DAMASK_EICMD/code/lattice.f90

1103 lines
60 KiB
Fortran
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief defines lattice structure definitions, slip and twin system definitions, Schimd matrix
!> calculation and non-Schmid behavior
!--------------------------------------------------------------------------------------------------
module lattice
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), parameter, public :: &
lattice_maxNslipFamily = 6_pInt, & !< max # of slip system families over lattice structures
lattice_maxNtwinFamily = 4_pInt, & !< max # of twin system families over lattice structures
lattice_maxNslip = 33_pInt, & !< max # of slip systems over lattice structures
lattice_maxNtwin = 24_pInt, & !< max # of twin systems over lattice structures
lattice_maxNinteraction = 42_pInt, & !< max # of interaction types (in hardening matrix part)
lattice_maxNnonSchmid = 6_pInt !< max # of non schmid contributions over lattice structures
integer(pInt), allocatable, dimension(:,:), protected, public :: &
lattice_NslipSystem, & !< total # of slip systems in each family
lattice_NtwinSystem !< total # of twin systems in each family
integer(pInt), allocatable, dimension(:,:,:), protected, public :: &
lattice_interactionSlipSlip, & !< Slip--slip interaction type
lattice_interactionSlipTwin, & !< Slip--twin interaction type
lattice_interactionTwinSlip, & !< Twin--slip interaction type
lattice_interactionTwinTwin !< Twin--twin interaction type
real(pReal), allocatable, dimension(:,:,:,:,:), protected, public :: &
lattice_Sslip !< Schmid and non-Schmid matrices
real(pReal), allocatable, dimension(:,:,:,:), protected, public :: &
lattice_Sslip_v !< Mandel notation of lattice_Sslip
real(pReal), allocatable, dimension(:,:,:), protected, public :: &
lattice_sn, & !< normal direction of slip system
lattice_sd, & !< slip direction of slip system
lattice_st !< sd x sn
! rotation and Schmid matrices, normal, shear direction and d x n of twin systems
real(pReal), allocatable, dimension(:,:,:,:), protected, public :: &
lattice_Stwin, &
lattice_Qtwin
real(pReal), allocatable, dimension(:,:,:), protected, public :: &
lattice_Stwin_v, &
lattice_tn, &
lattice_td, &
lattice_tt
real(pReal), allocatable, dimension(:,:), protected, public :: &
lattice_shearTwin !< characteristic twin shear
integer(pInt), private :: &
lattice_Nhexagonal, & !< total # of hexagonal lattice structure (from tag CoverA_ratio)
lattice_Nstructure !< total # of lattice structures (1: fcc,2: bcc,3+: hexagonal)
integer(pInt), dimension(:,:), pointer, private :: &
interactionSlipSlip, &
interactionSlipTwin, &
interactionTwinSlip, &
interactionTwinTwin
integer(pInt), allocatable, dimension(:), protected, public :: &
lattice_NnonSchmid !< total # of non-Schmid contributions for each structure
!--------------------------------------------------------------------------------------------------
! fcc (1)
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
lattice_fcc_NslipSystem = int([12, 0, 0, 0, 0, 0],pInt) !< total # of slip systems per family for fcc
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
lattice_fcc_NtwinSystem = int([12, 0, 0, 0],pInt) !< total # of twin systems per family for fcc
integer(pInt), parameter, private :: &
lattice_fcc_Nslip = 12_pInt, & ! sum(lattice_fcc_NslipSystem), & !< total # of slip systems for fcc
lattice_fcc_Ntwin = 12_pInt, & ! sum(lattice_fcc_NtwinSystem) !< total # of twin systems for fcc
lattice_fcc_NnonSchmid = 0_pInt !< total # of non-Schmid contributions for fcc
integer(pInt), private :: &
lattice_fcc_Nstructure = 0_pInt
real(pReal), dimension(3+3,lattice_fcc_Nslip), parameter, private :: &
lattice_fcc_systemSlip = reshape(real([&
0, 1,-1, 1, 1, 1, &
-1, 0, 1, 1, 1, 1, &
1,-1, 0, 1, 1, 1, &
0,-1,-1, -1,-1, 1, &
1, 0, 1, -1,-1, 1, &
-1, 1, 0, -1,-1, 1, &
0,-1, 1, 1,-1,-1, &
-1, 0,-1, 1,-1,-1, &
1, 1, 0, 1,-1,-1, &
0, 1, 1, -1, 1,-1, &
1, 0,-1, -1, 1,-1, &
-1,-1, 0, -1, 1,-1 &
],pReal),[ 3_pInt + 3_pInt,lattice_fcc_Nslip]) !< Slip system <110>{111} directions. Sorted according to Eisenlohr & Hantcherli
real(pReal), dimension(3+3,lattice_fcc_Ntwin), parameter, private :: &
lattice_fcc_systemTwin = reshape(real( [&
-2, 1, 1, 1, 1, 1, &
1,-2, 1, 1, 1, 1, &
1, 1,-2, 1, 1, 1, &
2,-1, 1, -1,-1, 1, &
-1, 2, 1, -1,-1, 1, &
-1,-1,-2, -1,-1, 1, &
-2,-1,-1, 1,-1,-1, &
1, 2,-1, 1,-1,-1, &
1,-1, 2, 1,-1,-1, &
2, 1,-1, -1, 1,-1, &
-1,-2,-1, -1, 1,-1, &
-1, 1, 2, -1, 1,-1 &
],pReal),[ 3_pInt + 3_pInt ,lattice_fcc_Ntwin]) !< Twin system <112>{111} directions. Sorted according to Eisenlohr & Hantcherli
real(pReal), dimension(lattice_fcc_Ntwin), parameter, private :: &
lattice_fcc_shearTwin = reshape([&
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal &
],[lattice_fcc_Ntwin]) !< Twin system <112>{111} ??? Sorted according to Eisenlohr & Hantcherli
integer(pInt), dimension(2_pInt,lattice_fcc_Ntwin), parameter, public :: &
lattice_fcc_corellationTwinSlip = reshape(int( [&
2,3, &
1,3, &
1,2, &
5,6, &
4,6, &
4,5, &
8,9, &
7,9, &
7,8, &
11,12, &
10,12, &
10,11 &
],pInt),[2_pInt,lattice_fcc_Ntwin])
integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Nslip), target, public :: &
lattice_fcc_interactionSlipSlip = reshape(int( [&
1,2,2,4,6,5,3,5,5,4,5,6, & ! ---> slip
2,1,2,6,4,5,5,4,6,5,3,5, & ! |
2,2,1,5,5,3,5,6,4,6,5,4, & ! |
4,6,5,1,2,2,4,5,6,3,5,5, & ! v slip
6,4,5,2,1,2,5,3,5,5,4,6, &
5,5,3,2,2,1,6,5,4,5,6,4, &
3,5,5,4,5,6,1,2,2,4,6,5, &
5,4,6,5,3,5,2,1,2,6,4,5, &
5,6,4,6,5,4,2,2,1,5,5,3, &
4,5,6,3,5,5,4,6,5,1,2,2, &
5,3,5,5,4,6,6,4,5,2,1,2, &
6,5,4,5,6,4,5,5,3,2,2,1 &
],pInt),[lattice_fcc_Nslip,lattice_fcc_Nslip],order=[2,1]) !< Slip--slip interaction types for fcc
!< 1: self interaction
!< 2: coplanar interaction
!< 3: collinear interaction
!< 4: Hirth locks
!< 5: glissile junctions
!< 6: Lomer locks
integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Ntwin), target, public :: &
lattice_fcc_interactionSlipTwin = reshape(int( [&
1,1,1,3,3,3,2,2,2,3,3,3, & ! ---> twin
1,1,1,3,3,3,3,3,3,2,2,2, & ! |
1,1,1,2,2,2,3,3,3,3,3,3, & ! |
3,3,3,1,1,1,3,3,3,2,2,2, & ! v slip
3,3,3,1,1,1,2,2,2,3,3,3, &
2,2,2,1,1,1,3,3,3,3,3,3, &
2,2,2,3,3,3,1,1,1,3,3,3, &
3,3,3,2,2,2,1,1,1,3,3,3, &
3,3,3,3,3,3,1,1,1,2,2,2, &
3,3,3,2,2,2,3,3,3,1,1,1, &
2,2,2,3,3,3,3,3,3,1,1,1, &
3,3,3,3,3,3,2,2,2,1,1,1 &
],pInt),[lattice_fcc_Nslip,lattice_fcc_Ntwin],order=[2,1]) !< Slip--twin interaction types for fcc
!< 1: coplanar interaction
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 3: other interaction
integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Nslip), target, public :: &
lattice_fcc_interactionTwinSlip = 0_pInt !< Twin--Slip interaction types for fcc
integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Ntwin), target, public :: &
lattice_fcc_interactionTwinTwin = reshape(int( [&
1,1,1,2,2,2,2,2,2,2,2,2, & ! ---> twin
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
2,2,2,1,1,1,2,2,2,2,2,2, & ! v twin
2,2,2,1,1,1,2,2,2,2,2,2, &
2,2,2,1,1,1,2,2,2,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1 &
],pInt),[lattice_fcc_Ntwin,lattice_fcc_Ntwin],order=[2,1]) !< Twin--twin interaction types for fcc
!--------------------------------------------------------------------------------------------------
! bcc (2)
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
lattice_bcc_NslipSystem = int([ 12, 12, 0, 0, 0, 0], pInt) !< total # of slip systems per family for bcc
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
lattice_bcc_NtwinSystem = int([ 12, 0, 0, 0], pInt) !< total # of twin systems per family for bcc
integer(pInt), parameter, private :: &
lattice_bcc_Nslip = 24_pInt, & ! sum(lattice_bcc_NslipSystem), & !< total # of slip systems for bcc
lattice_bcc_Ntwin = 12_pInt, & ! sum(lattice_bcc_NtwinSystem) !< total # of twin systems for bcc
lattice_bcc_NnonSchmid = 6_pInt !< # of non-Schmid contributions for bcc. 6 known non schmid contributions for BCC (A. Koester, A. Ma, A. Hartmaier 2012)
integer(pInt), private :: &
lattice_bcc_Nstructure = 0_pInt
real(pReal), dimension(3+3,lattice_bcc_Nslip), parameter, private :: &
lattice_bcc_systemSlip = reshape(real([&
! Slip system <111>{110}
1,-1, 1, 0, 1, 1, &
-1,-1, 1, 0, 1, 1, &
1, 1, 1, 0,-1, 1, &
-1, 1, 1, 0,-1, 1, &
-1, 1, 1, 1, 0, 1, &
-1,-1, 1, 1, 0, 1, &
1, 1, 1, -1, 0, 1, &
1,-1, 1, -1, 0, 1, &
-1, 1, 1, 1, 1, 0, &
-1, 1,-1, 1, 1, 0, &
1, 1, 1, -1, 1, 0, &
1, 1,-1, -1, 1, 0, &
! Slip system <111>{112}
-1, 1, 1, 2, 1, 1, &
1, 1, 1, -2, 1, 1, &
1, 1,-1, 2,-1, 1, &
1,-1, 1, 2, 1,-1, &
1,-1, 1, 1, 2, 1, &
1, 1,-1, -1, 2, 1, &
1, 1, 1, 1,-2, 1, &
-1, 1, 1, 1, 2,-1, &
1, 1,-1, 1, 1, 2, &
1,-1, 1, -1, 1, 2, &
-1, 1, 1, 1,-1, 2, &
1, 1, 1, 1, 1,-2 &
! Slip system <111>{123}
! 1, 1,-1, 1, 2, 3, &
! 1,-1, 1, -1, 2, 3, &
! -1, 1, 1, 1,-2, 3, &
! 1, 1, 1, 1, 2,-3, &
! 1,-1, 1, 1, 3, 2, &
! 1, 1,-1, -1, 3, 2, &
! 1, 1, 1, 1,-3, 2, &
! -1, 1, 1, 1, 3,-2, &
! 1, 1,-1, 2, 1, 3, &
! 1,-1, 1, -2, 1, 3, &
! -1, 1, 1, 2,-1, 3, &
! 1, 1, 1, 2, 1,-3, &
! 1,-1, 1, 2, 3, 1, &
! 1, 1,-1, -2, 3, 1, &
! 1, 1, 1, 2,-3, 1, &
! -1, 1, 1, 2, 3,-1, &
! -1, 1, 1, 3, 1, 2, &
! 1, 1, 1, -3, 1, 2, &
! 1, 1,-1, 3,-1, 2, &
! 1,-1, 1, 3, 1,-2, &
! -1, 1, 1, 3, 2, 1, &
! 1, 1, 1, -3, 2, 1, &
! 1, 1,-1, 3,-2, 1, &
! 1,-1, 1, 3, 2,-1 &
],pReal),[ 3_pInt + 3_pInt ,lattice_bcc_Nslip])
real(pReal), dimension(3+3,lattice_bcc_Ntwin), parameter, private :: &
lattice_bcc_systemTwin = reshape(real([&
! Twin system <111>{112}
-1, 1, 1, 2, 1, 1, &
1, 1, 1, -2, 1, 1, &
1, 1,-1, 2,-1, 1, &
1,-1, 1, 2, 1,-1, &
1,-1, 1, 1, 2, 1, &
1, 1,-1, -1, 2, 1, &
1, 1, 1, 1,-2, 1, &
-1, 1, 1, 1, 2,-1, &
1, 1,-1, 1, 1, 2, &
1,-1, 1, -1, 1, 2, &
-1, 1, 1, 1,-1, 2, &
1, 1, 1, 1, 1,-2 &
],pReal),[ 3_pInt + 3_pInt,lattice_bcc_Ntwin])
real(pReal), dimension(lattice_bcc_Ntwin), parameter, private :: &
lattice_bcc_shearTwin = reshape([&
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal, &
0.7071067812_pReal &
],[lattice_bcc_Ntwin])
integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Nslip), target, public :: &
lattice_bcc_interactionSlipSlip = reshape(int( [&
1,2,6,6,5,4,4,3,4,3,5,4, 6,6,4,3,3,4,6,6,4,3,6,6, & ! ---> slip
2,1,6,6,4,3,5,4,5,4,4,3, 6,6,3,4,4,3,6,6,3,4,6,6, & ! |
6,6,1,2,4,5,3,4,4,5,3,4, 4,3,6,6,6,6,3,4,6,6,4,3, & ! |
6,6,2,1,3,4,4,5,3,4,4,5, 3,4,6,6,6,6,4,3,6,6,3,4, & ! v slip
5,4,4,3,1,2,6,6,3,4,5,4, 3,6,4,6,6,4,6,3,4,6,3,6, &
4,3,5,4,2,1,6,6,4,5,4,3, 4,6,3,6,6,3,6,4,3,6,4,6, &
4,5,3,4,6,6,1,2,5,4,3,4, 6,3,6,4,4,6,3,6,6,4,6,3, &
3,4,4,5,6,6,2,1,4,3,4,5, 6,4,6,3,3,6,4,6,6,3,6,4, &
4,5,4,3,3,4,5,4,1,2,6,6, 3,6,6,4,4,6,6,3,6,4,3,6, &
3,4,5,4,4,5,4,3,2,1,6,6, 4,6,6,3,3,6,6,4,6,3,4,6, &
5,4,3,4,5,4,3,4,6,6,1,2, 6,3,4,6,6,4,3,6,4,6,6,3, &
4,3,4,5,4,3,4,5,6,6,2,1, 6,4,3,6,6,3,4,6,3,6,6,4, &
!
6,6,4,3,3,4,6,6,3,4,6,6, 1,5,6,6,5,6,6,3,5,6,3,6, &
6,6,3,4,6,6,3,4,6,6,3,4, 5,1,6,6,6,5,3,6,6,5,6,3, &
4,3,6,6,4,3,6,6,6,6,4,3, 6,6,1,5,6,3,5,6,3,6,5,6, &
3,4,6,6,6,6,4,3,4,3,6,6, 6,6,5,1,3,6,6,5,6,3,6,5, &
3,4,6,6,6,6,4,3,4,3,6,6, 5,6,6,3,1,6,5,6,5,3,6,6, &
4,3,6,6,4,3,6,6,6,6,4,3, 6,5,3,6,6,1,6,5,3,5,6,6, &
6,6,3,4,6,6,3,4,6,6,3,4, 6,3,5,6,5,6,1,6,6,6,5,3, &
6,6,4,3,3,4,6,6,3,4,6,6, 3,6,6,5,6,5,6,1,6,6,3,5, &
4,3,6,6,4,3,6,6,6,6,4,3, 5,6,3,6,5,3,6,6,1,6,6,5, &
3,4,6,6,6,6,4,3,4,3,6,6, 6,5,6,3,3,5,6,6,6,1,5,6, &
6,6,4,3,3,4,6,6,3,4,6,6, 3,6,5,6,6,6,5,3,6,5,1,6, &
6,6,3,4,6,6,3,4,6,6,3,4, 6,3,6,5,6,6,3,5,5,6,6,1 &
],pInt),[lattice_bcc_Nslip,lattice_bcc_Nslip],order=[2,1]) !< Slip--slip interaction types for bcc from Queyreau et al. Int J Plast 25 (2009) 361377
!< 1: self interaction
!< 2: coplanar interaction
!< 3: collinear interaction
!< 4: mixed-asymmetrical junction
!< 5: mixed-symmetrical junction
!< 6: edge junction
integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Ntwin), target, public :: &
lattice_bcc_interactionSlipTwin = reshape(int( [&
3,3,3,2,2,3,3,3,3,2,3,3, & ! ---> twin
3,3,2,3,3,2,3,3,2,3,3,3, & ! |
3,2,3,3,3,3,2,3,3,3,3,2, & ! |
2,3,3,3,3,3,3,2,3,3,2,3, & ! v slip
2,3,3,3,3,3,3,2,3,3,2,3, &
3,3,2,3,3,2,3,3,2,3,3,3, &
3,2,3,3,3,3,2,3,3,3,3,2, &
3,3,3,2,2,3,3,3,3,2,3,3, &
2,3,3,3,3,3,3,2,3,3,2,3, &
3,3,3,2,2,3,3,3,3,2,3,3, &
3,2,3,3,3,3,2,3,3,3,3,2, &
3,3,2,3,3,2,3,3,2,3,3,3, &
!
1,3,3,3,3,3,3,2,3,3,2,3, &
3,1,3,3,3,3,2,3,3,3,3,2, &
3,3,1,3,3,2,3,3,2,3,3,3, &
3,3,3,1,2,3,3,3,3,2,3,3, &
3,3,3,2,1,3,3,3,3,2,3,3, &
3,3,2,3,3,1,3,3,2,3,3,3, &
3,2,3,3,3,3,1,3,3,3,3,2, &
2,3,3,3,3,3,3,1,3,3,2,3, &
3,3,2,3,3,2,3,3,1,3,3,3, &
3,3,3,2,2,3,3,3,3,1,3,3, &
2,3,3,3,3,3,3,2,3,3,1,3, &
3,2,3,3,3,3,2,3,3,3,3,1 &
],pInt),[lattice_bcc_Nslip,lattice_bcc_Ntwin],order=[2,1]) !< Slip--twin interaction types for bcc
!< 1: coplanar interaction
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 3: other interaction
integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Nslip), target, public :: &
lattice_bcc_interactionTwinSlip = 0_pInt !< Twin--slip interaction types for bcc @todo not implemented yet
integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Ntwin), target, public :: &
lattice_bcc_interactionTwinTwin = reshape(int( [&
1,3,3,3,3,3,3,2,3,3,2,3, & ! ---> twin
3,1,3,3,3,3,2,3,3,3,3,2, & ! |
3,3,1,3,3,2,3,3,2,3,3,3, & ! |
3,3,3,1,2,3,3,3,3,2,3,3, & ! v twin
3,3,3,2,1,3,3,3,3,2,3,3, &
3,3,2,3,3,1,3,3,2,3,3,3, &
3,2,3,3,3,3,1,3,3,3,3,2, &
2,3,3,3,3,3,3,1,3,3,2,3, &
3,3,2,3,3,2,3,3,1,3,3,3, &
3,3,3,2,2,3,3,3,3,1,3,3, &
2,3,3,3,3,3,3,2,3,3,1,3, &
3,2,3,3,3,3,2,3,3,3,3,1 &
],pInt),[lattice_bcc_Ntwin,lattice_bcc_Ntwin],order=[2,1]) !< Twin--twin interaction types for bcc
!< 1: self interaction
!< 2: collinear interaction
!< 3: other interaction
!--------------------------------------------------------------------------------------------------
! hex (3+)
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
lattice_hex_NslipSystem = int([ 3, 3, 6, 12, 6, 3],pInt) !< # of slip systems per family for hex
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
lattice_hex_NtwinSystem = int([ 6, 6, 6, 6],pInt) !< # of slip systems per family for hex
integer(pInt), parameter , private :: &
lattice_hex_Nslip = 33_pInt, & ! sum(lattice_hex_NslipSystem), !< total # of slip systems for hex
lattice_hex_Ntwin = 24_pInt, & ! sum(lattice_hex_NtwinSystem) !< total # of twin systems for hex
lattice_hex_NnonSchmid = 0_pInt !< # of non-Schmid contributions for hex
integer(pInt), private :: &
lattice_hex_Nstructure = 0_pInt
real(pReal), dimension(4+4,lattice_hex_Nslip), parameter, private :: &
lattice_hex_systemSlip = reshape(real([&
! Basal systems <11.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base))
2, -1, -1, 0, 0, 0, 0, 1, &
-1, 2, -1, 0, 0, 0, 0, 1, &
-1, -1, 2, 0, 0, 0, 0, 1, &
! 1st type prismatic systems <11.0>{10.0} (independent of c/a-ratio)
2, -1, -1, 0, 0, 1, -1, 0, &
-1, 2, -1, 0, -1, 0, 1, 0, &
-1, -1, 2, 0, 1, -1, 0, 0, &
! 2nd type prismatic systems <10.0>{11.0} -- a slip; plane normals independent of c/a-ratio
0, 1, -1, 0, 2, -1, -1, 0, &
-1, 0, 1, 0, -1, 2, -1, 0, &
1, -1, 0, 0, -1, -1, 2, 0, &
! 1st type 1st order pyramidal systems <11.0>{-11.1} -- plane normals depend on the c/a-ratio
2, -1, -1, 0, 0, 1, -1, 1, &
-1, 2, -1, 0, -1, 0, 1, 1, &
-1, -1, 2, 0, 1, -1, 0, 1, &
1, 1, -2, 0, -1, 1, 0, 1, &
-2, 1, 1, 0, 0, -1, 1, 1, &
1, -2, 1, 0, 1, 0, -1, 1, &
! pyramidal system: c+a slip <11.3>{-10.1} -- plane normals depend on the c/a-ratio
2, -1, -1, 3, -1, 1, 0, 1, &
1, -2, 1, 3, -1, 1, 0, 1, &
-1, -1, 2, 3, 1, 0, -1, 1, &
-2, 1, 1, 3, 1, 0, -1, 1, &
-1, 2, -1, 3, 0, -1, 1, 1, &
1, 1, -2, 3, 0, -1, 1, 1, &
-2, 1, 1, 3, 1, -1, 0, 1, &
-1, 2, -1, 3, 1, -1, 0, 1, &
1, 1, -2, 3, -1, 0, 1, 1, &
2, -1, -1, 3, -1, 0, 1, 1, &
1, -2, 1, 3, 0, 1, -1, 1, &
-1, -1, 2, 3, 0, 1, -1, 1, &
! pyramidal system: c+a slip <11.3>{-1-1.2} -- as for hexagonal ice (Castelnau et al 1996, similar to twin system found below)
2, -1, -1, 3, -2, 1, 1, 2, & ! sorted according to similar twin system
-1, 2, -1, 3, 1, -2, 1, 2, & ! <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a)
-1, -1, 2, 3, 1, 1, -2, 2, &
-2, 1, 1, 3, 2, -1, -1, 2, &
1, -2, 1, 3, -1, 2, -1, 2, &
1, 1, -2, 3, -1, -1, 2, 2 &
],pReal),[ 4_pInt + 4_pInt,lattice_hex_Nslip]) !< slip systems for hex sorted by A. Alankar & P. Eisenlohr
real(pReal), dimension(4+4,lattice_hex_Ntwin), parameter, private :: &
lattice_hex_systemTwin = reshape(real([&
1, -1, 0, 1, -1, 1, 0, 2, & ! <-10.1>{10.2} shear = (3-(c/a)^2)/(sqrt(3) c/a)
-1, 0, 1, 1, 1, 0, -1, 2, &
0, 1, -1, 1, 0, -1, 1, 2, &
-1, 1, 0, 1, 1, -1, 0, 2, &
1, 0, -1, 1, -1, 0, 1, 2, &
0, -1, 1, 1, 0, 1, -1, 2, &
!
2, -1, -1, 6, -2, 1, 1, 1, & ! <11.6>{-1-1.1} shear = 1/(c/a)
-1, 2, -1, 6, 1, -2, 1, 1, &
-1, -1, 2, 6, 1, 1, -2, 1, &
-2, 1, 1, 6, 2, -1, -1, 1, &
1, -2, 1, 6, -1, 2, -1, 1, &
1, 1, -2, 6, -1, -1, 2, 1, &
!
-1, 1, 0, -2, -1, 1, 0, 1, & !! <10.-2>{10.1} shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
1, 0, -1, -2, 1, 0, -1, 1, &
0, -1, 1, -2, 0, -1, 1, 1, &
1, -1, 0, -2, 1, -1, 0, 1, &
-1, 0, 1, -2, -1, 0, 1, 1, &
0, 1, -1, -2, 0, 1, -1, 1, &
!
2, -1, -1, -3, 2, -1, -1, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a)
-1, 2, -1, -3, -1, 2, -1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, &
-2, 1, 1, -3, -2, 1, 1, 2, &
1, -2, 1, -3, 1, -2, 1, 2, &
1, 1, -2, -3, 1, 1, -2, 2 &
],pReal),[ 4_pInt + 4_pInt ,lattice_hex_Ntwin]) !< twin systems for hex, order follows Prof. Tom Bieler's scheme; but numbering in data was restarted from 1
integer(pInt), dimension(lattice_hex_Ntwin), parameter, private :: &
lattice_hex_shearTwin = reshape(int( [& ! indicator to formula further below
1, & ! <-10.1>{10.2}
1, &
1, &
1, &
1, &
1, &
2, & ! <11.6>{-1-1.1}
2, &
2, &
2, &
2, &
2, &
3, & ! <10.-2>{10.1}
3, &
3, &
3, &
3, &
3, &
4, & ! <11.-3>{11.2}
4, &
4, &
4, &
4, &
4 &
],pInt),[lattice_hex_Ntwin])
integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Nslip), target, public :: &
lattice_hex_interactionSlipSlip = reshape(int( [&
1, 2, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! ---> slip
2, 1, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! |
2, 2, 1, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! |
! v slip
6, 6, 6, 4, 5, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
6, 6, 6, 5, 4, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
6, 6, 6, 5, 5, 4, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
!
12,12,12, 11,11,11, 9,10,10, 15,15,15,15,15,15, 33,33,33,33,33,33,33,33,33,33,33,33, 33,33,33,33,33,33, &
12,12,12, 11,11,11, 10, 9,10, 15,15,15,15,15,15, 33,33,33,33,33,33,33,33,33,33,33,33, 33,33,33,33,33,33, &
12,12,12, 11,11,11, 10,10, 9, 15,15,15,15,15,15, 33,33,33,33,33,33,33,33,33,33,33,33, 33,33,33,33,33,33, &
!
20,20,20, 19,19,19, 18,18,18, 16,17,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,16,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,16,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,16,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,16,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,17,16, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
!
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 25,26,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,25,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,25,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,25,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,25,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,25,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,25,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,25,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,25,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,25,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,25,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,26,25, 35,35,35,35,35,35, &
!
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 36,37,37,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,36,37,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,36,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,36,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,36,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,37,36 &
!
],pInt),[lattice_hex_Nslip,lattice_hex_Nslip],order=[2,1]) !< Slip--slip interaction types for hex (32? in total)
integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Ntwin), target, public :: &
lattice_hex_interactionSlipTwin = reshape(int( [&
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! --> twin
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! |
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! |
! v
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, & ! slip
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, &
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, &
!
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
!
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
!
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
!
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 10,10,10,10,10,10, 23,23,23,23,23,23, 24,24,24,24,24,24 &
!
],pInt),[lattice_hex_Nslip,lattice_hex_Ntwin],order=[2,1]) !< Slip--twin interaction types for hex (isotropic, 24 in total)
integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Nslip), target, public :: &
lattice_hex_interactionTwinSlip = reshape(int( [&
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! --> slip
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! |
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! |
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! v
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! twin
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, &
!
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
!
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
!
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24 &
],pInt),[lattice_hex_Ntwin,lattice_hex_Nslip],order=[2,1]) !< Twin--twin interaction types for hex (isotropic, 20 in total)
integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Ntwin), target, public :: &
lattice_hex_interactionTwinTwin = reshape(int( [&
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! ---> twin
2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
2, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
2, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! v twin
2, 2, 2, 2, 1, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, &
2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, &
!
6, 6, 6, 6, 6, 6, 4, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 4, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 4, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
!
12,12,12,12,12,12, 11,11,11,11,11,11, 9,10,10,10,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10, 9,10,10,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10, 9,10,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10, 9,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10, 9,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10,10, 9, 15,15,15,15,15,15, &
!
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 16,17,17,17,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,16,17,17,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,16,17,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,16,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,16,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,17, 4 &
],pInt),[lattice_hex_Ntwin,lattice_hex_Ntwin],order=[2,1]) !< Twin--slip interaction types for hex (isotropic, 16 in total)
public :: &
lattice_init, &
lattice_initializeStructure, &
lattice_symmetryType, &
lattice_symmetrizeC66, &
lattice_configNchunks
contains
!--------------------------------------------------------------------------------------------------
!> @brief Module initialization
!--------------------------------------------------------------------------------------------------
subroutine lattice_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_open_file,&
IO_open_jobFile_stat, &
IO_countSections, &
IO_countTagInPart, &
IO_error, &
IO_timeStamp
use material, only: &
material_configfile, &
material_localFileExt, &
material_partPhase
use debug, only: &
debug_level, &
debug_lattice, &
debug_levelBasic
implicit none
integer(pInt), parameter :: fileunit = 200_pInt
integer(pInt) :: Nsections
write(6,'(/,a)') ' <<<+- lattice init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
if (.not. IO_open_jobFile_stat(fileunit,material_localFileExt)) then ! no local material configuration present...
call IO_open_file(fileunit,material_configFile) ! ... open material.config file
endif
Nsections = IO_countSections(fileunit,material_partPhase)
lattice_Nstructure = 2_pInt + sum(IO_countTagInPart(fileunit,material_partPhase,'covera_ratio',Nsections)) ! fcc + bcc + all hex
close(fileunit)
if (iand(debug_level(debug_lattice),debug_levelBasic) /= 0_pInt) then
write(6,'(a16,1x,i5)') ' # phases:',Nsections
write(6,'(a16,1x,i5,/)') ' # structures:',lattice_Nstructure
endif
allocate(lattice_NnonSchmid(lattice_Nstructure)); lattice_NnonSchmid = 0_pInt
allocate(lattice_Sslip(3,3,1+2*lattice_maxNnonSchmid,lattice_maxNslip,lattice_Nstructure)); lattice_Sslip = 0.0_pReal
allocate(lattice_Sslip_v(6,1+2*lattice_maxNnonSchmid,lattice_maxNslip,lattice_Nstructure)); lattice_Sslip_v = 0.0_pReal
allocate(lattice_sd(3,lattice_maxNslip,lattice_Nstructure)); lattice_sd = 0.0_pReal
allocate(lattice_st(3,lattice_maxNslip,lattice_Nstructure)); lattice_st = 0.0_pReal
allocate(lattice_sn(3,lattice_maxNslip,lattice_Nstructure)); lattice_sn = 0.0_pReal
allocate(lattice_Qtwin(3,3,lattice_maxNtwin,lattice_Nstructure)); lattice_Qtwin = 0.0_pReal
allocate(lattice_Stwin(3,3,lattice_maxNtwin,lattice_Nstructure)); lattice_Stwin = 0.0_pReal
allocate(lattice_Stwin_v(6,lattice_maxNtwin,lattice_Nstructure)); lattice_Stwin_v = 0.0_pReal
allocate(lattice_td(3,lattice_maxNtwin,lattice_Nstructure)); lattice_td = 0.0_pReal
allocate(lattice_tt(3,lattice_maxNtwin,lattice_Nstructure)); lattice_tt = 0.0_pReal
allocate(lattice_tn(3,lattice_maxNtwin,lattice_Nstructure)); lattice_tn = 0.0_pReal
allocate(lattice_shearTwin(lattice_maxNtwin,lattice_Nstructure)); lattice_shearTwin = 0.0_pReal
allocate(lattice_NslipSystem(lattice_maxNslipFamily,lattice_Nstructure)); lattice_NslipSystem = 0_pInt
allocate(lattice_NtwinSystem(lattice_maxNtwinFamily,lattice_Nstructure)); lattice_NtwinSystem = 0_pInt
allocate(lattice_interactionSlipSlip(lattice_maxNslip,lattice_maxNslip,lattice_Nstructure))
lattice_interactionSlipSlip = 0_pInt ! other:me
allocate(lattice_interactionSlipTwin(lattice_maxNslip,lattice_maxNtwin,lattice_Nstructure))
lattice_interactionSlipTwin = 0_pInt ! other:me
allocate(lattice_interactionTwinSlip(lattice_maxNtwin,lattice_maxNslip,lattice_Nstructure))
lattice_interactionTwinSlip = 0_pInt ! other:me
allocate(lattice_interactionTwinTwin(lattice_maxNtwin,lattice_maxNtwin,lattice_Nstructure))
lattice_interactionTwinTwin = 0_pInt ! other:me
end subroutine lattice_init
!--------------------------------------------------------------------------------------------------
!> @brief Calculation of Schmid matrices, etc.
!--------------------------------------------------------------------------------------------------
integer(pInt) function lattice_initializeStructure(struct,CoverA)
use math, only: &
math_vectorproduct, &
math_tensorproduct, &
math_norm3, &
math_mul33x3, &
math_trace33, &
math_symmetric33, &
math_Mandel33to6, &
math_axisAngleToR, &
INRAD
use IO, only: &
IO_error
implicit none
character(len=*) struct
real(pReal) CoverA
real(pReal), dimension(3) :: sdU = 0.0_pReal, &
snU = 0.0_pReal, &
np = 0.0_pReal, &
nn = 0.0_pReal
real(pReal), dimension(3,lattice_maxNslip) :: sd = 0.0_pReal, &
sn = 0.0_pReal
real(pReal), dimension(3,3,2,lattice_maxNnonSchmid,lattice_maxNslip) :: sns = 0.0_pReal
real(pReal), dimension(3,lattice_maxNtwin) :: td = 0.0_pReal, &
tn = 0.0_pReal
real(pReal), dimension(lattice_maxNtwin) :: ts = 0.0_pReal
integer(pInt), dimension(lattice_maxNslipFamily) :: myNslipSystem = 0_pInt
integer(pInt), dimension(lattice_maxNtwinFamily) :: myNtwinSystem = 0_pInt
integer(pInt) :: i,j,myNslip,myNtwin,myStructure = 0_pInt
logical :: processMe
processMe = .false.
select case(struct(1:3)) ! check first three chars of structure name
case ('fcc')
myStructure = 1_pInt
myNslipSystem = lattice_fcc_NslipSystem ! size of slip system families
myNtwinSystem = lattice_fcc_NtwinSystem ! size of twin system families
myNslip = lattice_fcc_Nslip ! overall number of slip systems
myNtwin = lattice_fcc_Ntwin ! overall number of twin systems
lattice_fcc_Nstructure = lattice_fcc_Nstructure + 1_pInt ! count fcc instances
if (lattice_fcc_Nstructure == 1_pInt) then ! me is first fcc structure
processMe = .true.
lattice_NnonSchmid(myStructure) = lattice_fcc_NnonSchmid ! Currently no known non schmid contributions for FCC (to be changed later)
do i = 1_pInt,myNslip ! assign slip system vectors
sd(1:3,i) = lattice_fcc_systemSlip(1:3,i)
sn(1:3,i) = lattice_fcc_systemSlip(4:6,i)
do j = 1_pInt,lattice_fcc_NnonSchmid
sns(1:3,1:3,1,j,i) = 0.0_pReal
sns(1:3,1:3,2,j,i) = 0.0_pReal
enddo
enddo
do i = 1_pInt,myNtwin ! assign twin system vectors and shears
td(1:3,i) = lattice_fcc_systemTwin(1:3,i)
tn(1:3,i) = lattice_fcc_systemTwin(4:6,i)
ts(i) = lattice_fcc_shearTwin(i)
enddo
interactionSlipSlip => lattice_fcc_interactionSlipSlip
interactionSlipTwin => lattice_fcc_interactionSlipTwin
interactionTwinSlip => lattice_fcc_interactionTwinSlip
interactionTwinTwin => lattice_fcc_interactionTwinTwin
endif
case ('bcc')
myStructure = 2_pInt
myNslipSystem = lattice_bcc_NslipSystem ! size of slip system families
myNtwinSystem = lattice_bcc_NtwinSystem ! size of twin system families
myNslip = lattice_bcc_Nslip ! overall number of slip systems
myNtwin = lattice_bcc_Ntwin ! overall number of twin systems
lattice_bcc_Nstructure = lattice_bcc_Nstructure + 1_pInt ! count bcc instances
if (lattice_bcc_Nstructure == 1_pInt) then ! me is first bcc structure
processMe = .true.
lattice_NnonSchmid(myStructure) = lattice_bcc_NnonSchmid
do i = 1_pInt,myNslip ! assign slip system vectors
sd(1:3,i) = lattice_bcc_systemSlip(1:3,i)
sn(1:3,i) = lattice_bcc_systemSlip(4:6,i)
sdU = sd(1:3,i) / math_norm3(sd(1:3,i))
snU = sn(1:3,i) / math_norm3(sn(1:3,i))
np = math_mul33x3(math_axisAngleToR(sdU,60.0_pReal*INRAD), snU)
nn = math_mul33x3(math_axisAngleToR(-sdU,60.0_pReal*INRAD), snU)
sns(1:3,1:3,1,1,i) = math_tensorproduct(sdU, np)
sns(1:3,1:3,2,1,i) = math_tensorproduct(-sdU, nn)
sns(1:3,1:3,1,2,i) = math_tensorproduct(math_vectorproduct(snU, sdU), snU)
sns(1:3,1:3,2,2,i) = math_tensorproduct(math_vectorproduct(snU, -sdU), snU)
sns(1:3,1:3,1,3,i) = math_tensorproduct(math_vectorproduct(np, sdU), np)
sns(1:3,1:3,2,3,i) = math_tensorproduct(math_vectorproduct(nn, -sdU), nn)
sns(1:3,1:3,1,4,i) = math_tensorproduct(snU, snU)
sns(1:3,1:3,2,4,i) = math_tensorproduct(snU, snU)
sns(1:3,1:3,1,5,i) = math_tensorproduct(math_vectorproduct(snU, sdU), math_vectorproduct(snU, sdU))
sns(1:3,1:3,2,5,i) = math_tensorproduct(math_vectorproduct(snU, -sdU), math_vectorproduct(snU, -sdU))
sns(1:3,1:3,1,6,i) = math_tensorproduct(sdU, sdU)
sns(1:3,1:3,2,6,i) = math_tensorproduct(-sdU, -sdU)
enddo
do i = 1_pInt,myNtwin ! assign twin system vectors and shears
td(1:3,i) = lattice_bcc_systemTwin(1:3,i)
tn(1:3,i) = lattice_bcc_systemTwin(4:6,i)
ts(i) = lattice_bcc_shearTwin(i)
enddo
interactionSlipSlip => lattice_bcc_interactionSlipSlip
interactionSlipTwin => lattice_bcc_interactionSlipTwin
interactionTwinSlip => lattice_bcc_interactionTwinSlip
interactionTwinTwin => lattice_bcc_interactionTwinTwin
endif
case ('hex')
if (CoverA >= 1.0_pReal) then ! checking physical significance of c/a
lattice_hex_Nstructure = lattice_hex_Nstructure + 1_pInt ! count instances of hex structures
myStructure = 2_pInt + lattice_hex_Nstructure ! 3,4,5,.. for hex
myNslipSystem = lattice_hex_NslipSystem ! size of slip system families
myNtwinSystem = lattice_hex_NtwinSystem ! size of twin system families
myNslip = lattice_hex_Nslip ! overall number of slip systems
myNtwin = lattice_hex_Ntwin ! overall number of twin systems
processMe = .true.
lattice_NnonSchmid(myStructure) = lattice_hex_NnonSchmid ! Currently no known non schmid contributions for hex (to be changed later)
! converting from 4 axes coordinate system (a1=a2=a3=c) to ortho-hexgonal system (a, b, c)
do i = 1_pInt,myNslip
sd(1,i) = lattice_hex_systemSlip(1,i)*1.5_pReal ! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(c/a)]
sd(2,i) = (lattice_hex_systemSlip(1,i)+2.0_pReal*lattice_hex_systemSlip(2,i))*(0.5_pReal*sqrt(3.0_pReal))
sd(3,i) = lattice_hex_systemSlip(4,i)*CoverA
sn(1,i) = lattice_hex_systemSlip(5,i) ! plane (hkil)->(h (h+2k)/sqrt(3) l/(c/a))
sn(2,i) = (lattice_hex_systemSlip(5,i)+2.0_pReal*lattice_hex_systemSlip(6,i))/sqrt(3.0_pReal)
sn(3,i) = lattice_hex_systemSlip(8,i)/CoverA
do j = 1_pInt,lattice_hex_NnonSchmid
sns(1:3,1:3,1,j,i) = 0.0_pReal
sns(1:3,1:3,2,j,i) = 0.0_pReal
enddo
enddo
do i = 1_pInt,myNtwin
td(1,i) = lattice_hex_systemTwin(1,i)*1.5_pReal
td(2,i) = (lattice_hex_systemTwin(1,i)+2.0_pReal*lattice_hex_systemTwin(2,i))*(0.5_pReal*sqrt(3.0_pReal))
td(3,i) = lattice_hex_systemTwin(4,i)*CoverA
tn(1,i) = lattice_hex_systemTwin(5,i)
tn(2,i) = (lattice_hex_systemTwin(5,i)+2.0_pReal*lattice_hex_systemTwin(6,i))/sqrt(3.0_pReal)
tn(3,i) = lattice_hex_systemTwin(8,i)/CoverA
select case(lattice_hex_shearTwin(i)) ! from Christian & Mahajan 1995 p.29
case (1_pInt) ! <-10.1>{10.2}
ts(i) = (3.0_pReal-CoverA*CoverA)/sqrt(3.0_pReal)/CoverA
case (2_pInt) ! <11.6>{-1-1.1}
ts(i) = 1.0_pReal/CoverA
case (3_pInt) ! <10.-2>{10.1}
ts(i) = (4.0_pReal*CoverA*CoverA-9.0_pReal)/4.0_pReal/sqrt(3.0_pReal)/CoverA
case (4_pInt) ! <11.-3>{11.2}
ts(i) = 2.0_pReal*(CoverA*CoverA-2.0_pReal)/3.0_pReal/CoverA
end select
enddo
interactionSlipSlip => lattice_hex_interactionSlipSlip
interactionSlipTwin => lattice_hex_interactionSlipTwin
interactionTwinSlip => lattice_hex_interactionTwinSlip
interactionTwinTwin => lattice_hex_interactionTwinTwin
endif
end select
if (processMe) then
if (myStructure > lattice_Nstructure) &
call IO_error(666_pInt,myStructure,ext_msg = 'structure index out of bounds') ! check for memory leakage
do i = 1_pInt,myNslip ! store slip system vectors and Schmid matrix for my structure
lattice_sd(1:3,i,myStructure) = sd(1:3,i)/math_norm3(sd(1:3,i)) ! make unit vector
lattice_sn(1:3,i,myStructure) = sn(1:3,i)/math_norm3(sn(1:3,i)) ! make unit vector
lattice_st(1:3,i,myStructure) = math_vectorproduct(lattice_sd(1:3,i,myStructure), &
lattice_sn(1:3,i,myStructure))
lattice_Sslip(1:3,1:3,1,i,myStructure) = math_tensorproduct(lattice_sd(1:3,i,myStructure), &
lattice_sn(1:3,i,myStructure))
do j = 1_pInt,lattice_NnonSchmid(myStructure)
lattice_Sslip(1:3,1:3,2*j ,i,myStructure) = sns(1:3,1:3,1,j,i)
lattice_Sslip(1:3,1:3,2*j+1,i,myStructure) = sns(1:3,1:3,2,j,i)
enddo
do j = 1_pInt,1_pInt+2_pInt*lattice_NnonSchmid(myStructure)
lattice_Sslip_v(1:6,j,i,myStructure) = &
math_Mandel33to6(math_symmetric33(lattice_Sslip(1:3,1:3,j,i,myStructure)))
enddo
if (abs(math_trace33(lattice_Sslip(1:3,1:3,1,i,myStructure))) > 1.0e-8_pReal) &
call IO_error(0_pInt,myStructure,i,0_pInt,ext_msg = 'dilatational slip Schmid matrix')
enddo
do i = 1_pInt,myNtwin ! store twin system vectors and Schmid plus rotation matrix for my structure
lattice_td(1:3,i,myStructure) = td(1:3,i)/math_norm3(td(1:3,i)) ! make unit vector
lattice_tn(1:3,i,myStructure) = tn(1:3,i)/math_norm3(tn(1:3,i)) ! make unit vector
lattice_tt(1:3,i,myStructure) = math_vectorproduct(lattice_td(1:3,i,myStructure), &
lattice_tn(1:3,i,myStructure))
lattice_Stwin(1:3,1:3,i,myStructure) = math_tensorproduct(lattice_td(1:3,i,myStructure), &
lattice_tn(1:3,i,myStructure))
lattice_Stwin_v(1:6,i,myStructure) = math_Mandel33to6(math_symmetric33(lattice_Stwin(1:3,1:3,i,myStructure)))
lattice_Qtwin(1:3,1:3,i,myStructure) = math_axisAngleToR(tn(1:3,i),180.0_pReal*INRAD)
lattice_shearTwin(i,myStructure) = ts(i)
if (abs(math_trace33(lattice_Stwin(1:3,1:3,i,myStructure))) > 1.0e-8_pReal) &
call IO_error(0_pInt,myStructure,i,0_pInt,ext_msg = 'dilatational twin Schmid matrix')
enddo
lattice_NslipSystem(1:lattice_maxNslipFamily,myStructure) = myNslipSystem ! number of slip systems in each family
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myStructure) = myNtwinSystem ! number of twin systems in each family
lattice_interactionSlipSlip(1:myNslip,1:myNslip,myStructure) = interactionSlipSlip(1:myNslip,1:myNslip)
lattice_interactionSlipTwin(1:myNslip,1:myNtwin,myStructure) = interactionSlipTwin(1:myNslip,1:myNtwin)
lattice_interactionTwinSlip(1:myNtwin,1:myNslip,myStructure) = interactionTwinSlip(1:myNtwin,1:myNslip)
lattice_interactionTwinTwin(1:myNtwin,1:myNtwin,myStructure) = interactionTwinTwin(1:myNtwin,1:myNtwin)
endif
lattice_initializeStructure = myStructure ! report my structure index back
end function lattice_initializeStructure
!--------------------------------------------------------------------------------------------------
!> @brief Maps structure to symmetry type
!> @details fcc(1) and bcc(2) are cubic(1) hex(3+) is hexagonal(2)
!--------------------------------------------------------------------------------------------------
integer(pInt) pure function lattice_symmetryType(structName)
implicit none
character(len=32), intent(in) :: structName
select case(structName(1:3))
case ('fcc','bcc')
lattice_symmetryType = 1_pInt
case ('hex')
lattice_symmetryType = 2_pInt
case default
lattice_symmetryType = 0_pInt
end select
return
end function lattice_symmetryType
!--------------------------------------------------------------------------------------------------
!> @brief Symmetrizes stiffness matrix according to lattice type
!--------------------------------------------------------------------------------------------------
pure function lattice_symmetrizeC66(structName,C66)
implicit none
character(len=32), intent(in) :: structName
real(pReal), dimension(6,6), intent(in) :: C66
real(pReal), dimension(6,6) :: lattice_symmetrizeC66
integer(pInt) :: j,k
lattice_symmetrizeC66 = 0.0_pReal
select case(structName(1:3))
case ('iso')
forall(k=1_pInt:3_pInt)
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
lattice_symmetrizeC66(k,k) = C66(1,1)
lattice_symmetrizeC66(k+3,k+3) = 0.5_pReal*(C66(1,1)-C66(1,2))
end forall
case ('fcc','bcc')
forall(k=1_pInt:3_pInt)
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
lattice_symmetrizeC66(k,k) = C66(1,1)
lattice_symmetrizeC66(k+3_pInt,k+3_pInt) = C66(4,4)
end forall
case ('hex')
lattice_symmetrizeC66(1,1) = C66(1,1)
lattice_symmetrizeC66(2,2) = C66(1,1)
lattice_symmetrizeC66(3,3) = C66(3,3)
lattice_symmetrizeC66(1,2) = C66(1,2)
lattice_symmetrizeC66(2,1) = C66(1,2)
lattice_symmetrizeC66(1,3) = C66(1,3)
lattice_symmetrizeC66(3,1) = C66(1,3)
lattice_symmetrizeC66(2,3) = C66(1,3)
lattice_symmetrizeC66(3,2) = C66(1,3)
lattice_symmetrizeC66(4,4) = C66(4,4)
lattice_symmetrizeC66(5,5) = C66(4,4)
lattice_symmetrizeC66(6,6) = 0.5_pReal*(C66(1,1)-C66(1,2))
case ('ort')
lattice_symmetrizeC66(1,1) = C66(1,1)
lattice_symmetrizeC66(2,2) = C66(2,2)
lattice_symmetrizeC66(3,3) = C66(3,3)
lattice_symmetrizeC66(1,2) = C66(1,2)
lattice_symmetrizeC66(2,1) = C66(1,2)
lattice_symmetrizeC66(1,3) = C66(1,3)
lattice_symmetrizeC66(3,1) = C66(1,3)
lattice_symmetrizeC66(2,3) = C66(2,3)
lattice_symmetrizeC66(3,2) = C66(2,3)
lattice_symmetrizeC66(4,4) = C66(4,4)
lattice_symmetrizeC66(5,5) = C66(5,5)
lattice_symmetrizeC66(6,6) = C66(6,6)
end select
end function lattice_symmetrizeC66
!--------------------------------------------------------------------------------------------------
!> @brief Number of parameters to expect in material.config section
! NslipFamilies
! NtwinFamilies
! SlipSlipInteraction
! SlipTwinInteraction
! TwinSlipInteraction
! TwinTwinInteraction
!--------------------------------------------------------------------------------------------------
function lattice_configNchunks(struct)
use prec, only: &
pInt
implicit none
integer(pInt), dimension(6) :: lattice_configNchunks
character(len=*), intent(in) :: struct
select case(struct(1:3)) ! check first three chars of structure name
case ('fcc')
lattice_configNchunks(1) = count(lattice_fcc_NslipSystem > 0_pInt)
lattice_configNchunks(2) = count(lattice_fcc_NtwinSystem > 0_pInt)
lattice_configNchunks(3) = maxval(lattice_fcc_interactionSlipSlip)
lattice_configNchunks(4) = maxval(lattice_fcc_interactionSlipTwin)
lattice_configNchunks(5) = maxval(lattice_fcc_interactionTwinSlip)
lattice_configNchunks(6) = maxval(lattice_fcc_interactionTwinTwin)
case ('bcc')
lattice_configNchunks(1) = count(lattice_bcc_NslipSystem > 0_pInt)
lattice_configNchunks(2) = count(lattice_bcc_NtwinSystem > 0_pInt)
lattice_configNchunks(3) = maxval(lattice_bcc_interactionSlipSlip)
lattice_configNchunks(4) = maxval(lattice_bcc_interactionSlipTwin)
lattice_configNchunks(5) = maxval(lattice_bcc_interactionTwinSlip)
lattice_configNchunks(6) = maxval(lattice_bcc_interactionTwinTwin)
case ('hex')
lattice_configNchunks(1) = count(lattice_hex_NslipSystem > 0_pInt)
lattice_configNchunks(2) = count(lattice_hex_NtwinSystem > 0_pInt)
lattice_configNchunks(3) = maxval(lattice_hex_interactionSlipSlip)
lattice_configNchunks(4) = maxval(lattice_hex_interactionSlipTwin)
lattice_configNchunks(5) = maxval(lattice_hex_interactionTwinSlip)
lattice_configNchunks(6) = maxval(lattice_hex_interactionTwinTwin)
end select
end function lattice_configNchunks
end module lattice