif
|
|
|
|
enddo ! end looping when convergency is achieved
|
|
print '(a)', ''
|
|
print '(a)', '=================================================================='
|
|
if(err_crit > 1.0_pReal) then
|
|
print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' NOT converged'
|
|
notConvergedCounter = notConvergedCounter + 1_pInt
|
|
else
|
|
convergedCounter = convergedCounter + 1_pInt
|
|
print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' converged'
|
|
endif
|
|
|
|
if (mod(totalIncsCounter -1_pInt,bc(loadcase)%outputfrequency) == 0_pInt) then ! at output frequency
|
|
print '(a)', ''
|
|
print '(a)', '... writing results to file ......................................'
|
|
write(538) materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
|
|
endif
|
|
|
|
if( bc(loadcase)%restartFrequency > 0_pInt .and. &
|
|
mod(inc - 1_pInt,bc(loadcase)%restartFrequency) == 0_pInt) then ! at frequency of writing restart information set restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?)
|
|
restartWrite = .true.
|
|
print '(A)', 'writing converged results for restart'
|
|
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_star)) ! writing deformation gradient field to file
|
|
write (777,rec=1) F_star
|
|
close (777)
|
|
restartInc=totalIncsCounter
|
|
endif
|
|
|
|
|
|
endif ! end calculation/forwarding
|
|
enddo ! end looping over incs in current loadcase
|
|
deallocate(c_reduced)
|
|
deallocate(s_reduced)
|
|
enddo ! end looping over loadcases
|
|
print '(a)', ''
|
|
print '(a)', '##################################################################'
|
|
print '(i6.6,a,i6.6,a)', notConvergedCounter, ' out of ', &
|
|
notConvergedCounter + convergedCounter, ' increments did not converge!'
|
|
close(538)
|
|
call fftw_destroy_plan(plan_lambda); call fftw_destroy_plan(plan_correction)
|
|
call quit(1_pInt)
|
|
end program DAMASK_spectral_AL
|
|
|
|
!********************************************************************
|
|
! quit subroutine to satisfy IO_error
|
|
!
|
|
!********************************************************************
|
|
subroutine quit(stop_id)
|
|
use prec, only: &
|
|
pInt
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: stop_id
|
|
integer, dimension(8) :: dateAndTime ! type default integer
|
|
|
|
call date_and_time(values = dateAndTime)
|
|
write(6,'(/,a)') 'DAMASK_spectral_AL terminated on:'
|
|
write(6,'(a,2(i2.2,a),i4.4)') 'Date: ',dateAndTime(3),'/',&
|
|
dateAndTime(2),'/',&
|
|
dateAndTime(1)
|
|
write(6,'(a,2(i2.2,a),i2.2)') 'Time: ',dateAndTime(5),':',&
|
|
dateAndTime(6),':',&
|
|
dateAndTime(7)
|
|
write(6,'(/,a)') 'Exit code:'
|
|
if (stop_id == 1_pInt) stop 1 ! normal termination
|
|
if (stop_id <= 0_pInt) then ! trigger regridding
|
|
write(6,'(a,i6)') 'restart a', stop_id*(-1_pInt)
|
|
stop 2
|
|
endif
|
|
stop 0 ! error
|
|
end subroutine
|