DAMASK_EICMD/code/mesh.f90

4952 lines
202 KiB
Fortran

! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced Material Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------------------------
!* $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!! Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!! Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH
!! Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!! Krishna Komerla, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver
!--------------------------------------------------------------------------------------------------
module mesh
use, intrinsic :: iso_c_binding
use prec, only: pReal, pInt
implicit none
private
integer(pInt), public, protected :: &
mesh_NcpElems, & !< total number of CP elements in mesh
mesh_NelemSets, &
mesh_maxNelemInSet, &
mesh_Nmaterials, &
mesh_Nnodes, & !< total number of nodes in mesh
mesh_maxNnodes, & !< max number of nodes in any CP element
mesh_maxNips, & !< max number of IPs in any CP element
mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element
mesh_maxNsharedElems, & !< max number of CP elements sharing a node
mesh_maxNsubNodes
integer(pInt), dimension(:,:), allocatable, public, protected :: &
mesh_element, & !< FEid, type(internal representation), material, texture, node indices
mesh_sharedElem, & !< entryCount and list of elements containing node
mesh_nodeTwins !< node twins are surface nodes that lie exactly on opposite sides of the mesh (surfaces nodes with equal coordinate values in two dimensions)
integer(pInt), dimension(:,:,:,:), allocatable, public, protected :: &
mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me]
real(pReal), dimension(:,:), allocatable, public :: &
mesh_node !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
real(pReal), dimension(:,:), allocatable, public, protected :: &
mesh_ipVolume, & !< volume associated with IP (initially!)
mesh_node0 !< node x,y,z coordinates (initially!)
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
mesh_ipArea !< area of interface to neighboring IP (initially!)
real(pReal), dimension(:,:,:), allocatable, public :: &
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
real(pReal),dimension(:,:,:,:), allocatable, public, protected :: &
mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!)
logical, dimension(3), public, protected :: mesh_periodicSurface !< flag indicating periodic outer surfaces (used for fluxes)
integer(pInt), private :: &
mesh_Nelems !< total number of elements in mesh
#ifdef Marc
integer(pInt), private :: &
hypoelasticTableStyle, & !< Table style (Marc only)
initialcondTableStyle !< Table style (Marc only)
#endif
integer(pInt), dimension(2), private :: &
mesh_maxValStateVar = 0_pInt
character(len=64), dimension(:), allocatable, private :: &
mesh_nameElemSet, & !< names of elementSet
mesh_nameMaterial, & !< names of material in solid section
mesh_mapMaterial !< name of elementSet for material
integer(pInt), dimension(:,:), allocatable, private :: &
mesh_mapElemSet !< list of elements in elementSet
integer(pInt), dimension(:,:), allocatable, target, private :: &
mesh_mapFEtoCPelem, & !< [sorted FEid, corresponding CPid]
mesh_mapFEtoCPnode !< [sorted FEid, corresponding CPid]
real(pReal),dimension(:,:,:), allocatable, private :: &
mesh_subNodeCoord !< coordinates of subnodes per element
logical, private :: noPart !< for cases where the ABAQUS input file does not use part/assembly information
#ifdef Spectral
include 'fftw3.f03'
real(pReal), dimension(3), public, protected :: &
geomdim, & !< physical dimension of volume element per direction
scaledDim !< scaled dimension of volume element, depending on selected divergence calculation
integer(pInt), dimension(3), public, protected :: &
res !< resolution, e.g. number of Fourier points in each direction
real(pReal), public, protected :: &
wgt
integer(pInt), public, protected :: &
res1_red, &
homog
#endif
! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS)
! Hence, I suggest to prefix with "FE_"
integer(pInt), parameter, public :: &
FE_Nelemtypes = 12_pInt, &
FE_Ngeomtypes = 10_pInt, &
FE_maxNnodes = 8_pInt, &
FE_maxNsubNodes = 56_pInt, &
FE_maxNips = 27_pInt, &
FE_maxNipNeighbors = 6_pInt, &
FE_maxmaxNnodesAtIP = 8_pInt, & !< max number of (equivalent) nodes attached to an IP
FE_NipFaceNodes = 4_pInt
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_geomtype = & !< geometry type of particular element type
int([ &
1, & ! element 6 (2D 3node 1ip)
2, & ! element 125 (2D 6node 3ip)
3, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
5, & ! element 134 (3D 4node 1ip)
6, & ! element 157 (3D 5node 4ip)
6, & ! element 127 (3D 10node 4ip)
7, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
9, & ! element 7 (3D 8node 8ip)
9, & ! element 57 (3D 20node 8ip)
10 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Nelemtypes), parameter, private :: FE_NoriginalNodes = & !< nodes in a specific type of element (how it is originally defined by marc)
int([ &
3, & ! element 6 (2D 3node 1ip)
6, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
8, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
5, & ! element 157 (3D 5node 4ip)
10, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
20, & ! element 57 (3D 20node 8ip)
20 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_dimension = & !< dimension of element type
int([ &
2, & ! element 6 (2D 3node 1ip)
2, & ! element 125 (2D 6node 3ip)
2, & ! element 11 (2D 4node 4ip)
2, & ! element 27 (2D 8node 9ip)
3, & ! element 134 (3D 4node 1ip)
3, & ! element 127 (3D 10node 4ip)
3, & ! element 136 (3D 6node 6ip)
3, & ! element 117 (3D 8node 1ip)
3, & ! element 7 (3D 8node 8ip)
3 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nnodes = & !< nodes in a specific type of element (how we use it)
int([ &
3, & ! element 6 (2D 3node 1ip)
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
8 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nips = & !< IPs in a specific type of element
int([ &
1, & ! element 6 (2D 3node 1ip)
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
9, & ! element 27 (2D 8node 9ip)
1, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
1, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
27 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_NipNeighbors = & !< IP neighbors in a specific type of element
int([ &
3, & ! element 6 (2D 3node 1ip)
4, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
6, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
6, & ! element 117 (3D 8node 1ip)
6, & ! element 7 (3D 8node 8ip)
6 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_NsubNodes = & !< subnodes required to fully define all IP volumes
int([ &
0, & ! element 6 (2D 3node 1ip)
4, & ! element 125 (2D 6node 3ip)
5, & ! element 11 (2D 4node 4ip)
12, & ! element 27 (2D 8node 9ip)
0, & ! element 134 (3D 4node 1ip)
11, & ! element 127 (3D 10node 4ip)
15, & ! element 136 (3D 6node 6ip)
0, & ! element 117 (3D 8node 1ip)
19, & ! element 7 (3D 8node 8ip)
56 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_maxNipNeighbors,FE_Ngeomtypes), parameter, private :: FE_NfaceNodes = &!< nodes per face in a specific type of element
reshape(int([ &
2,2,2,0,0,0, & ! element 6 (2D 6node 1ip)
2,2,2,0,0,0, & ! element 125 (2D 6node 3ip)
2,2,2,2,0,0, & ! element 11 (2D 4node 4ip)
2,2,2,2,0,0, & ! element 27 (2D 8node 9ip)
3,3,3,3,0,0, & ! element 134 (3D 4node 1ip)
3,3,3,3,0,0, & ! element 127 (3D 10node 4ip)
3,4,4,4,3,0, & ! element 136 (3D 6node 6ip)
4,4,4,4,4,4, & ! element 117 (3D 8node 1ip)
4,4,4,4,4,4, & ! element 7 (3D 8node 8ip)
4,4,4,4,4,4 & ! element 21 (3D 20node 27ip)
],pInt),[FE_maxNipNeighbors,FE_Ngeomtypes])
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_maxNnodesAtIP = & !< map IP index to two node indices in a specific type of element
int([ &
3, & ! element 6 (2D 6node 1ip)
1, & ! element 125 (2D 6node 3ip)
1, & ! element 11 (2D 4node 4ip)
2, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
1, & ! element 127 (3D 10node 4ip)
1, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
1, & ! element 7 (3D 8node 8ip)
4 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_NipFaceNodes,FE_maxNipNeighbors,FE_Ngeomtypes), parameter, private :: &
FE_nodeOnFace = & !< List of node indices on each face of a specific type of element
reshape(int([&
1,2,0,0 , & ! element 6 (2D 3node 1ip)
2,3,0,0 , &
3,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,0,0 , & ! element 125 (2D 6node 3ip)
2,3,0,0 , &
3,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,0,0 , & ! element 11 (2D 4node 4ip)
2,3,0,0 , &
3,4,0,0 , &
4,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,0,0 , & ! element 27 (2D 8node 9ip)
2,3,0,0 , &
3,4,0,0 , &
4,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,3,0 , & ! element 134 (3D 4node 1ip)
1,4,2,0 , &
2,3,4,0 , &
1,3,4,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,3,0 , & ! element 127 (3D 10node 4ip)
1,4,2,0 , &
2,4,3,0 , &
1,3,4,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,3,0 , & ! element 136 (3D 6node 6ip)
1,4,5,2 , &
2,5,6,3 , &
1,3,6,4 , &
4,6,5,0 , &
0,0,0,0 , &
1,2,3,4 , & ! element 117 (3D 8node 1ip)
2,1,5,6 , &
3,2,6,7 , &
4,3,7,8 , &
4,1,5,8 , &
8,7,6,5 , &
1,2,3,4 , & ! element 7 (3D 8node 8ip)
2,1,5,6 , &
3,2,6,7 , &
4,3,7,8 , &
4,1,5,8 , &
8,7,6,5 , &
1,2,3,4 , & ! element 21 (3D 20node 27ip)
2,1,5,6 , &
3,2,6,7 , &
4,3,7,8 , &
4,1,5,8 , &
8,7,6,5 &
],pInt),[FE_NipFaceNodes,FE_maxNipNeighbors,FE_Ngeomtypes])
integer(pInt), dimension(:,:,:), allocatable, private :: &
FE_nodesAtIP, & !< map IP index to two node indices in a specific type of element
FE_ipNeighbor, & !< +x,-x,+y,-y,+z,-z list of intra-element IPs and(negative) neighbor faces per own IP in a specific type of element
FE_subNodeParent
integer(pInt), dimension(:,:,:,:), allocatable, private :: &
FE_subNodeOnIPFace
public :: mesh_init, &
mesh_FEasCP, &
mesh_build_subNodeCoords, &
mesh_build_ipVolumes, &
mesh_build_ipCoordinates, &
mesh_cellCenterCoordinates
#ifdef Spectral
public :: mesh_regrid, &
mesh_nodesAroundCentres, &
mesh_deformedCoordsFFT, &
mesh_deformedCoordsLinear, &
mesh_volumeMismatch, &
mesh_shapeMismatch
#endif
private :: &
#ifdef Spectral
mesh_spectral_getResolution, &
mesh_spectral_getDimension, &
mesh_spectral_getHomogenization, &
mesh_spectral_count_nodesAndElements, &
mesh_spectral_count_cpElements, &
mesh_spectral_map_elements, &
mesh_spectral_map_nodes, &
mesh_spectral_count_cpSizes, &
mesh_spectral_build_nodes, &
mesh_spectral_build_elements, &
#endif
#ifdef Marc
mesh_marc_get_tableStyles, &
mesh_marc_count_nodesAndElements, &
mesh_marc_count_elementSets, &
mesh_marc_map_elementSets, &
mesh_marc_count_cpElements, &
mesh_marc_map_Elements, &
mesh_marc_map_nodes, &
mesh_marc_build_nodes, &
mesh_marc_count_cpSizes, &
mesh_marc_build_elements, &
#endif
#ifdef Abaqus
mesh_abaqus_count_nodesAndElements, &
mesh_abaqus_count_elementSets, &
mesh_abaqus_count_materials, &
mesh_abaqus_map_elementSets, &
mesh_abaqus_map_materials, &
mesh_abaqus_count_cpElements, &
mesh_abaqus_map_elements, &
mesh_abaqus_map_nodes, &
mesh_abaqus_build_nodes, &
mesh_abaqus_count_cpSizes, &
mesh_abaqus_build_elements, &
#endif
mesh_get_damaskOptions, &
mesh_build_ipAreas, &
mesh_build_nodeTwins, &
mesh_build_sharedElems, &
mesh_build_ipNeighborhood, &
mesh_tell_statistics, &
FE_mapElemtype, &
mesh_faceMatch, &
mesh_build_FEdata
contains
!--------------------------------------------------------------------------------------------------
!> @brief initializes the mesh by calling all necessary private routines the mesh module
!! Order and routines strongly depend on type of solver
!--------------------------------------------------------------------------------------------------
subroutine mesh_init(ip,el)
use DAMASK_interface
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
#ifdef Abaqus
IO_abaqus_hasNoPart, &
#endif
#ifdef Spectral
IO_open_file
use numerics, only: &
divergence_correction
#else
IO_open_InputFile
#endif
use FEsolving, only: &
parallelExecution, &
FEsolving_execElem, &
FEsolving_execIP, &
calcMode, &
lastMode, &
modelName
implicit none
integer(pInt), parameter :: fileUnit = 222_pInt
integer(pInt), intent(in) :: el, ip
integer(pInt) :: e
write(6,*)
write(6,*) '<<<+- mesh init -+>>>'
write(6,*) '$Id$'
#include "compilation_info.f90"
if (allocated(mesh_mapFEtoCPelem)) deallocate(mesh_mapFEtoCPelem)
if (allocated(mesh_mapFEtoCPnode)) deallocate(mesh_mapFEtoCPnode)
if (allocated(mesh_node0)) deallocate(mesh_node0)
if (allocated(mesh_node)) deallocate(mesh_node)
if (allocated(mesh_element)) deallocate(mesh_element)
if (allocated(mesh_subNodeCoord)) deallocate(mesh_subNodeCoord)
if (allocated(mesh_ipCoordinates)) deallocate(mesh_ipCoordinates)
if (allocated(mesh_ipArea)) deallocate(mesh_ipArea)
if (allocated(mesh_ipAreaNormal)) deallocate(mesh_ipAreaNormal)
if (allocated(mesh_sharedElem)) deallocate(mesh_sharedElem)
if (allocated(mesh_ipNeighborhood)) deallocate(mesh_ipNeighborhood)
if (allocated(mesh_ipVolume)) deallocate(mesh_ipVolume)
if (allocated(mesh_nodeTwins)) deallocate(mesh_nodeTwins)
if (allocated(FE_nodesAtIP)) deallocate(FE_nodesAtIP)
if (allocated(FE_ipNeighbor)) deallocate(FE_ipNeighbor)
if (allocated(FE_subNodeParent)) deallocate(FE_subNodeParent)
if (allocated(FE_subNodeOnIPFace)) deallocate(FE_subNodeOnIPFace)
call mesh_build_FEdata ! get properties of the different types of elements
#ifdef Spectral
call IO_open_file(fileUnit,geometryFile) ! parse info from geometry file...
res = mesh_spectral_getResolution(fileUnit)
res1_red = res(1)/2_pInt + 1_pInt
wgt = 1.0/real(product(res),pReal)
geomdim = mesh_spectral_getDimension(fileUnit)
homog = mesh_spectral_getHomogenization(fileUnit)
!--------------------------------------------------------------------------------------------------
! scale dimension to calculate either uncorrected, dimension-independent, or dimension- and reso-
! lution-independent divergence
if (divergence_correction == 1_pInt) then
do e = 1_pInt, 3_pInt
if (e /= minloc(geomdim,1) .and. e /= maxloc(geomdim,1)) scaledDim = geomdim/geomdim(e)
enddo
elseif (divergence_correction == 2_pInt) then
do e = 1_pInt, 3_pInt
if (e /= minloc(geomdim/res,1) .and. e /= maxloc(geomdim/res,1)) scaledDim = geomdim/geomdim(e)*res(e)
enddo
else
scaledDim = geomdim
endif
write(6,'(a,3(i12 ))') ' resolution a b c:', res
write(6,'(a,3(f12.5))') ' dimension x y z:', geomdim
write(6,'(a,i5,/)') ' homogenization: ', homog
call mesh_spectral_count_nodesAndElements
call mesh_spectral_count_cpElements
call mesh_spectral_map_elements
call mesh_spectral_map_nodes
call mesh_spectral_count_cpSizes
call mesh_spectral_build_nodes
call mesh_spectral_build_elements(fileUnit)
#endif
#ifdef Marc
call IO_open_inputFile(fileUnit,modelName) ! parse info from input file...
call mesh_marc_get_tableStyles(fileUnit)
call mesh_marc_count_nodesAndElements(fileUnit)
call mesh_marc_count_elementSets(fileUnit)
call mesh_marc_map_elementSets(fileUnit)
call mesh_marc_count_cpElements(fileUnit)
call mesh_marc_map_elements(fileUnit)
call mesh_marc_map_nodes(fileUnit)
call mesh_marc_build_nodes(fileUnit)
call mesh_marc_count_cpSizes(fileunit)
call mesh_marc_build_elements(fileUnit)
#endif
#ifdef Abaqus
call IO_open_inputFile(fileUnit,modelName) ! parse info from input file...
noPart = IO_abaqus_hasNoPart(fileUnit)
call mesh_abaqus_count_nodesAndElements(fileUnit)
call mesh_abaqus_count_elementSets(fileUnit)
call mesh_abaqus_count_materials(fileUnit)
call mesh_abaqus_map_elementSets(fileUnit)
call mesh_abaqus_map_materials(fileUnit)
call mesh_abaqus_count_cpElements(fileUnit)
call mesh_abaqus_map_elements(fileUnit)
call mesh_abaqus_map_nodes(fileUnit)
call mesh_abaqus_build_nodes(fileUnit)
call mesh_abaqus_count_cpSizes(fileunit)
call mesh_abaqus_build_elements(fileUnit)
#endif
call mesh_get_damaskOptions(fileUnit)
close (fileUnit)
call mesh_build_subNodeCoords
call mesh_build_ipCoordinates
call mesh_build_ipVolumes
call mesh_build_ipAreas
call mesh_build_nodeTwins
call mesh_build_sharedElems
call mesh_build_ipNeighborhood
call mesh_tell_statistics
parallelExecution = (parallelExecution .and. (mesh_Nelems == mesh_NcpElems)) ! plus potential killer from non-local constitutive
FEsolving_execElem = [ 1_pInt,mesh_NcpElems ]
if (allocated(FEsolving_execIP)) deallocate(FEsolving_execIP)
allocate(FEsolving_execIP(2_pInt,mesh_NcpElems)); FEsolving_execIP = 1_pInt
forall (e = 1_pInt:mesh_NcpElems) FEsolving_execIP(2,e) = FE_Nips(FE_geomtype(mesh_element(2,e)))
if (allocated(calcMode)) deallocate(calcMode)
allocate(calcMode(mesh_maxNips,mesh_NcpElems))
calcMode = .false. ! pretend to have collected what first call is asking (F = I)
calcMode(ip,mesh_FEasCP('elem',el)) = .true. ! first ip,el needs to be already pingponged to "calc"
lastMode = .true. ! and its mode is already known...
end subroutine mesh_init
!--------------------------------------------------------------------------------------------------
!> @brief Gives the FE to CP ID mapping by binary search through lookup array
!! valid questions (what) are 'elem', 'node'
!--------------------------------------------------------------------------------------------------
integer(pInt) function mesh_FEasCP(what,myID)
use IO, only: IO_lc
implicit none
character(len=*), intent(in) :: what
integer(pInt), intent(in) :: myID
integer(pInt), dimension(:,:), pointer :: lookupMap
integer(pInt) :: lower,upper,center
mesh_FEasCP = 0_pInt
select case(IO_lc(what(1:4)))
case('elem')
lookupMap => mesh_mapFEtoCPelem
case('node')
lookupMap => mesh_mapFEtoCPnode
case default
return
endselect
lower = 1_pInt
upper = int(size(lookupMap,2_pInt),pInt)
if (lookupMap(1_pInt,lower) == myID) then ! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds?
mesh_FEasCP = lookupMap(2_pInt,lower)
return
elseif (lookupMap(1_pInt,upper) == myID) then
mesh_FEasCP = lookupMap(2_pInt,upper)
return
endif
do while (upper-lower > 1_pInt) ! binary search in between bounds
center = (lower+upper)/2_pInt
if (lookupMap(1_pInt,center) < myID) then
lower = center
elseif (lookupMap(1_pInt,center) > myID) then
upper = center
else
mesh_FEasCP = lookupMap(2_pInt,center)
exit
endif
enddo
end function mesh_FEasCP
!--------------------------------------------------------------------------------------------------
!> @brief Assigns coordinates for subnodes in each CP element.
!! Allocates global array 'mesh_subNodeCoord'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_subNodeCoords
implicit none
integer(pInt) e,t,n,p,Nparents
real(pReal), dimension(3,mesh_maxNnodes+mesh_maxNsubNodes) :: mySubNodeCoord
if (.not. allocated(mesh_subNodeCoord)) then
allocate(mesh_subNodeCoord(3,mesh_maxNnodes+mesh_maxNsubNodes,mesh_NcpElems))
endif
mesh_subNodeCoord = 0.0_pReal
!$OMP PARALLEL DO PRIVATE(mySubNodeCoord,t,Nparents)
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
mySubNodeCoord = 0.0_pReal
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
do n = 1_pInt,FE_Nnodes(t)
mySubNodeCoord(1:3,n) = mesh_node(1:3,mesh_FEasCP('node',mesh_element(4_pInt+n,e))) ! loop over nodes of this element type
enddo
do n = 1_pInt,FE_NsubNodes(t) ! now for the true subnodes
Nparents = count(FE_subNodeParent(1_pInt:FE_Nips(t),n,t) > 0_pInt)
do p = 1_pInt,Nparents ! loop through present parent nodes
mySubNodeCoord(1:3,FE_Nnodes(t)+n) &
= mySubNodeCoord(1:3,FE_Nnodes(t)+n) &
+ mesh_node(1:3,mesh_FEasCP('node',mesh_element(4_pInt+FE_subNodeParent(p,n,t),e))) ! add up parents
enddo
mySubNodeCoord(1:3,n+FE_Nnodes(t)) = mySubNodeCoord(1:3,n+FE_Nnodes(t)) / real(Nparents,pReal)
enddo
mesh_subNodeCoord(1:3,1:mesh_maxNnodes+mesh_maxNsubNodes,e) = mySubNodeCoord
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_subNodeCoords
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipVolumes
use math, only: math_volTetrahedron
implicit none
integer(pInt) :: e,f,t,i,j,n
integer(pInt), parameter :: Ntriangles = FE_NipFaceNodes-2_pInt ! each interface is made up of this many triangles
real(pReal), dimension(3,FE_NipFaceNodes) :: nPos ! coordinates of nodes on IP face
real(pReal), dimension(Ntriangles,FE_NipFaceNodes) :: volume ! volumes of possible tetrahedra
if (.not. allocated(mesh_ipVolume)) then
allocate(mesh_ipVolume(mesh_maxNips,mesh_NcpElems))
endif
mesh_ipVolume = 0.0_pReal
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
do f = 1_pInt,FE_NipNeighbors(t) ! loop over interfaces of IP and add tetrahedra which connect to CoG
forall (n = 1_pInt:FE_NipFaceNodes) &
nPos(:,n) = mesh_subNodeCoord(:,FE_subNodeOnIPFace(n,f,i,t),e)
forall (n = 1_pInt:FE_NipFaceNodes, j = 1_pInt:Ntriangles) & ! start at each interface node and build valid triangles to cover interface
volume(j,n) = math_volTetrahedron(nPos(:,n), & ! calc volume of respective tetrahedron to CoG
nPos(:,1_pInt+mod(n-1_pInt +j ,FE_NipFaceNodes)),& ! start at offset j
nPos(:,1_pInt+mod(n-1_pInt +j+1_pInt,FE_NipFaceNodes)),& ! and take j's neighbor
mesh_cellCenterCoordinates(i,e))
mesh_ipVolume(i,e) = mesh_ipVolume(i,e) + sum(volume) ! add contribution from this interface
enddo
mesh_ipVolume(i,e) = mesh_ipVolume(i,e) / FE_NipFaceNodes ! renormalize with interfaceNodeNum due to loop over them
enddo
enddo
end subroutine mesh_build_ipVolumes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus,
! so no need to use this subroutine anymore; Marc however only provides nodal displacements,
! so in this case the ip coordinates are always calculated on the basis of this subroutine.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CELLENTER AND NOT THE IP COORDINATES,
! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME.
! HAS TO BE CHANGED IN A LATER VERSION.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipCoordinates
use prec, only: tol_gravityNodePos
implicit none
integer(pInt) :: e,f,t,i,j,k,n
logical, dimension(mesh_maxNnodes+mesh_maxNsubNodes) :: gravityNode ! flagList to find subnodes determining center of grav
real(pReal), dimension(3,mesh_maxNnodes+mesh_maxNsubNodes) :: gravityNodePos ! coordinates of subnodes determining center of grav
if (.not. allocated(mesh_ipCoordinates)) allocate(mesh_ipCoordinates(3,mesh_maxNips,mesh_NcpElems))
!$OMP PARALLEL DO PRIVATE(t,gravityNode,gravityNodePos)
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
gravityNode = .false. ! reset flagList
gravityNodePos = 0.0_pReal ! reset coordinates
do f = 1_pInt,FE_NipNeighbors(t) ! loop over interfaces of IP
do n = 1_pInt,FE_NipFaceNodes ! loop over nodes on interface
gravityNode(FE_subNodeOnIPFace(n,f,i,t)) = .true.
gravityNodePos(:,FE_subNodeOnIPFace(n,f,i,t)) = mesh_subNodeCoord(:,FE_subNodeOnIPFace(n,f,i,t),e)
enddo
enddo
do j = 1_pInt,mesh_maxNnodes+mesh_maxNsubNodes-1_pInt ! walk through entire flagList except last
if (gravityNode(j)) then ! valid node index
do k = j+1_pInt,mesh_maxNnodes+mesh_maxNsubNodes ! walk through remainder of list
if (gravityNode(k) .and. all(abs(gravityNodePos(:,j) - gravityNodePos(:,k)) < tol_gravityNodePos)) then ! found duplicate
gravityNode(j) = .false. ! delete first instance
gravityNodePos(:,j) = 0.0_pReal
exit ! continue with next suspect
endif
enddo
endif
enddo
mesh_ipCoordinates(:,i,e) = sum(gravityNodePos,2)/real(count(gravityNode),pReal)
enddo
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipCoordinates
!--------------------------------------------------------------------------------------------------
!> @brief Calculates cell center coordinates.
!--------------------------------------------------------------------------------------------------
pure function mesh_cellCenterCoordinates(i,e)
use prec, only: tol_gravityNodePos
implicit none
!*** input variables
integer(pInt), intent(in) :: e, & ! element number
i ! integration point number
!*** output variables
real(pReal), dimension(3) :: mesh_cellCenterCoordinates ! x,y,z coordinates of the cell center of the requested IP cell
!*** local variables
integer(pInt) :: f,t,j,k,n
logical, dimension(mesh_maxNnodes+mesh_maxNsubNodes) :: gravityNode ! flagList to find subnodes determining center of grav
real(pReal), dimension(3,mesh_maxNnodes+mesh_maxNsubNodes) :: gravityNodePos ! coordinates of subnodes determining center of grav
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
gravityNode = .false. ! reset flagList
gravityNodePos = 0.0_pReal ! reset coordinates
do f = 1_pInt,FE_NipNeighbors(t) ! loop over interfaces of IP
do n = 1_pInt,FE_NipFaceNodes ! loop over nodes on interface
gravityNode(FE_subNodeOnIPFace(n,f,i,t)) = .true.
gravityNodePos(:,FE_subNodeOnIPFace(n,f,i,t)) = mesh_subNodeCoord(:,FE_subNodeOnIPFace(n,f,i,t),e)
enddo
enddo
do j = 1_pInt,mesh_maxNnodes+mesh_maxNsubNodes-1_pInt ! walk through entire flagList except last
if (gravityNode(j)) then ! valid node index
do k = j+1_pInt,mesh_maxNnodes+mesh_maxNsubNodes ! walk through remainder of list
if (gravityNode(k) .and. all(abs(gravityNodePos(:,j) - gravityNodePos(:,k)) < tol_gravityNodePos)) then ! found duplicate
gravityNode(j) = .false. ! delete first instance
gravityNodePos(:,j) = 0.0_pReal
exit ! continue with next suspect
endif
enddo
endif
enddo
mesh_cellCenterCoordinates = sum(gravityNodePos,2)/real(count(gravityNode),pReal)
endfunction mesh_cellCenterCoordinates
#ifdef Spectral
!--------------------------------------------------------------------------------------------------
!> @brief Reads resolution information from geometry file. If fileUnit is given,
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
!--------------------------------------------------------------------------------------------------
function mesh_spectral_getResolution(fileUnit)
use IO, only: &
IO_checkAndRewind, &
IO_open_file, &
IO_stringPos, &
IO_lc, &
IO_stringValue, &
IO_intValue, &
IO_floatValue, &
IO_error
use DAMASK_interface, only: &
geometryFile
implicit none
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a,b c + 3 values + keyword
integer(pInt), intent(in), optional :: fileUnit
integer(pInt) :: headerLength = 0_pInt
integer(pInt), dimension(3) :: mesh_spectral_getResolution
character(len=1024) :: line, &
keyword
integer(pInt) :: i, j
logical :: gotResolution = .false.
integer(pInt) :: myUnit
if(.not. present(fileUnit)) then
myUnit = 289_pInt
call IO_open_file(myUnit,trim(geometryFile))
else
myUnit = fileUnit
endif
call IO_checkAndRewind(myUnit)
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
else
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getResolution')
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
select case ( IO_lc(IO_StringValue(line,positions,1_pInt)) )
case ('resolution')
gotResolution = .true.
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,positions,j)))
case('a')
mesh_spectral_getResolution(1) = IO_intValue(line,positions,j+1_pInt)
case('b')
mesh_spectral_getResolution(2) = IO_intValue(line,positions,j+1_pInt)
case('c')
mesh_spectral_getResolution(3) = IO_intValue(line,positions,j+1_pInt)
end select
enddo
end select
enddo
if(.not. present(fileUnit)) close(myUnit)
if (.not. gotResolution) &
call IO_error(error_ID = 845_pInt, ext_msg='resolution')
if((mod(mesh_spectral_getResolution(1),2_pInt)/=0_pInt .or. & ! must be a even number
mesh_spectral_getResolution(1) < 2_pInt .or. & ! and larger than 1
mod(mesh_spectral_getResolution(2),2_pInt)/=0_pInt .or. & ! -"-
mesh_spectral_getResolution(2) < 2_pInt .or. & ! -"-
(mod(mesh_spectral_getResolution(3),2_pInt)/=0_pInt .and. &
mesh_spectral_getResolution(3)/= 1_pInt)) .or. & ! third res might be 1
mesh_spectral_getResolution(3) < 1_pInt) &
call IO_error(error_ID = 843_pInt, ext_msg='mesh_spectral_getResolution')
end function mesh_spectral_getResolution
!--------------------------------------------------------------------------------------------------
!> @brief Reads dimension information from geometry file. If fileUnit is given,
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
!--------------------------------------------------------------------------------------------------
function mesh_spectral_getDimension(fileUnit)
use IO, only: &
IO_checkAndRewind, &
IO_open_file, &
IO_stringPos, &
IO_lc, &
IO_stringValue, &
IO_intValue, &
IO_floatValue, &
IO_error
use DAMASK_interface, only: &
geometryFile
implicit none
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a,b c + 3 values + keyword
integer(pInt), intent(in), optional :: fileUnit
integer(pInt) :: headerLength = 0_pInt
real(pReal), dimension(3) :: mesh_spectral_getDimension
character(len=1024) :: line, &
keyword
integer(pInt) :: i, j
logical :: gotDimension = .false.
integer(pInt) :: myUnit
if(.not. present(fileUnit)) then
myUnit = 289_pInt
call IO_open_file(myUnit,trim(geometryFile))
else
myUnit = fileUnit
endif
call IO_checkAndRewind(myUnit)
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
else
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getDimension')
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
select case ( IO_lc(IO_StringValue(line,positions,1)) )
case ('dimension')
gotDimension = .true.
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,positions,j)))
case('x')
mesh_spectral_getDimension(1) = IO_floatValue(line,positions,j+1_pInt)
case('y')
mesh_spectral_getDimension(2) = IO_floatValue(line,positions,j+1_pInt)
case('z')
mesh_spectral_getDimension(3) = IO_floatValue(line,positions,j+1_pInt)
end select
enddo
end select
enddo
if(.not. present(fileUnit)) close(myUnit)
if (.not. gotDimension) &
call IO_error(error_ID = 845_pInt, ext_msg='dimension')
if (any(mesh_spectral_getDimension<=0.0_pReal)) &
call IO_error(error_ID = 844_pInt, ext_msg='mesh_spectral_getDimension')
end function mesh_spectral_getDimension
!--------------------------------------------------------------------------------------------------
!> @brief Reads homogenization information from geometry file. If fileUnit is given,
!! assumes an opened file, otherwise tries to open the one specified in geometryFile
!--------------------------------------------------------------------------------------------------
function mesh_spectral_getHomogenization(fileUnit)
use IO, only: &
IO_checkAndRewind, &
IO_open_file, &
IO_stringPos, &
IO_lc, &
IO_stringValue, &
IO_intValue, &
IO_error
use DAMASK_interface, only: &
geometryFile
implicit none
integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a, b, c + 3 values + keyword
integer(pInt), intent(in), optional :: fileUnit
integer(pInt) :: headerLength = 0_pInt
integer(pInt) :: mesh_spectral_getHomogenization
character(len=1024) :: line, &
keyword
integer(pInt) :: i
logical :: gotHomogenization = .false.
integer(pInt) :: myUnit
if(.not. present(fileUnit)) then
myUnit = 289_pInt
call IO_open_file(myUnit,trim(geometryFile))
else
myUnit = fileUnit
endif
call IO_checkAndRewind(myUnit)
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
else
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getHomogenization')
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,7_pInt)
select case ( IO_lc(IO_StringValue(line,positions,1)) )
case ('homogenization')
gotHomogenization = .true.
mesh_spectral_getHomogenization = IO_intValue(line,positions,2_pInt)
end select
enddo
if(.not. present(fileUnit)) close(myUnit)
if (.not. gotHomogenization ) &
call IO_error(error_ID = 845_pInt, ext_msg='homogenization')
if (mesh_spectral_getHomogenization<1_pInt) &
call IO_error(error_ID = 842_pInt, ext_msg='mesh_spectral_getHomogenization')
end function mesh_spectral_getHomogenization
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of nodes and elements in mesh and stores them in
!! 'mesh_Nelems' and 'mesh_Nnodes'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_count_nodesAndElements()
implicit none
mesh_Nelems = product(res)
mesh_Nnodes = product(res+1_pInt)
end subroutine mesh_spectral_count_nodesAndElements
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_count_cpElements
implicit none
mesh_NcpElems = mesh_Nelems
end subroutine mesh_spectral_count_cpElements
!--------------------------------------------------------------------------------------------------
!> @brief Maps elements from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPelem'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_map_elements
implicit none
integer(pInt) :: i
allocate (mesh_mapFEtoCPelem(2_pInt,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
forall (i = 1_pInt:mesh_NcpElems) &
mesh_mapFEtoCPelem(1:2,i) = i
end subroutine mesh_spectral_map_elements
!--------------------------------------------------------------------------------------------------
!> @brief Maps node from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPnode'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_map_nodes
implicit none
integer(pInt) :: i
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
forall (i = 1_pInt:mesh_Nnodes) &
mesh_mapFEtoCPnode(1:2,i) = i
end subroutine mesh_spectral_map_nodes
!--------------------------------------------------------------------------------------------------
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
!! and mesh_maxNsubNodes
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_count_cpSizes
implicit none
integer(pInt) :: t
t = FE_geomtype(FE_mapElemtype('C3D8R')) ! fake 3D hexahedral 8 node 1 IP element
mesh_maxNnodes = FE_Nnodes(t)
mesh_maxNips = FE_Nips(t)
mesh_maxNipNeighbors = FE_NipNeighbors(t)
mesh_maxNsubNodes = FE_NsubNodes(t)
end subroutine mesh_spectral_count_cpSizes
!--------------------------------------------------------------------------------------------------
!> @brief Store x,y,z coordinates of all nodes in mesh.
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_build_nodes()
use numerics, only: numerics_unitlength
implicit none
integer(pInt) :: n
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
forall (n = 0_pInt:mesh_Nnodes-1_pInt)
mesh_node0(1,n+1_pInt) = numerics_unitlength * &
geomdim(1) * real(mod(n,(res(1)+1_pInt) ),pReal) &
/ real(res(1),pReal)
mesh_node0(2,n+1_pInt) = numerics_unitlength * &
geomdim(2) * real(mod(n/(res(1)+1_pInt),(res(2)+1_pInt)),pReal) &
/ real(res(2),pReal)
mesh_node0(3,n+1_pInt) = numerics_unitlength * &
geomdim(3) * real(mod(n/(res(1)+1_pInt)/(res(2)+1_pInt),(res(3)+1_pInt)),pReal) &
/ real(res(3),pReal)
end forall
mesh_node = mesh_node0 !why?
end subroutine mesh_spectral_build_nodes
!--------------------------------------------------------------------------------------------------
!> @brief Store FEid, type, material, texture, and node list per element.
!! Allocates global array 'mesh_element'
!--------------------------------------------------------------------------------------------------
subroutine mesh_spectral_build_elements(myUnit)
use IO, only: &
IO_checkAndRewind, &
IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error, &
IO_continuousIntValues, &
IO_intValue, &
IO_countContinuousIntValues
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), dimension (1_pInt+7_pInt*2_pInt) :: myPos
integer(pInt) :: e, i, headerLength = 0_pInt, maxIntCount
integer(pInt), dimension(:), allocatable :: microstructures
integer(pInt), dimension(1,1) :: dummySet = 0_pInt
character(len=65536) :: line,keyword
character(len=64), dimension(1) :: dummyName = ''
call IO_checkAndRewind(myUnit)
read(myUnit,'(a65536)') line
myPos = IO_stringPos(line,7_pInt)
keyword = IO_lc(IO_StringValue(line,myPos,2_pInt))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,myPos,1_pInt) + 1_pInt
else
call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_build_elements')
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a65536)') line
enddo
maxIntCount = 0_pInt
i = 1_pInt
do while (i > 0_pInt)
i = IO_countContinuousIntValues(myUnit)
maxIntCount = max(maxIntCount, i)
enddo
rewind (myUnit)
do i=1_pInt,headerLength ! skip header
read(myUnit,'(a65536)') line
enddo
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
allocate (microstructures (1_pInt+maxIntCount)) ; microstructures = 2_pInt
e = 0_pInt
do while (e < mesh_NcpElems .and. microstructures(1) > 0_pInt) ! fill expected number of elements, stop at end of data (or blank line!)
microstructures = IO_continuousIntValues(myUnit,maxIntCount,dummyName,dummySet,0_pInt) ! get affected elements
do i = 1_pInt,microstructures(1_pInt)
e = e+1_pInt ! valid element entry
mesh_element( 1,e) = e ! FE id
mesh_element( 2,e) = FE_mapElemtype('C3D8R') ! elem type
mesh_element( 3,e) = homog ! homogenization
mesh_element( 4,e) = microstructures(1_pInt+i) ! microstructure
mesh_element( 5,e) = e + (e-1_pInt)/res(1) + &
((e-1_pInt)/(res(1)*res(2)))*(res(1)+1_pInt) ! base node
mesh_element( 6,e) = mesh_element(5,e) + 1_pInt
mesh_element( 7,e) = mesh_element(5,e) + res(1) + 2_pInt
mesh_element( 8,e) = mesh_element(5,e) + res(1) + 1_pInt
mesh_element( 9,e) = mesh_element(5,e) +(res(1) + 1_pInt) * (res(2) + 1_pInt) ! second floor base node
mesh_element(10,e) = mesh_element(9,e) + 1_pInt
mesh_element(11,e) = mesh_element(9,e) + res(1) + 2_pInt
mesh_element(12,e) = mesh_element(9,e) + res(1) + 1_pInt
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),mesh_element(3,e)) !needed for statistics
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),mesh_element(4,e))
enddo
enddo
deallocate(microstructures)
if (e /= mesh_NcpElems) call IO_error(880_pInt,e)
end subroutine mesh_spectral_build_elements
!--------------------------------------------------------------------------------------------------
!> @brief Performes a regridding from saved restart information
!--------------------------------------------------------------------------------------------------
function mesh_regrid(adaptive,resNewInput,minRes)
use prec, only: &
pInt, &
pReal
use DAMASK_interface, only: &
getSolverWorkingDirectoryName, &
getSolverJobName, &
GeometryFile
use IO, only: &
IO_read_jobBinaryFile ,&
IO_read_jobBinaryIntFile ,&
IO_write_jobBinaryFile, &
IO_write_jobBinaryIntFile, &
IO_write_jobFile, &
IO_error
use numerics, only: &
mySpectralSolver
use math, only: &
math_periodicNearestNeighbor, &
math_mul33x3
character(len=1024):: formatString, N_Digits
logical, intent(in) :: adaptive ! if true, choose adaptive grid based on resNewInput, otherwise keep it constant
integer(pInt), dimension(3), optional, intent(in) :: resNewInput ! f2py cannot handle optional arguments correctly (they are always present)
integer(pInt), dimension(3), optional, intent(in) :: minRes
integer(pInt), dimension(3) :: mesh_regrid, ratio
integer(pInt), dimension(3,2) :: possibleResNew
integer(pInt):: maxsize, i, j, k, ielem, NpointsNew, spatialDim
integer(pInt), dimension(3) :: resNew
integer(pInt), dimension(:), allocatable :: indices
real(pReal), dimension(3) :: geomdimNew
real(pReal), dimension(3,3) :: Favg, Favg_LastInc, &
FavgNew, Favg_LastIncNew, &
deltaF, deltaF_lastInc
real(pReal), dimension(:,:), allocatable :: &
coordinates, coordinatesNew
real(pReal), dimension(:,:,:), allocatable :: &
stateHomog
real(pReal), dimension (:,:,:,:), allocatable :: &
spectralF9, spectralF9New, &
Tstar, TstarNew, &
stateConst
real(pReal), dimension(:,:,:,:,:), allocatable :: &
spectralF33, spectralF33New, &
F, FNew, &
Fp, FpNew, &
Lp, LpNew, &
dcsdE, dcsdENew, &
F_lastIncNew
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: &
dPdF, dPdFNew
integer(pInt), dimension(:,:), allocatable :: &
sizeStateHomog
integer(pInt), dimension(:,:,:), allocatable :: &
material_phase, material_phaseNew, &
sizeStateConst
write(6,'(a)') 'Regridding geometry'
if (adaptive) then
write(6,'(a)') 'adaptive resolution determination'
if (present(minRes)) then
if (all(minRes /= -1_pInt)) & !the f2py way to tell it is present
write(6,'(a,3(i12))') ' given minimum resolution ', minRes
endif
if (present(resNewInput)) then
if (any (resNewInput<1)) call IO_error(890_pInt, ext_msg = 'resNewInput') !the f2py way to tell it is not present
write(6,'(a,3(i12))') ' target resolution ', resNewInput
else
call IO_error(890_pInt, ext_msg = 'resNewInput')
endif
endif
allocate(coordinates(3,mesh_NcpElems))
!--------------------------------------------------------------------------------------------------
! read in deformation gradient to calculate coordinates, shape depend of selected solver
select case(myspectralsolver)
case('basic')
allocate(spectralF33(3,3,res(1),res(2),res(3)))
call IO_read_jobBinaryFile(777,'F',trim(getSolverJobName()),size(spectralF33))
read (777,rec=1) spectralF33
close (777)
Favg = sum(sum(sum(spectralF33,dim=5),dim=4),dim=3) * wgt
coordinates = reshape(mesh_deformedCoordsFFT(geomdim,spectralF33,1.0_pReal,Favg),&
[3,mesh_NcpElems])
case('basicpetsc','al')
allocate(spectralF9(9,res(1),res(2),res(3)))
call IO_read_jobBinaryFile(777,'F',trim(getSolverJobName()),size(spectralF9))
read (777,rec=1) spectralF9
close (777)
Favg = reshape(sum(sum(sum(spectralF9,dim=4),dim=3),dim=2) * wgt, [3,3])
coordinates = reshape(mesh_deformedCoordsFFT(geomdim,reshape(spectralF9, &
[3,3,res(1),res(2),res(3)]),1.0_pReal,Favg),[3,mesh_NcpElems])
end select
!--------------------------------------------------------------------------------------------------
! sanity check 2D/3D case
if (res(3)== 1_pInt) then
spatialDim = 2_pInt
if (present (minRes)) then
if (minRes(1) > 0_pInt .or. minRes(2) > 0_pInt) then
if (minRes(3) /= 1_pInt .or. &
mod(minRes(1),2_pInt) /= 0_pInt .or. &
mod(minRes(2),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '2D minRes') ! as f2py has problems with present, use pyf file for initialization to -1
endif; endif
else
spatialDim = 3_pInt
if (present (minRes)) then
if (any(minRes > 0_pInt)) then
if (mod(minRes(1),2_pInt) /= 0_pInt.or. &
mod(minRes(2),2_pInt) /= 0_pInt .or. &
mod(minRes(3),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '3D minRes') ! as f2py has problems with present, use pyf file for initialization to -1
endif; endif
endif
!--------------------------------------------------------------------------------------------------
! Automatic detection based on current geom
geomdimNew = math_mul33x3(Favg,geomdim)
if (adaptive) then
ratio = floor(real(resNewInput,pReal) * (geomdimNew/geomdim), pInt)
possibleResNew = 1_pInt
do i = 1_pInt, spatialDim
if (mod(ratio(i),2) == 0_pInt) then
possibleResNew(i,1:2) = [ratio(i),ratio(i) + 2_pInt]
else
possibleResNew(i,1:2) = [ratio(i)-1_pInt, ratio(i) + 1_pInt]
endif
if (.not.present(minRes)) then ! calling from fortran, optional argument not given
possibleResNew = possibleResNew
else ! optional argument is there
if (any(minRes<1_pInt)) then
possibleResNew = possibleResNew ! f2py calling, but without specification (or choosing invalid values), standard from pyf = -1
else ! given useful values
do k = 1_pInt,3_pInt; do j = 1_pInt,3_pInt
possibleResNew(j,k) = max(possibleResNew(j,k), minRes(j))
enddo; enddo
endif
endif
enddo
k = huge(1_pInt)
do i = 0_pInt, 2_pInt**spatialDim - 1
j = abs( possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt) &
* possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt) &
* possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) &
- resNewInput(1)*resNewInput(2)*resNewInput(3))
if (j < k) then
k = j
resNew =[ possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt), &
possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt), &
possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) ]
endif
enddo
else
resNew = res
endif
mesh_regrid = resNew
NpointsNew = resNew(1)*resNew(2)*resNew(3)
!--------------------------------------------------------------------------------------------------
! Calculate regular new coordinates
allocate(coordinatesNew(3,NpointsNew))
ielem = 0_pInt
do k=1_pInt,resNew(3); do j=1_pInt, resNew(2); do i=1_pInt, resNew(1)
ielem = ielem + 1_pInt
coordinatesNew(1:3,ielem) = math_mul33x3(Favg, geomdim/real(resNew,pReal)*real([i,j,k],pReal) &
- geomdim/real(2_pInt*resNew,pReal))
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! Nearest neighbour search
allocate(indices(NpointsNew))
indices = math_periodicNearestNeighbor(geomdim, Favg, coordinatesNew, coordinates)
deallocate(coordinates)
!--------------------------------------------------------------------------------------------------
! write out indices periodic
write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal)))
N_Digits = adjustl(N_Digits)
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
call IO_write_jobFile(777,'IDX') ! make it a general open-write file
write(777, '(A)') '1 header'
write(777, '(A)') 'Numbered indices as per the large set'
do i = 1_pInt, NpointsNew
write(777,trim(formatString),advance='no') indices(i), ' '
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
enddo
close(777)
!--------------------------------------------------------------------------------------------------
! calculate and write out indices non periodic
do i = 1_pInt, NpointsNew
indices(i) = indices(i) / 3_pInt**spatialDim +1_pInt ! +1 b'coz index count starts from '0'
enddo
write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal)))
N_Digits = adjustl(N_Digits)
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
call IO_write_jobFile(777,'idx') ! make it a general open-write file
write(777, '(A)') '1 header'
write(777, '(A)') 'Numbered indices as per the small set'
do i = 1_pInt, NpointsNew
write(777,trim(formatString),advance='no') indices(i), ' '
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
enddo
close(777)
!--------------------------------------------------------------------------------------------------
! write out new geom file
write(N_Digits, '(I16.16)') 1_pInt+int(log10(real(maxval(mesh_element(4,1:mesh_NcpElems)),pReal)),pInt)
N_Digits = adjustl(N_Digits)
formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)'
open(777,file=trim(getSolverWorkingDirectoryName())//trim(GeometryFile),status='REPLACE')
write(777, '(A)') '3 header'
write(777, '(3(A, I8))') 'resolution a ', resNew(1), ' b ', resNew(2), ' c ', resNew(3)
write(777, '(3(A, g17.10))') 'dimension x ', geomdim(1), ' y ', geomdim(2), ' z ', geomdim(3)
write(777, '(A)') 'homogenization 1'
do i = 1_pInt, NpointsNew
write(777,trim(formatString),advance='no') mesh_element(4,indices(i)), ' '
if(mod(i,resNew(1)) == 0_pInt) write(777,'(A)') ''
enddo
close(777)
!--------------------------------------------------------------------------------------------------
! set F to average values
select case(myspectralsolver)
case('basic')
allocate(spectralF33New(3,3,resNew(1),resNew(2),resNew(3)))
spectralF33New = spread(spread(spread(Favg,3,resNew(1)),4,resNew(2)),5,resNew(3))
call IO_write_jobBinaryFile(777,'F',size(spectralF33New))
write (777,rec=1) spectralF33New
close (777)
case('basicpetsc','al')
allocate(spectralF9New(9,resNew(1),resNew(2),resNew(3)))
spectralF9New = spread(spread(spread(reshape(Favg,[9]),2,resNew(1)),3,resNew(2)),4,resNew(3))
call IO_write_jobBinaryFile(777,'F',size(spectralF9New))
write (777,rec=1) spectralF9New
close (777)
end select
!---------------------------------------------------------------------------------
allocate(F_lastIncNew(3,3,resNew(1),resNew(2),resNew(3)))
call IO_read_jobBinaryFile(777,'F_aim_lastInc', &
trim(getSolverJobName()),size(Favg_LastInc))
read (777,rec=1) Favg_LastInc
close (777)
F_lastIncNew = spread(spread(spread(Favg_LastInc,3,resNew(1)),4,resNew(2)),5,resNew(3))
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',size(F_LastIncNew))
write (777,rec=1) F_LastIncNew
close (777)
deallocate(F_lastIncNew)
! relocating data of material subroutine ---------------------------------------------------------
allocate(material_phase (1,1, mesh_NcpElems))
allocate(material_phaseNew (1,1, NpointsNew))
call IO_read_jobBinaryIntFile(777,'recordedPhase',trim(getSolverJobName()),size(material_phase))
read (777,rec=1) material_phase
close (777)
do i = 1, NpointsNew
material_phaseNew(1,1,i) = material_phase(1,1,indices(i))
enddo
do i = 1, mesh_NcpElems
if (all(material_phaseNew(1,1,:) /= material_phase(1,1,i))) then
write(6,*) 'mismatch in regridding'
write(6,*) material_phase(1,1,i), 'not found in material_phaseNew'
endif
enddo
call IO_write_jobBinaryIntFile(777,'recordedPhase',size(material_phaseNew))
write (777,rec=1) material_phaseNew
close (777)
deallocate(material_phase)
deallocate(material_phaseNew)
!---------------------------------------------------------------------------
allocate(F (3,3,1,1, mesh_NcpElems))
allocate(FNew (3,3,1,1, NpointsNew))
call IO_read_jobBinaryFile(777,'convergedF',trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
do i = 1, NpointsNew
FNew(1:3,1:3,1,1,i) = F(1:3,1:3,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergedF',size(FNew))
write (777,rec=1) FNew
close (777)
deallocate(F)
deallocate(FNew)
!---------------------------------------------------------------------
allocate(Fp (3,3,1,1,mesh_NcpElems))
allocate(FpNew (3,3,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergedFp',trim(getSolverJobName()),size(Fp))
read (777,rec=1) Fp
close (777)
do i = 1, NpointsNew
FpNew(1:3,1:3,1,1,i) = Fp(1:3,1:3,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergedFp',size(FpNew))
write (777,rec=1) FpNew
close (777)
deallocate(Fp)
deallocate(FpNew)
!------------------------------------------------------------------------
allocate(Lp (3,3,1,1,mesh_NcpElems))
allocate(LpNew (3,3,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergedLp',trim(getSolverJobName()),size(Lp))
read (777,rec=1) Lp
close (777)
do i = 1, NpointsNew
LpNew(1:3,1:3,1,1,i) = Lp(1:3,1:3,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergedLp',size(LpNew))
write (777,rec=1) LpNew
close (777)
deallocate(Lp)
deallocate(LpNew)
!----------------------------------------------------------------------------
allocate(dcsdE (6,6,1,1,mesh_NcpElems))
allocate(dcsdENew (6,6,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergeddcsdE',trim(getSolverJobName()),size(dcsdE))
read (777,rec=1) dcsdE
close (777)
do i = 1, NpointsNew
dcsdENew(1:6,1:6,1,1,i) = dcsdE(1:6,1:6,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergeddcsdE',size(dcsdENew))
write (777,rec=1) dcsdENew
close (777)
deallocate(dcsdE)
deallocate(dcsdENew)
!---------------------------------------------------------------------------
allocate(dPdF (3,3,3,3,1,1,mesh_NcpElems))
allocate(dPdFNew (3,3,3,3,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergeddPdF',trim(getSolverJobName()),size(dPdF))
read (777,rec=1) dPdF
close (777)
do i = 1, NpointsNew
dPdFNew(1:3,1:3,1:3,1:3,1,1,i) = dPdF(1:3,1:3,1:3,1:3,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergeddPdF',size(dPdFNew))
write (777,rec=1) dPdFNew
close (777)
deallocate(dPdF)
deallocate(dPdFNew)
!---------------------------------------------------------------------------
allocate(Tstar (6,1,1,mesh_NcpElems))
allocate(TstarNew (6,1,1,NpointsNew))
call IO_read_jobBinaryFile(777,'convergedTstar',trim(getSolverJobName()),size(Tstar))
read (777,rec=1) Tstar
close (777)
do i = 1, NpointsNew
TstarNew(1:6,1,1,i) = Tstar(1:6,1,1,indices(i))
enddo
call IO_write_jobBinaryFile(777,'convergedTstar',size(TstarNew))
write (777,rec=1) TstarNew
close (777)
deallocate(Tstar)
deallocate(TstarNew)
! for the state, we first have to know the size------------------------------------------------------------------
allocate(sizeStateConst(1,1,mesh_NcpElems))
call IO_read_jobBinaryIntFile(777,'sizeStateConst',trim(getSolverJobName()),size(sizeStateConst))
read (777,rec=1) sizeStateConst
close (777)
maxsize = maxval(sizeStateConst(1,1,1:mesh_NcpElems))
allocate(StateConst (1,1,mesh_NcpElems,maxsize))
call IO_read_jobBinaryFile(777,'convergedStateConst',trim(getSolverJobName()))
k = 0_pInt
do i =1, mesh_NcpElems
do j = 1,sizeStateConst(1,1,i)
k = k+1_pInt
read(777,rec=k) StateConst(1,1,i,j)
enddo
enddo
close(777)
call IO_write_jobBinaryFile(777,'convergedStateConst')
k = 0_pInt
do i = 1,NpointsNew
do j = 1,sizeStateConst(1,1,indices(i))
k=k+1_pInt
write(777,rec=k) StateConst(1,1,indices(i),j)
enddo
enddo
close (777)
deallocate(sizeStateConst)
deallocate(StateConst)
!----------------------------------------------------------------------------
allocate(sizeStateHomog(1,mesh_NcpElems))
call IO_read_jobBinaryIntFile(777,'sizeStateHomog',trim(getSolverJobName()),size(sizeStateHomog))
read (777,rec=1) sizeStateHomog
close (777)
maxsize = maxval(sizeStateHomog(1,1:mesh_NcpElems))
allocate(stateHomog (1,mesh_NcpElems,maxsize))
call IO_read_jobBinaryFile(777,'convergedStateHomog',trim(getSolverJobName()))
k = 0_pInt
do i =1, mesh_NcpElems
do j = 1,sizeStateHomog(1,i)
k = k+1_pInt
read(777,rec=k) stateHomog(1,i,j)
enddo
enddo
close(777)
call IO_write_jobBinaryFile(777,'convergedStateHomog')
k = 0_pInt
do i = 1,NpointsNew
do j = 1,sizeStateHomog(1,indices(i))
k=k+1_pInt
write(777,rec=k) stateHomog(1,indices(i),j)
enddo
enddo
close (777)
deallocate(sizeStateHomog)
deallocate(stateHomog)
deallocate(indices)
write(6,*) 'finished regridding'
end function mesh_regrid
!--------------------------------------------------------------------------------------------------
!> @brief builds mesh of (distorted) cubes for given coordinates (= center of the cubes)
!--------------------------------------------------------------------------------------------------
function mesh_nodesAroundCentres(gDim,Favg,centres) result(nodes)
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
math_mul33x3
implicit none
real(pReal), intent(in), dimension(:,:,:,:) :: &
centres
real(pReal), dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1) :: &
nodes
real(pReal), intent(in), dimension(3) :: &
gDim
real(pReal), intent(in), dimension(3,3) :: &
Favg
real(pReal), dimension(3,size(centres,2)+2,size(centres,3)+2,size(centres,4)+2) :: &
wrappedCentres
integer(pInt) :: &
i,j,k,n
integer(pInt), dimension(3), parameter :: &
diag = 1_pInt
integer(pInt), dimension(3) :: &
shift = 0_pInt, &
lookup = 0_pInt, &
me = 0_pInt, &
iRes = 0_pInt
integer(pInt), dimension(3,8) :: &
neighbor = reshape([ &
0_pInt, 0_pInt, 0_pInt, &
1_pInt, 0_pInt, 0_pInt, &
1_pInt, 1_pInt, 0_pInt, &
0_pInt, 1_pInt, 0_pInt, &
0_pInt, 0_pInt, 1_pInt, &
1_pInt, 0_pInt, 1_pInt, &
1_pInt, 1_pInt, 1_pInt, &
0_pInt, 1_pInt, 1_pInt ], [3,8])
!--------------------------------------------------------------------------------------------------
! initializing variables
iRes = [size(centres,2),size(centres,3),size(centres,4)]
nodes = 0.0_pReal
wrappedCentres = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! report
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Meshing cubes around centroids'
write(6,'(a,3(e12.5))') ' Dimension: ', gDim
write(6,'(a,3(i5))') ' Resolution:', iRes
endif
!--------------------------------------------------------------------------------------------------
! building wrappedCentres = centroids + ghosts
wrappedCentres(1:3,2_pInt:iRes(1)+1_pInt,2_pInt:iRes(2)+1_pInt,2_pInt:iRes(3)+1_pInt) = centres
do k = 0_pInt,iRes(3)+1_pInt
do j = 0_pInt,iRes(2)+1_pInt
do i = 0_pInt,iRes(1)+1_pInt
if (k==0_pInt .or. k==iRes(3)+1_pInt .or. & ! z skin
j==0_pInt .or. j==iRes(2)+1_pInt .or. & ! y skin
i==0_pInt .or. i==iRes(1)+1_pInt ) then ! x skin
me = [i,j,k] ! me on skin
shift = sign(abs(iRes+diag-2_pInt*me)/(iRes+diag),iRes+diag-2_pInt*me)
lookup = me-diag+shift*iRes
wrappedCentres(1:3,i+1_pInt, j+1_pInt, k+1_pInt) = &
centres(1:3,lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt) - &
math_mul33x3(Favg, shift*gDim)
endif
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! averaging
do k = 0_pInt,iRes(3); do j = 0_pInt,iRes(2); do i = 0_pInt,iRes(1)
do n = 1_pInt,8_pInt
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) = &
nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) + wrappedCentres(1:3,i+1_pInt+neighbor(1,n), &
j+1_pInt+neighbor(2,n), &
k+1_pInt+neighbor(3,n) )
enddo
enddo; enddo; enddo
nodes = nodes/8.0_pReal
end function mesh_nodesAroundCentres
!--------------------------------------------------------------------------------------------------
!> @brief calculate coordinates in current configuration for given defgrad using linear
! interpolation
!--------------------------------------------------------------------------------------------------
function mesh_deformedCoordsLinear(gDim,F,FavgIn) result(coords)
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
math_mul33x3
implicit none
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
F
real(pReal), dimension(3,size(F,3),size(F,4),size(F,5)) :: &
coords
real(pReal), intent(in), dimension(3) :: &
gDim
real(pReal), intent(in), dimension(3,3), optional :: &
FavgIn
real(pReal), dimension(3,0:size(F,3)-1,0:size(F,4)-1,0:size(F,5)-1,0:7) :: &
coordsAvgOrder
integer(pInt), parameter, dimension(3) :: &
iOnes = 1.0_pReal
real(pReal), parameter, dimension(3) :: &
fOnes = 1.0_pReal
real(pReal), dimension(3) :: &
myStep, &
negative, &
positive, &
offsetCoords, &
parameterCoords, &
stepLength, &
fRes
real(pReal), dimension(3,3) :: &
Favg
integer(pInt), dimension(3) :: &
rear, &
init, &
oppo, &
me, &
smallRes, &
iRes
integer(pInt) :: &
i, j, k, s, o
integer(pInt), parameter, dimension(3,0:7) :: &
corner = reshape([ &
0_pInt, 0_pInt, 0_pInt,&
1_pInt, 0_pInt, 0_pInt,&
1_pInt, 1_pInt, 0_pInt,&
0_pInt, 1_pInt, 0_pInt,&
1_pInt, 1_pInt, 1_pInt,&
0_pInt, 1_pInt, 1_pInt,&
0_pInt, 0_pInt, 1_pInt,&
1_pInt, 0_pInt, 1_pInt &
],[3,8]), &
step = reshape([&
1_pInt, 1_pInt, 1_pInt,&
-1_pInt, 1_pInt, 1_pInt,&
-1_pInt,-1_pInt, 1_pInt,&
1_pInt,-1_pInt, 1_pInt,&
-1_pInt,-1_pInt,-1_pInt,&
1_pInt,-1_pInt,-1_pInt,&
1_pInt, 1_pInt,-1_pInt,&
-1_pInt, 1_pInt,-1_pInt &
], [3,8])
integer(pInt), parameter, dimension(3,6) :: &
order = reshape([ &
1_pInt, 2_pInt, 3_pInt,&
1_pInt, 3_pInt, 2_pInt,&
2_pInt, 1_pInt, 3_pInt,&
2_pInt, 3_pInt, 1_pInt,&
3_pInt, 1_pInt, 2_pInt,&
3_pInt, 2_pInt, 1_pInt &
], [3,6])
!--------------------------------------------------------------------------------------------------
! initializing variables
iRes = [size(F,3),size(F,4),size(F,5)]
fRes = real(iRes,pReal)
smallRes = iRes - 1_pInt
coordsAvgOrder = 0.0_pReal
stepLength = gDim/fRes
!--------------------------------------------------------------------------------------------------
! report
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Restore geometry using linear integration'
write(6,'(a,3(e12.5))') ' Dimension: ', gDim
write(6,'(a,3(i5))') ' Resolution:', iRes
endif
!--------------------------------------------------------------------------------------------------
! determine average deformation gradient
if (present(FavgIn)) then
if (all(FavgIn < 0.0_pReal)) then ! the f2py way to tell it is not present
Favg = sum(sum(sum(F,dim=5),dim=4),dim=3) / product(fRes)
else
Favg = FavgIn
endif
else
Favg = sum(sum(sum(F,dim=5),dim=4),dim=3) / product(fRes)
endif
!--------------------------------------------------------------------------------------------------
! loop over starting corners (from 0 to 7)
cornerLooping: do s = 0_pInt, 7_pInt
init = corner(1:3,s) * smallRes + iOnes
oppo = corner(1:3,mod((s+4_pInt),8_pInt)) * smallRes + iOnes
!--------------------------------------------------------------------------------------------------
! permutation of ways on each corner
permutationLooping: do o = 1_pInt,6_pInt
coords = 0.0_pReal
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s)
rear(order(2,o)) = init(order(2,o))
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s)
rear(order(1,o)) = init(order(1,o))
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s)
me(order(1:3,o)) = [i,j,k]
if ( all(me == init)) then
coords(1:3,me(1),me(2),me(3)) = gDim*( math_mul33x3(Favg,real(corner(1:3,s),pReal)) &
+math_mul33x3(F(1:3,1:3,me(1),me(2),me(3)), &
0.5_pReal*real(step(1:3,s)/iRes,pReal)))
else
myStep = (me-rear)*stepLength
coords(1:3,me(1),me(2),me(3)) = coords(1:3,rear(1),rear(2),rear(3)) + &
0.5_pReal*math_mul33x3(F(1:3,1:3,me(1),me(2),me(3)) + &
F(1:3,1:3,rear(1),rear(2),rear(3)),myStep)
endif
rear = me
enddo; enddo; enddo
coordsAvgOrder(1:3,0:smallRes(1),0:smallRes(2),0:smallRes(3),s) = &
coordsAvgOrder(1:3,0:smallRes(1),0:smallRes(2),0:smallRes(3),s) + coords/6.0_pReal
enddo permutationLooping
offsetCoords = coordsAvgOrder(1:3,0,0,0,s)
do k = 0_pInt, smallRes(3); do j = 0_pInt, smallRes(2); do i = 0_pInt, smallRes(1)
coordsAvgOrder(1:3,i,j,k,s) = coordsAvgOrder(1:3,i,j,k,s) - offsetCoords
enddo; enddo; enddo
enddo cornerLooping
!--------------------------------------------------------------------------------------------------
! linear interpolation starting at each corner (comparable to linear shape function FEM)
do k = 0_pInt, smallRes(3); do j = 0_pInt, smallRes(2); do i = 0_pInt, smallRes(1)
parameterCoords = (2.0_pReal*real([i,j,k]+1,pReal)-fRes)/fRes
positive = fones + parameterCoords
negative = fones - parameterCoords
coords(1:3,i+1_pInt,j+1_pInt,k+1_pInt) &
=(coordsAvgOrder(1:3,i,j,k,0) *negative(1)*negative(2)*negative(3)&
+ coordsAvgOrder(1:3,i,j,k,1) *positive(1)*negative(2)*negative(3)&
+ coordsAvgOrder(1:3,i,j,k,2) *positive(1)*positive(2)*negative(3)&
+ coordsAvgOrder(1:3,i,j,k,3) *negative(1)*positive(2)*negative(3)&
+ coordsAvgOrder(1:3,i,j,k,4) *positive(1)*positive(2)*positive(3)&
+ coordsAvgOrder(1:3,i,j,k,5) *negative(1)*positive(2)*positive(3)&
+ coordsAvgOrder(1:3,i,j,k,6) *negative(1)*negative(2)*positive(3)&
+ coordsAvgOrder(1:3,i,j,k,7) *positive(1)*negative(2)*positive(3))*0.125_pReal
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! setting base node to (0,0,0)
offsetCoords = math_mul33x3(F(1:3,1:3,1,1,1),stepLength/2.0_pReal) - coords(1:3,1,1,1)
do k = 1_pInt, iRes(3); do j = 1_pInt, iRes(2); do i = 1_pInt, iRes(1)
coords(1:3,i,j,k) = coords(1:3,i,j,k) + offsetCoords
enddo; enddo; enddo
end function mesh_deformedCoordsLinear
!--------------------------------------------------------------------------------------------------
!> @brief calculate coordinates in current configuration for given defgrad
! using integration in Fourier space
!--------------------------------------------------------------------------------------------------
function mesh_deformedCoordsFFT(gDim,F,scalingIn,FavgIn) result(coords)
use IO, only: &
IO_error
use numerics, only: &
fftw_timelimit, &
fftw_planner_flag
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
PI, &
math_mul33x3
implicit none
real(pReal), intent(in), dimension(:,:,:,:,:) :: F
real(pReal), dimension(3,size(F,3),size(F,4),size(F,5)) :: coords
real(pReal), intent(in), dimension(3) :: gDim
real(pReal), intent(in), dimension(3,3), optional :: FavgIn
real(pReal), intent(in), optional :: scalingIn
! function
! allocatable arrays for fftw c routines
type(C_PTR) :: fftw_forth, fftw_back
type(C_PTR) :: coords_fftw, defgrad_fftw
real(pReal), dimension(:,:,:,:,:), pointer :: F_real
complex(pReal), dimension(:,:,:,:,:), pointer :: F_fourier
real(pReal), dimension(:,:,:,:), pointer :: coords_real
complex(pReal), dimension(:,:,:,:), pointer :: coords_fourier
! other variables
integer(pInt) :: i, j, k, m, res1_red
integer(pInt), dimension(3) :: k_s, iRes
real(pReal), dimension(3) :: step, offset_coords, integrator
real(pReal), dimension(3,3) :: Favg
real(pReal) :: scaling
if (present(scalingIn)) then
if (scalingIn < 0.0_pReal) then !the f2py way to tell it is not present
scaling = 1.0_pReal
else
scaling = scalingIn
endif
else
scaling = 1.0_pReal
endif
iRes = [size(F,3),size(F,4),size(F,5)]
integrator = gDim / 2.0_pReal / PI ! see notes where it is used
!--------------------------------------------------------------------------------------------------
! report
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Restore geometry using FFT-based integration'
write(6,'(a,3(e12.5))') ' Dimension: ', gDim
write(6,'(a,3(i5))') ' Resolution:', iRes
endif
res1_red = iRes(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
step = gDim/real(iRes, pReal)
if ((mod(iRes(3),2_pInt)/=0_pInt .and. iRes(3) /= 1_pInt) .or. &
mod(iRes(2),2_pInt)/=0_pInt .or. &
mod(iRes(1),2_pInt)/=0_pInt) &
call IO_error(0_pInt,ext_msg='Resolution in mesh_deformedCoordsFFT')
if (pReal /= C_DOUBLE .or. pInt /= C_INT) &
call IO_error(0_pInt,ext_msg='Fortran to C in mesh_deformedCoordsFFT')
call fftw_set_timelimit(fftw_timelimit)
defgrad_fftw = fftw_alloc_complex(int(res1_red *iRes(2)*iRes(3)*9_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
call c_f_pointer(defgrad_fftw, F_real, [iRes(1)+2_pInt,iRes(2),iRes(3),3_pInt,3_pInt])
call c_f_pointer(defgrad_fftw, F_fourier,[res1_red ,iRes(2),iRes(3),3_pInt,3_pInt])
coords_fftw = fftw_alloc_complex(int(res1_red *iRes(2)*iRes(3)*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
call c_f_pointer(coords_fftw, coords_real, [iRes(1)+2_pInt,iRes(2),iRes(3),3_pInt])
call c_f_pointer(coords_fftw, coords_fourier, [res1_red ,iRes(2),iRes(3),3_pInt])
fftw_forth = fftw_plan_many_dft_r2c(3_pInt,[iRes(3),iRes(2) ,iRes(1)],9_pInt,& ! dimensions , length in each dimension in reversed order
F_real,[iRes(3),iRes(2) ,iRes(1)+2_pInt],& ! input data , physical length in each dimension in reversed order
1_pInt, iRes(3)*iRes(2)*(iRes(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
F_fourier,[iRes(3),iRes(2) ,res1_red],&
1_pInt, iRes(3)*iRes(2)* res1_red,fftw_planner_flag)
fftw_back = fftw_plan_many_dft_c2r(3_pInt,[iRes(3),iRes(2) ,iRes(1)],3_pInt,&
coords_fourier,[iRes(3),iRes(2) ,res1_red],&
1_pInt, iRes(3)*iRes(2)* res1_red,&
coords_real,[iRes(3),iRes(2) ,iRes(1)+2_pInt],&
1_pInt, iRes(3)*iRes(2)*(iRes(1)+2_pInt),fftw_planner_flag)
do k = 1_pInt, iRes(3); do j = 1_pInt, iRes(2); do i = 1_pInt, iRes(1)
F_real(i,j,k,1:3,1:3) = F(1:3,1:3,i,j,k) ! ensure that data is aligned properly (fftw_alloc)
enddo; enddo; enddo
call fftw_execute_dft_r2c(fftw_forth, F_real, F_fourier)
if (present(FavgIn)) then
if (all(FavgIn < 0.0_pReal)) then
Favg = real(F_fourier(1,1,1,1:3,1:3)*real(product(iRes),pReal),pReal) !the f2py way to tell it is not present
else
Favg = FavgIn
endif
else
Favg = real(F_fourier(1,1,1,1:3,1:3)*real(product(iRes),pReal),pReal)
endif
!remove highest frequency in each direction
if(iRes(1)>1_pInt) &
F_fourier( iRes(1)/2_pInt+1_pInt,1:iRes(2) ,1:iRes(3) ,&
1:3,1:3) = cmplx(0.0_pReal,0.0_pReal,pReal)
if(iRes(2)>1_pInt) &
F_fourier(1:res1_red ,iRes(2)/2_pInt+1_pInt,1:iRes(3) ,&
1:3,1:3) = cmplx(0.0_pReal,0.0_pReal,pReal)
if(iRes(3)>1_pInt) &
F_fourier(1:res1_red ,1:iRes(2) ,iRes(3)/2_pInt+1_pInt,&
1:3,1:3) = cmplx(0.0_pReal,0.0_pReal,pReal)
coords_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, iRes(3)
k_s(3) = k-1_pInt
if(k > iRes(3)/2_pInt+1_pInt) k_s(3) = k_s(3)-iRes(3)
do j = 1_pInt, iRes(2)
k_s(2) = j-1_pInt
if(j > iRes(2)/2_pInt+1_pInt) k_s(2) = k_s(2)-iRes(2)
do i = 1_pInt, res1_red
k_s(1) = i-1_pInt
do m = 1_pInt,3_pInt
coords_fourier(i,j,k,m) = sum(F_fourier(i,j,k,m,1:3)*cmplx(0.0_pReal,real(k_s,pReal)*integrator,pReal))
enddo
if (k_s(3) /= 0_pInt .or. k_s(2) /= 0_pInt .or. k_s(1) /= 0_pInt) &
coords_fourier(i,j,k,1:3) = coords_fourier(i,j,k,1:3) / real(-sum(k_s*k_s),pReal)
enddo; enddo; enddo
call fftw_execute_dft_c2r(fftw_back,coords_fourier,coords_real)
coords_real = coords_real/real(iRes(1)*iRes(2)*iRes(3),pReal)
do k = 1_pInt, iRes(3); do j = 1_pInt, iRes(2); do i = 1_pInt, iRes(1)
coords(1:3,i,j,k) = coords_real(i,j,k,1:3) ! ensure that data is aligned properly (fftw_alloc)
enddo; enddo; enddo
offset_coords = math_mul33x3(F(1:3,1:3,1,1,1),step/2.0_pReal) - scaling*coords(1:3,1,1,1)
do k = 1_pInt, iRes(3); do j = 1_pInt, iRes(2); do i = 1_pInt, iRes(1)
coords(1:3,i,j,k) = scaling*coords(1:3,i,j,k) &
+ offset_coords + math_mul33x3(Favg,[step(1)*real(i-1_pInt,pReal),&
step(2)*real(j-1_pInt,pReal),&
step(3)*real(k-1_pInt,pReal)])
enddo; enddo; enddo
call fftw_destroy_plan(fftw_forth)
call fftw_destroy_plan(fftw_back)
call fftw_free(defgrad_fftw)
call fftw_free(coords_fftw)
end function mesh_deformedCoordsFFT
!--------------------------------------------------------------------------------------------------
!> @brief calculates the mismatch between volume of reconstructed (compatible
! cube and determinant of defgrad at the FP
!--------------------------------------------------------------------------------------------------
function mesh_volumeMismatch(gDim,F,nodes) result(vMismatch)
use IO, only: &
IO_error
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
PI, &
math_det33, &
math_volTetrahedron
implicit none
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
F
real(pReal), dimension(size(F,3),size(F,4),size(F,5)) :: &
vMismatch
real(pReal), intent(in), dimension(:,:,:,:) :: &
nodes
real(pReal), dimension(3) :: &
gDim
integer(pInt), dimension(3) :: &
iRes
real(pReal), dimension(3,8) :: coords
integer(pInt) :: i,j,k
real(pReal) :: volInitial
iRes = [size(F,3),size(F,4),size(F,5)]
volInitial = product(gDim)/real(product(iRes), pReal)
!--------------------------------------------------------------------------------------------------
! report and check
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Calculating volume mismatch'
write(6,'(a,3(e12.5))') ' Dimension: ', gDim
write(6,'(a,3(i5))') ' Resolution:', iRes
endif
if (any([iRes/=size(nodes,2)-1_pInt,iRes/=size(nodes,3)-1_pInt,iRes/=size(nodes,4)-1_pInt]))&
call IO_error(0_pInt,ext_msg='Arrays F and nodes in mesh_volumeMismatch')
!--------------------------------------------------------------------------------------------------
! calculate actual volume and volume resulting from deformation gradient
do k = 1_pInt,iRes(3)
do j = 1_pInt,iRes(2)
do i = 1_pInt,iRes(1)
coords(1:3,1) = nodes(1:3,i, j, k )
coords(1:3,2) = nodes(1:3,i+1_pInt,j, k )
coords(1:3,3) = nodes(1:3,i+1_pInt,j+1_pInt,k )
coords(1:3,4) = nodes(1:3,i, j+1_pInt,k )
coords(1:3,5) = nodes(1:3,i, j, k+1_pInt)
coords(1:3,6) = nodes(1:3,i+1_pInt,j, k+1_pInt)
coords(1:3,7) = nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt)
coords(1:3,8) = nodes(1:3,i, j+1_pInt,k+1_pInt)
vMismatch(i,j,k) = &
abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,8),coords(1:3,4))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,8),coords(1:3,5))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,3),coords(1:3,4))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,3),coords(1:3,2))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,5),coords(1:3,2),coords(1:3,6))) &
+ abs(math_volTetrahedron(coords(1:3,7),coords(1:3,5),coords(1:3,2),coords(1:3,1)))
vMismatch(i,j,k) = vMismatch(i,j,k)/math_det33(F(1:3,1:3,i,j,k))
enddo; enddo; enddo
vMismatch = vMismatch/volInitial
end function mesh_volumeMismatch
!--------------------------------------------------------------------------------------------------
!> @brief Routine to calculate the mismatch between the vectors from the central point to
! the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
! the initial volume element with the current deformation gradient
!--------------------------------------------------------------------------------------------------
function mesh_shapeMismatch(gDim,F,nodes,centres) result(sMismatch)
use IO, only: &
IO_error
use debug, only: &
debug_mesh, &
debug_level, &
debug_levelBasic
use math, only: &
math_mul33x3
implicit none
real(pReal), intent(in), dimension(:,:,:,:,:) :: &
F
real(pReal), dimension(size(F,3),size(F,4),size(F,5)) :: &
sMismatch
real(pReal), intent(in), dimension(:,:,:,:) :: &
nodes, &
centres
real(pReal), dimension(3) :: &
gDim, &
fRes
integer(pInt), dimension(3) :: &
iRes
real(pReal), dimension(3,8) :: coordsInitial
integer(pInt) i,j,k
iRes = [size(F,3),size(F,4),size(F,5)]
fRes = real(iRes,pReal)
!--------------------------------------------------------------------------------------------------
! report and check
if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then
write(6,'(a)') ' Calculating shape mismatch'
write(6,'(a,3(e12.5))') ' Dimension: ', gDim
write(6,'(a,3(i5))') ' Resolution:', iRes
endif
if(any([iRes/=size(nodes,2)-1_pInt,iRes/=size(nodes,3)-1_pInt,iRes/=size(nodes,4)-1_pInt]) .or.&
any([iRes/=size(centres,2), iRes/=size(centres,3), iRes/=size(centres,4)]))&
call IO_error(0_pInt,ext_msg='Arrays F and nodes/centres in mesh_shapeMismatch')
!--------------------------------------------------------------------------------------------------
! initial positions
coordsInitial(1:3,1) = [-gDim(1)/fRes(1),-gDim(2)/fRes(2),-gDim(3)/fRes(3)]
coordsInitial(1:3,2) = [+gDim(1)/fRes(1),-gDim(2)/fRes(2),-gDim(3)/fRes(3)]
coordsInitial(1:3,3) = [+gDim(1)/fRes(1),+gDim(2)/fRes(2),-gDim(3)/fRes(3)]
coordsInitial(1:3,4) = [-gDim(1)/fRes(1),+gDim(2)/fRes(2),-gDim(3)/fRes(3)]
coordsInitial(1:3,5) = [-gDim(1)/fRes(1),-gDim(2)/fRes(2),+gDim(3)/fRes(3)]
coordsInitial(1:3,6) = [+gDim(1)/fRes(1),-gDim(2)/fRes(2),+gDim(3)/fRes(3)]
coordsInitial(1:3,7) = [+gDim(1)/fRes(1),+gDim(2)/fRes(2),+gDim(3)/fRes(3)]
coordsInitial(1:3,8) = [-gDim(1)/fRes(1),+gDim(2)/fRes(2),+gDim(3)/fRes(3)]
coordsInitial = coordsInitial/2.0_pReal
!--------------------------------------------------------------------------------------------------
! compare deformed original and deformed positions to actual positions
do k = 1_pInt,iRes(3)
do j = 1_pInt,iRes(2)
do i = 1_pInt,iRes(1)
sMismatch(i,j,k) = &
sqrt(sum((nodes(1:3,i, j, k ) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,1)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i+1_pInt,j, k ) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,2)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i+1_pInt,j+1_pInt,k ) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,3)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i, j+1_pInt,k ) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,4)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i, j, k+1_pInt) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,5)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i+1_pInt,j, k+1_pInt) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,6)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,7)))**2.0_pReal))&
+ sqrt(sum((nodes(1:3,i, j+1_pInt,k+1_pInt) - centres(1:3,i,j,k)&
- math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,8)))**2.0_pReal))
enddo; enddo; enddo
end function mesh_shapeMismatch
#endif
#ifdef Marc
!--------------------------------------------------------------------------------------------------
!> @brief Figures out table styles (Marc only) and stores to 'initialcondTableStyle' and
!! 'hypoelasticTableStyle'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_get_tableStyles(myUnit)
use IO, only: &
IO_lc, &
IO_intValue, &
IO_stringValue, &
IO_stringPos
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 6_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) line
initialcondTableStyle = 0_pInt
hypoelasticTableStyle = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'table' .and. myPos(1_pInt) .GT. 5) then
initialcondTableStyle = IO_intValue(line,myPos,4_pInt)
hypoelasticTableStyle = IO_intValue(line,myPos,5_pInt)
exit
endif
enddo
620 end subroutine mesh_marc_get_tableStyles
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of nodes and elements in mesh and stores them in
!! 'mesh_Nelems' and 'mesh_Nnodes'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_count_nodesAndElements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_IntValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 4_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) line
mesh_Nnodes = 0_pInt
mesh_Nelems = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'sizing') &
mesh_Nelems = IO_IntValue (line,myPos,3_pInt)
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'coordinates') then
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
mesh_Nnodes = IO_IntValue (line,myPos,2_pInt)
exit ! assumes that "coordinates" comes later in file
endif
enddo
620 end subroutine mesh_marc_count_nodesAndElements
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of element sets in mesh. Stores to 'mesh_NelemSets', and
!! 'mesh_maxNelemInSet'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_count_elementSets(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countContinuousIntValues
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) line
mesh_NelemSets = 0_pInt
mesh_maxNelemInSet = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'define' .and. &
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'element' ) then
mesh_NelemSets = mesh_NelemSets + 1_pInt
mesh_maxNelemInSet = max(mesh_maxNelemInSet, &
IO_countContinuousIntValues(myUnit))
endif
enddo
620 end subroutine mesh_marc_count_elementSets
!********************************************************************
! map element sets
!
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
!********************************************************************
subroutine mesh_marc_map_elementSets(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_continuousIntValues
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 4_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: elemSet = 0_pInt
allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = ''
allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=640) line
myPos = IO_stringPos(line,maxNchunks)
if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'define' ) .and. &
(IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'element' ) ) then
elemSet = elemSet+1_pInt
mesh_nameElemSet(elemSet) = trim(IO_stringValue(line,myPos,4_pInt))
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(myUnit,mesh_maxNelemInSet,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
endif
enddo
640 end subroutine mesh_marc_map_elementSets
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_count_cpElements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countContinuousIntValues
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 1_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
integer(pInt) :: i
character(len=300):: line
mesh_NcpElems = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic') then
do i=1_pInt,3_pInt+hypoelasticTableStyle ! Skip 3 or 4 lines
read (myUnit,610,END=620) line
enddo
mesh_NcpElems = mesh_NcpElems + IO_countContinuousIntValues(myUnit)
exit
endif
enddo
620 end subroutine mesh_marc_count_cpElements
!--------------------------------------------------------------------------------------------------
!> @brief Maps elements from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPelem'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_map_elements(myUnit)
use math, only: math_qsort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_continuousIntValues
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 1_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt), dimension (1_pInt+mesh_NcpElems) :: contInts
integer(pInt) :: i,cpElem = 0_pInt
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=660) line
myPos = IO_stringPos(line,maxNchunks)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic' ) then
do i=1_pInt,3_pInt+hypoelasticTableStyle ! skip three (or four if new table style!) lines
read (myUnit,610,END=660) line
enddo
contInts = IO_continuousIntValues(myUnit,mesh_NcpElems,mesh_nameElemSet,&
mesh_mapElemSet,mesh_NelemSets)
do i = 1_pInt,contInts(1)
cpElem = cpElem+1_pInt
mesh_mapFEtoCPelem(1,cpElem) = contInts(1_pInt+i)
mesh_mapFEtoCPelem(2,cpElem) = cpElem
enddo
endif
enddo
660 call math_qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems
end subroutine mesh_marc_map_elements
!--------------------------------------------------------------------------------------------------
!> @brief Maps node from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPnode'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_map_nodes(myUnit)
use math, only: math_qsort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_fixedIntValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 1_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt), dimension (mesh_Nnodes) :: node_count
integer(pInt) :: i
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
610 FORMAT(A300)
node_count = 0_pInt
rewind(myUnit)
do
read (myUnit,610,END=650) line
myPos = IO_stringPos(line,maxNchunks)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then
read (myUnit,610,END=650) line ! skip crap line
do i = 1_pInt,mesh_Nnodes
read (myUnit,610,END=650) line
mesh_mapFEtoCPnode(1_pInt,i) = IO_fixedIntValue (line,[ 0_pInt,10_pInt],1_pInt)
mesh_mapFEtoCPnode(2_pInt,i) = i
enddo
exit
endif
enddo
650 call math_qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt))
end subroutine mesh_marc_map_nodes
!--------------------------------------------------------------------------------------------------
!> @brief store x,y,z coordinates of all nodes in mesh.
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_build_nodes(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_fixedIntValue, &
IO_fixedNoEFloatValue
use numerics, only: numerics_unitlength
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), dimension(5), parameter :: node_ends = int([0,10,30,50,70],pInt)
integer(pInt), parameter :: maxNchunks = 1_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: i,j,m
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=670) line
myPos = IO_stringPos(line,maxNchunks)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then
read (myUnit,610,END=670) line ! skip crap line
do i=1_pInt,mesh_Nnodes
read (myUnit,610,END=670) line
m = mesh_FEasCP('node',IO_fixedIntValue(line,node_ends,1_pInt))
do j = 1_pInt,3_pInt
mesh_node0(j,m) = numerics_unitlength * IO_fixedNoEFloatValue(line,node_ends,j+1_pInt)
enddo
enddo
exit
endif
enddo
670 mesh_node = mesh_node0
end subroutine mesh_marc_build_nodes
!--------------------------------------------------------------------------------------------------
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
!! and mesh_maxNsubNodes
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_count_cpSizes(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_intValue, &
IO_skipChunks
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: i,t,g,e
mesh_maxNnodes = 0_pInt
mesh_maxNips = 0_pInt
mesh_maxNipNeighbors = 0_pInt
mesh_maxNsubNodes = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=630) line
myPos = IO_stringPos(line,maxNchunks)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then
read (myUnit,610,END=630) line ! Garbage line
do i=1_pInt,mesh_Nelems ! read all elements
read (myUnit,610,END=630) line
myPos = IO_stringPos(line,maxNchunks) ! limit to id and type
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
if (e /= 0_pInt) then
t = FE_mapElemtype(IO_stringValue(line,myPos,2_pInt))
g = FE_geomtype(t)
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(g))
mesh_maxNips = max(mesh_maxNips,FE_Nips(g))
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(g))
mesh_maxNsubNodes = max(mesh_maxNsubNodes,FE_NsubNodes(g))
call IO_skipChunks(myUnit,FE_NoriginalNodes(t)-(myPos(1_pInt)-2_pInt)) ! read on if FE_Nnodes exceeds node count present on current line
endif
enddo
exit
endif
enddo
630 end subroutine mesh_marc_count_cpSizes
!--------------------------------------------------------------------------------------------------
!> @brief Store FEid, type, mat, tex, and node list per elemen.
!! Allocates global array 'mesh_element'
!--------------------------------------------------------------------------------------------------
subroutine mesh_marc_build_elements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_fixedNoEFloatValue, &
IO_skipChunks, &
IO_stringPos, &
IO_intValue, &
IO_continuousIntValues
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 66_pInt ! limit to 64 nodes max (plus ID, type)
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt), dimension(1_pInt+mesh_NcpElems) :: contInts
integer(pInt) :: i,j,t,sv,myVal,e
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then
read (myUnit,610,END=620) line ! garbage line
do i = 1_pInt,mesh_Nelems
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
if (e /= 0_pInt) then ! disregard non CP elems
t = FE_mapElemtype(IO_StringValue(line,myPos,2_pInt)) ! elem type
mesh_element(2,e) = t
mesh_element(1,e) = IO_IntValue (line,myPos,1_pInt) ! FE id
do j = 1_pInt,FE_Nnodes(FE_geomtype(t))
mesh_element(j+4_pInt,e) = IO_IntValue(line,myPos,j+2_pInt) ! copy FE ids of nodes
enddo
call IO_skipChunks(myUnit,FE_NoriginalNodes(t)-(myPos(1_pInt)-2_pInt)) ! read on if FE_Nnodes exceeds node count present on current line
endif
enddo
exit
endif
enddo
620 rewind(myUnit) ! just in case "initial state" apears before "connectivity"
read (myUnit,610,END=620) line
do
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'initial') .and. &
(IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'state') ) then
if (initialcondTableStyle == 2_pInt) read (myUnit,610,END=620) line ! read extra line for new style
read (myUnit,610,END=630) line ! read line with index of state var
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
sv = IO_IntValue(line,myPos,1_pInt) ! figure state variable index
if( (sv == 2_pInt).or.(sv == 3_pInt) ) then ! only state vars 2 and 3 of interest
read (myUnit,610,END=620) line ! read line with value of state var
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
do while (scan(IO_stringValue(line,myPos,1_pInt),'+-',back=.true.)>1) ! is noEfloat value?
myVal = nint(IO_fixedNoEFloatValue(line,[0_pInt,20_pInt],1_pInt),pInt) ! state var's value
mesh_maxValStateVar(sv-1_pInt) = max(myVal,mesh_maxValStateVar(sv-1_pInt)) ! remember max val of homogenization and microstructure index
if (initialcondTableStyle == 2_pInt) then
read (myUnit,610,END=630) line ! read extra line
read (myUnit,610,END=630) line ! read extra line
endif
contInts = IO_continuousIntValues& ! get affected elements
(myUnit,mesh_Nelems,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets)
do i = 1_pInt,contInts(1)
e = mesh_FEasCP('elem',contInts(1_pInt+i))
mesh_element(1_pInt+sv,e) = myVal
enddo
if (initialcondTableStyle == 0_pInt) read (myUnit,610,END=620) line ! ignore IP range for old table style
read (myUnit,610,END=630) line
myPos(1:1+2*1) = IO_stringPos(line,1_pInt)
enddo
endif
else
read (myUnit,610,END=630) line
endif
enddo
630 end subroutine mesh_marc_build_elements
#endif
#ifdef Abaqus
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of nodes and elements in mesh and stores them in
!! 'mesh_Nelems' and 'mesh_Nnodes'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_nodesAndElements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countDataLines, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) :: line
logical :: inPart
mesh_Nnodes = 0_pInt
mesh_Nelems = 0_pInt
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if (inPart .or. noPart) then
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)))
case('*node')
if( &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' &
) &
mesh_Nnodes = mesh_Nnodes + IO_countDataLines(myUnit)
case('*element')
if( &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' &
) then
mesh_Nelems = mesh_Nelems + IO_countDataLines(myUnit)
endif
endselect
endif
enddo
620 if (mesh_Nnodes < 2_pInt) call IO_error(error_ID=900_pInt)
if (mesh_Nelems == 0_pInt) call IO_error(error_ID=901_pInt)
end subroutine mesh_abaqus_count_nodesAndElements
!********************************************************************
! count overall number of element sets in mesh
!
! mesh_NelemSets, mesh_maxNelemInSet
!********************************************************************
subroutine mesh_abaqus_count_elementSets(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) :: line
logical :: inPart
mesh_NelemSets = 0_pInt
mesh_maxNelemInSet = mesh_Nelems ! have to be conservative, since Abaqus allows for recursive definitons
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) &
mesh_NelemSets = mesh_NelemSets + 1_pInt
enddo
620 continue
if (mesh_NelemSets == 0) call IO_error(error_ID=902_pInt)
end subroutine mesh_abaqus_count_elementSets
!********************************************************************
! count overall number of solid sections sets in mesh (Abaqus only)
!
! mesh_Nmaterials
!********************************************************************
subroutine mesh_abaqus_count_materials(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
logical inPart
mesh_Nmaterials = 0_pInt
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. &
IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. &
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) &
mesh_Nmaterials = mesh_Nmaterials + 1_pInt
enddo
620 if (mesh_Nmaterials == 0_pInt) call IO_error(error_ID=903_pInt)
end subroutine mesh_abaqus_count_materials
!********************************************************************
! Build element set mapping
!
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
!********************************************************************
subroutine mesh_abaqus_map_elementSets(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue, &
IO_continuousIntValues, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 4_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: elemSet = 0_pInt,i
logical :: inPart = .false.
allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = ''
allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=640) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) then
elemSet = elemSet + 1_pInt
mesh_nameElemSet(elemSet) = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'elset'))
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(myUnit,mesh_Nelems,mesh_nameElemSet,&
mesh_mapElemSet,elemSet-1_pInt)
endif
enddo
640 do i = 1_pInt,elemSet
if (mesh_mapElemSet(1,i) == 0_pInt) call IO_error(error_ID=904_pInt,ext_msg=mesh_nameElemSet(i))
enddo
end subroutine mesh_abaqus_map_elementSets
!********************************************************************
! map solid section (Abaqus only)
!
! allocate globals: mesh_nameMaterial, mesh_mapMaterial
!********************************************************************
subroutine mesh_abaqus_map_materials(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 20_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt) :: i,c = 0_pInt
logical :: inPart = .false.
character(len=64) :: elemSetName,materialName
allocate (mesh_nameMaterial(mesh_Nmaterials)) ; mesh_nameMaterial = ''
allocate (mesh_mapMaterial(mesh_Nmaterials)) ; mesh_mapMaterial = ''
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. &
IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. &
IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) then
elemSetName = ''
materialName = ''
do i = 3_pInt,myPos(1_pInt)
if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset') /= '') &
elemSetName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset'))
if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material') /= '') &
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material'))
enddo
if (elemSetName /= '' .and. materialName /= '') then
c = c + 1_pInt
mesh_nameMaterial(c) = materialName ! name of material used for this section
mesh_mapMaterial(c) = elemSetName ! mapped to respective element set
endif
endif
enddo
620 if (c==0_pInt) call IO_error(error_ID=905_pInt)
do i=1_pInt,c
if (mesh_nameMaterial(i)=='' .or. mesh_mapMaterial(i)=='') call IO_error(error_ID=905_pInt)
enddo
end subroutine mesh_abaqus_map_materials
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_cpElements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error, &
IO_extractValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
character(len=300) line
integer(pInt) :: i,k
logical :: materialFound = .false.
character(len=64) ::materialName,elemSetName
mesh_NcpElems = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) )
case('*material')
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value
materialFound = materialName /= '' ! valid name?
case('*user')
if (IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then
do i = 1_pInt,mesh_Nmaterials ! look thru material names
if (materialName == mesh_nameMaterial(i)) then ! found one
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
if (elemSetName == mesh_nameElemSet(k)) & ! matched?
mesh_NcpElems = mesh_NcpElems + mesh_mapElemSet(1,k) ! add those elem count
enddo
endif
enddo
materialFound = .false.
endif
endselect
enddo
620 if (mesh_NcpElems == 0_pInt) call IO_error(error_ID=906_pInt)
end subroutine mesh_abaqus_count_cpElements
!--------------------------------------------------------------------------------------------------
!> @brief Maps elements from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPelem'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_elements(myUnit)
use math, only: math_qsort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) ::i,j,k,cpElem = 0_pInt
logical :: materialFound = .false.
character (len=64) materialName,elemSetName ! why limited to 64? ABAQUS?
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=660) line
myPos = IO_stringPos(line,maxNchunks)
select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) )
case('*material')
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value
materialFound = materialName /= '' ! valid name?
case('*user')
if (IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then
do i = 1_pInt,mesh_Nmaterials ! look thru material names
if (materialName == mesh_nameMaterial(i)) then ! found one
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
do j = 1_pInt,mesh_mapElemSet(1,k)
cpElem = cpElem + 1_pInt
mesh_mapFEtoCPelem(1,cpElem) = mesh_mapElemSet(1_pInt+j,k) ! store FE id
mesh_mapFEtoCPelem(2,cpElem) = cpElem ! store our id
enddo
endif
enddo
endif
enddo
materialFound = .false.
endif
endselect
enddo
660 call math_qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems
if (int(size(mesh_mapFEtoCPelem),pInt) < 2_pInt) call IO_error(error_ID=907_pInt)
end subroutine mesh_abaqus_map_elements
!--------------------------------------------------------------------------------------------------
!> @brief Maps node from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPnode'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_nodes(myUnit)
use math, only: math_qsort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countDataLines, &
IO_intValue, &
IO_error
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) line
integer(pInt) :: i,c,cpNode = 0_pInt
logical :: inPart = .false.
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt
610 FORMAT(A300)
rewind(myUnit)
do
read (myUnit,610,END=650) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. &
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
) then
c = IO_countDataLines(myUnit)
do i = 1_pInt,c
backspace(myUnit)
enddo
do i = 1_pInt,c
read (myUnit,610,END=650) line
myPos = IO_stringPos(line,maxNchunks)
cpNode = cpNode + 1_pInt
mesh_mapFEtoCPnode(1_pInt,cpNode) = IO_intValue(line,myPos,1_pInt)
mesh_mapFEtoCPnode(2_pInt,cpNode) = cpNode
enddo
endif
enddo
650 call math_qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt))
if (int(size(mesh_mapFEtoCPnode),pInt) == 0_pInt) call IO_error(error_ID=908_pInt)
end subroutine mesh_abaqus_map_nodes
!--------------------------------------------------------------------------------------------------
!> @brief store x,y,z coordinates of all nodes in mesh.
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_build_nodes(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_floatValue, &
IO_stringPos, &
IO_error, &
IO_countDataLines, &
IO_intValue
use numerics, only: numerics_unitlength
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 4_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: i,j,m,c
logical :: inPart
allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal
allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=670) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. &
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
) then
c = IO_countDataLines(myUnit) ! how many nodes are defined here?
do i = 1_pInt,c
backspace(myUnit) ! rewind to first entry
enddo
do i = 1_pInt,c
read (myUnit,610,END=670) line
myPos = IO_stringPos(line,maxNchunks)
m = mesh_FEasCP('node',IO_intValue(line,myPos,1_pInt))
forall (j=1_pInt:3_pInt) mesh_node0(j,m) = numerics_unitlength * IO_floatValue(line,myPos,j+1_pInt)
enddo
endif
enddo
670 if (int(size(mesh_node0,2_pInt),pInt) /= mesh_Nnodes) call IO_error(error_ID=909_pInt)
mesh_node = mesh_node0
end subroutine mesh_abaqus_build_nodes
!--------------------------------------------------------------------------------------------------
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
!! Allocates global arrays 'mesh_maxNnodes', 'mesh_maxNips', mesh_maxNipNeighbors',
!! and mesh_maxNsubNodes
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_cpSizes(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue ,&
IO_error, &
IO_countDataLines, &
IO_intValue
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
character(len=300) :: line
integer(pInt) :: i,c,t,g
logical :: inPart
mesh_maxNnodes = 0_pInt
mesh_maxNips = 0_pInt
mesh_maxNipNeighbors = 0_pInt
mesh_maxNsubNodes = 0_pInt
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. &
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
) then
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type
if (t == 0_pInt) call IO_error(error_ID=910_pInt,ext_msg='mesh_abaqus_count_cpSizes')
g = FE_geomtype(t)
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(g))
mesh_maxNips = max(mesh_maxNips,FE_Nips(g))
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(g))
mesh_maxNsubNodes = max(mesh_maxNsubNodes,FE_NsubNodes(g))
endif
enddo
620 end subroutine mesh_abaqus_count_cpSizes
!--------------------------------------------------------------------------------------------------
!> @brief Store FEid, type, mat, tex, and node list per elemen.
!! Allocates global array 'mesh_element'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_build_elements(myUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_skipChunks, &
IO_stringPos, &
IO_intValue, &
IO_extractValue, &
IO_floatValue, &
IO_error, &
IO_countDataLines
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 65_pInt
integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos
integer(pInt) :: i,j,k,c,e,t,homog,micro
logical inPart,materialFound
character (len=64) :: materialName,elemSetName
character(len=300) :: line
allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt
610 FORMAT(A300)
inPart = .false.
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. &
( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. &
IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) &
) then
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type
if (t == 0_pInt) call IO_error(error_ID=910_pInt,ext_msg='mesh_abaqus_build_elements')
c = IO_countDataLines(myUnit)
do i = 1_pInt,c
backspace(myUnit)
enddo
do i = 1_pInt,c
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks) ! limit to 64 nodes max
e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt))
if (e /= 0_pInt) then ! disregard non CP elems
mesh_element(1,e) = IO_intValue(line,myPos,1_pInt) ! FE id
mesh_element(2,e) = t ! elem type
forall (j=1_pInt:FE_Nnodes(FE_geomtype(t))) &
mesh_element(4_pInt+j,e) = IO_intValue(line,myPos,1_pInt+j) ! copy FE ids of nodes to position 5:
call IO_skipChunks(myUnit,FE_NoriginalNodes(t)-(myPos(1_pInt)-1_pInt)) ! read on (even multiple lines) if FE_NoriginalNodes exceeds required node count
endif
enddo
endif
enddo
620 rewind(myUnit) ! just in case "*material" definitions apear before "*element"
materialFound = .false.
do
read (myUnit,610,END=630) line
myPos = IO_stringPos(line,maxNchunks)
select case ( IO_lc(IO_StringValue(line,myPos,1_pInt)))
case('*material')
materialName = trim(IO_extractValue(IO_lc(IO_StringValue(line,myPos,2_pInt)),'name')) ! extract name=value
materialFound = materialName /= '' ! valid name?
case('*user')
if ( IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. &
materialFound ) then
read (myUnit,610,END=630) line ! read homogenization and microstructure
myPos(1:1+2*2) = IO_stringPos(line,2_pInt)
homog = nint(IO_floatValue(line,myPos,1_pInt),pInt)
micro = nint(IO_floatValue(line,myPos,2_pInt),pInt)
do i = 1_pInt,mesh_Nmaterials ! look thru material names
if (materialName == mesh_nameMaterial(i)) then ! found one
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
do j = 1_pInt,mesh_mapElemSet(1,k)
e = mesh_FEasCP('elem',mesh_mapElemSet(1+j,k))
mesh_element(3,e) = homog ! store homogenization
mesh_element(4,e) = micro ! store microstructure
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),homog)
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),micro)
enddo
endif
enddo
endif
enddo
materialFound = .false.
endif
endselect
enddo
630 end subroutine mesh_abaqus_build_elements
#endif
!********************************************************************
! get any additional damask options from input file
!
! mesh_periodicSurface
!********************************************************************
subroutine mesh_get_damaskOptions(myUnit)
use IO, only: &
IO_lc, &
IO_stringValue, &
IO_stringPos
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: maxNchunks = 5_pInt
integer(pInt), dimension (1+2*maxNchunks) :: myPos
integer(pInt) chunk, Nchunks
character(len=300) :: line, damaskOption, v
#ifndef Spectral
character(len=300) :: keyword
#endif
mesh_periodicSurface = .false.
610 FORMAT(A300)
#ifdef Marc
keyword = '$damask'
#endif
#ifdef Abaqus
keyword = '**damask'
#endif
rewind(myUnit)
do
read (myUnit,610,END=620) line
myPos = IO_stringPos(line,maxNchunks)
Nchunks = myPos(1)
#ifndef Spectral
if (IO_lc(IO_stringValue(line,myPos,1_pInt)) == keyword .and. Nchunks > 1_pInt) then ! found keyword for damask option and there is at least one more chunk to read
damaskOption = IO_lc(IO_stringValue(line,myPos,2_pInt))
select case(damaskOption)
case('periodic') ! damask Option that allows to specify periodic fluxes
do chunk = 3_pInt,Nchunks ! loop through chunks (skipping the keyword)
v = IO_lc(IO_stringValue(line,myPos,chunk)) ! chunk matches keyvalues x,y, or z?
mesh_periodicSurface(1) = mesh_periodicSurface(1) .or. v == 'x'
mesh_periodicSurface(2) = mesh_periodicSurface(2) .or. v == 'y'
mesh_periodicSurface(3) = mesh_periodicSurface(3) .or. v == 'z'
enddo
endselect
endif
#else
damaskOption = IO_lc(IO_stringValue(line,myPos,1_pInt))
select case(damaskOption)
case('periodic') ! damask Option that allows to specify periodic fluxes
do chunk = 2_pInt,Nchunks ! loop through chunks (skipping the keyword)
v = IO_lc(IO_stringValue(line,myPos,chunk)) ! chunk matches keyvalues x,y, or z?
mesh_periodicSurface(1) = mesh_periodicSurface(1) .or. v == 'x'
mesh_periodicSurface(2) = mesh_periodicSurface(2) .or. v == 'y'
mesh_periodicSurface(3) = mesh_periodicSurface(3) .or. v == 'z'
enddo
endselect
#endif
enddo
620 end subroutine mesh_get_damaskOptions
!***********************************************************
! calculation of IP interface areas
!
! allocate globals
! _ipArea, _ipAreaNormal
!***********************************************************
subroutine mesh_build_ipAreas
use math, only: math_vectorproduct
implicit none
integer(pInt) :: e,f,t,i,j,n
integer(pInt), parameter :: Ntriangles = FE_NipFaceNodes-2_pInt ! each interface is made up of this many triangles
real(pReal), dimension (3,FE_NipFaceNodes) :: nPos ! coordinates of nodes on IP face
real(pReal), dimension(3,Ntriangles,FE_NipFaceNodes) :: normal
real(pReal), dimension(Ntriangles,FE_NipFaceNodes) :: area
allocate(mesh_ipArea(mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipArea = 0.0_pReal
allocate(mesh_ipAreaNormal(3_pInt,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) ; mesh_ipAreaNormal = 0.0_pReal
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
do f = 1_pInt,FE_NipNeighbors(t) ! loop over interfaces of IP
select case (FE_dimension(t)) ! treat (1D), 2D, and 3D element types differently
case (2)
forall (n = 1:2) nPos(1:3,n) = mesh_subNodeCoord(1:3,FE_subNodeOnIPFace(n,f,i,t),e)
mesh_ipAreaNormal(1,f,i,e) = nPos(2,2) - nPos(2,1) ! x_normal = y_connectingVector
mesh_ipAreaNormal(2,f,i,e) = -(nPos(1,2) - nPos(1,1)) ! y_normal = -x_connectingVector
mesh_ipArea(f,i,e) = sqrt(sum(mesh_ipAreaNormal(1:3,f,i,e)*mesh_ipAreaNormal(1:3,f,i,e))) ! and area
mesh_ipAreaNormal(1:3,f,i,e) = mesh_ipAreaNormal(1:3,f,i,e) / mesh_ipArea(f,i,e) ! have unit normal
case (3)
forall (n = 1_pInt:FE_NipFaceNodes) nPos(1:3,n) = mesh_subNodeCoord(1:3,FE_subNodeOnIPFace(n,f,i,t),e)
forall (n = 1_pInt:FE_NipFaceNodes, j = 1_pInt:Ntriangles) ! start at each interface node and build valid triangles to cover interface
normal(1:3,j,n) = math_vectorproduct(nPos(1:3,1_pInt+mod(n+j-1_pInt,FE_NipFaceNodes)) - nPos(1:3,n), & ! calc their normal vectors
nPos(1:3,1_pInt+mod(n+j-0_pInt,FE_NipFaceNodes)) - nPos(1:3,n))
area(j,n) = sqrt(sum(normal(1:3,j,n)*normal(1:3,j,n))) ! and area
end forall
forall (n = 1_pInt:FE_NipFaceNodes, j = 1_pInt:Ntriangles, area(j,n) > 0.0_pReal) &
normal(1:3,j,n) = normal(1:3,j,n) / area(j,n) ! have each normal of unit length
mesh_ipArea(f,i,e) = sum(area) / (FE_NipFaceNodes*2.0_pReal) ! vector product gives area of parallelograms instead of triangles
mesh_ipAreaNormal(1:3,f,i,e) = sum(sum(normal,3),2)/ &
max(1.0_pReal,real(count(area > 0.0_pReal),pReal)) ! average of all valid normals (not necessarily unit length---beware!!/fix?)
end select
enddo
enddo
enddo
end subroutine mesh_build_ipAreas
!***********************************************************
! assignment of twin nodes for each cp node
!
! allocate globals
! _nodeTwins
!***********************************************************
subroutine mesh_build_nodeTwins
implicit none
integer(pInt) dir, & ! direction of periodicity
node, &
minimumNode, &
maximumNode, &
n1, &
n2
integer(pInt), dimension(mesh_Nnodes+1) :: minimumNodes, maximumNodes ! list of surface nodes (minimum and maximum coordinate value) with first entry giving the number of nodes
real(pReal) minCoord, maxCoord, & ! extreme positions in one dimension
tolerance ! tolerance below which positions are assumed identical
real(pReal), dimension(3) :: distance ! distance between two nodes in all three coordinates
logical, dimension(mesh_Nnodes) :: unpaired
allocate(mesh_nodeTwins(3,mesh_Nnodes))
mesh_nodeTwins = 0_pInt
tolerance = 0.001_pReal * minval(mesh_ipVolume) ** 0.333_pReal
do dir = 1_pInt,3_pInt ! check periodicity in directions of x,y,z
if (mesh_periodicSurface(dir)) then ! only if periodicity is requested
!*** find out which nodes sit on the surface
!*** and have a minimum or maximum position in this dimension
minimumNodes = 0_pInt
maximumNodes = 0_pInt
minCoord = minval(mesh_node0(dir,:))
maxCoord = maxval(mesh_node0(dir,:))
do node = 1_pInt,mesh_Nnodes ! loop through all nodes and find surface nodes
if (abs(mesh_node0(dir,node) - minCoord) <= tolerance) then
minimumNodes(1) = minimumNodes(1) + 1_pInt
minimumNodes(minimumNodes(1)+1_pInt) = node
elseif (abs(mesh_node0(dir,node) - maxCoord) <= tolerance) then
maximumNodes(1) = maximumNodes(1) + 1_pInt
maximumNodes(maximumNodes(1)+1_pInt) = node
endif
enddo
!*** find the corresponding node on the other side with the same position in this dimension
unpaired = .true.
do n1 = 1_pInt,minimumNodes(1)
minimumNode = minimumNodes(n1+1_pInt)
if (unpaired(minimumNode)) then
do n2 = 1_pInt,maximumNodes(1)
maximumNode = maximumNodes(n2+1_pInt)
distance = abs(mesh_node0(:,minimumNode) - mesh_node0(:,maximumNode))
if (sum(distance) - distance(dir) <= tolerance) then ! minimum possible distance (within tolerance)
mesh_nodeTwins(dir,minimumNode) = maximumNode
mesh_nodeTwins(dir,maximumNode) = minimumNode
unpaired(maximumNode) = .false. ! remember this node, we don't have to look for his partner again
exit
endif
enddo
endif
enddo
endif
enddo
end subroutine mesh_build_nodeTwins
!********************************************************************
! get maximum count of shared elements among cpElements and
! build list of elements shared by each node in mesh
!
! _maxNsharedElems
! _sharedElem
!********************************************************************
subroutine mesh_build_sharedElems
implicit none
integer(pint) e, & ! element index
t, & ! element type
node, & ! CP node index
j, & ! node index per element
myDim, & ! dimension index
nodeTwin ! node twin in the specified dimension
integer(pInt), dimension (mesh_Nnodes) :: node_count
integer(pInt), dimension (:), allocatable :: node_seen
allocate(node_seen(maxval(FE_Nnodes)))
node_count = 0_pInt
do e = 1_pInt,mesh_NcpElems
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
node_seen = 0_pInt ! reset node duplicates
do j = 1_pInt,FE_Nnodes(t) ! check each node of element
node = mesh_FEasCP('node',mesh_element(4+j,e)) ! translate to internal (consecutive) numbering
if (all(node_seen /= node)) then
node_count(node) = node_count(node) + 1_pInt ! if FE node not yet encountered -> count it
do myDim = 1_pInt,3_pInt ! check in each dimension...
nodeTwin = mesh_nodeTwins(myDim,node)
if (nodeTwin > 0_pInt) & ! if I am a twin of some node...
node_count(nodeTwin) = node_count(nodeTwin) + 1_pInt ! -> count me again for the twin node
enddo
endif
node_seen(j) = node ! remember this node to be counted already
enddo
enddo
mesh_maxNsharedElems = int(maxval(node_count),pInt) ! most shared node
allocate(mesh_sharedElem(1+mesh_maxNsharedElems,mesh_Nnodes))
mesh_sharedElem = 0_pInt
do e = 1_pInt,mesh_NcpElems
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
node_seen = 0_pInt
do j = 1_pInt,FE_Nnodes(t)
node = mesh_FEasCP('node',mesh_element(4_pInt+j,e))
if (all(node_seen /= node)) then
mesh_sharedElem(1,node) = mesh_sharedElem(1,node) + 1_pInt ! count for each node the connected elements
mesh_sharedElem(mesh_sharedElem(1,node)+1_pInt,node) = e ! store the respective element id
do myDim = 1_pInt,3_pInt ! check in each dimension...
nodeTwin = mesh_nodeTwins(myDim,node)
if (nodeTwin > 0_pInt) then ! if i am a twin of some node...
mesh_sharedElem(1,nodeTwin) = mesh_sharedElem(1,nodeTwin) + 1_pInt ! ...count me again for the twin
mesh_sharedElem(mesh_sharedElem(1,nodeTwin)+1,nodeTwin) = e ! store the respective element id
endif
enddo
endif
node_seen(j) = node
enddo
enddo
deallocate(node_seen)
end subroutine mesh_build_sharedElems
!***********************************************************
! build up of IP neighborhood
!
! allocate globals
! _ipNeighborhood
!***********************************************************
subroutine mesh_build_ipNeighborhood
use math, only: math_mul3x3
implicit none
integer(pInt) myElem, & ! my CP element index
myIP, &
myType, & ! my element type
myFace, &
neighbor, & ! neighor index
neighboringIPkey, & ! positive integer indicating the neighboring IP (for intra-element) and negative integer indicating the face towards neighbor (for neighboring element)
candidateIP, &
neighboringType, & ! element type of neighbor
NlinkedNodes, & ! number of linked nodes
twin_of_linkedNode, & ! node twin of a specific linkedNode
NmatchingNodes, & ! number of matching nodes
dir, & ! direction of periodicity
matchingElem, & ! CP elem number of matching element
matchingFace, & ! face ID of matching element
a, anchor, &
neighboringIP, &
neighboringElem, &
pointingToMe
integer(pInt), dimension(FE_maxmaxNnodesAtIP) :: &
linkedNodes = 0_pInt, &
matchingNodes
logical checkTwins
allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems))
mesh_ipNeighborhood = 0_pInt
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
do neighbor = 1_pInt,FE_NipNeighbors(myType) ! loop over neighbors of IP
neighboringIPkey = FE_ipNeighbor(neighbor,myIP,myType)
!*** if the key is positive, the neighbor is inside the element
!*** that means, we have already found our neighboring IP
if (neighboringIPkey > 0_pInt) then
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = myElem
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = neighboringIPkey
!*** if the key is negative, the neighbor resides in a neighboring element
!*** that means, we have to look through the face indicated by the key and see which element is behind that face
elseif (neighboringIPkey < 0_pInt) then ! neighboring element's IP
myFace = -neighboringIPkey
call mesh_faceMatch(myElem, myFace, matchingElem, matchingFace) ! get face and CP elem id of face match
if (matchingElem > 0_pInt) then ! found match?
neighboringType = FE_geomtype(mesh_element(2,matchingElem))
!*** trivial solution if neighbor has only one IP
if (FE_Nips(neighboringType) == 1_pInt) then
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = 1_pInt
cycle
endif
!*** find those nodes which build the link to the neighbor
NlinkedNodes = 0_pInt
linkedNodes = 0_pInt
do a = 1_pInt,FE_maxNnodesAtIP(myType) ! figure my anchor nodes on connecting face
anchor = FE_nodesAtIP(a,myIP,myType)
if (anchor /= 0_pInt) then ! valid anchor node
if (any(FE_nodeOnFace(:,myFace,myType) == anchor)) then ! ip anchor sits on face?
NlinkedNodes = NlinkedNodes + 1_pInt
linkedNodes(NlinkedNodes) = &
mesh_FEasCP('node',mesh_element(4_pInt+anchor,myElem)) ! CP id of anchor node
else ! something went wrong with the linkage, since not all anchors sit on my face
NlinkedNodes = 0_pInt
linkedNodes = 0_pInt
exit
endif
endif
enddo
!*** loop through the ips of my neighbor
!*** and try to find an ip with matching nodes
!*** also try to match with node twins
checkCandidateIP: do candidateIP = 1_pInt,FE_Nips(neighboringType)
NmatchingNodes = 0_pInt
matchingNodes = 0_pInt
do a = 1_pInt,FE_maxNnodesAtIP(neighboringType) ! check each anchor node of that ip
anchor = FE_nodesAtIP(a,candidateIP,neighboringType)
if (anchor /= 0_pInt) then ! valid anchor node
if (any(FE_nodeOnFace(:,matchingFace,neighboringType) == anchor)) then ! sits on matching face?
NmatchingNodes = NmatchingNodes + 1_pInt
matchingNodes(NmatchingNodes) = &
mesh_FEasCP('node',mesh_element(4+anchor,matchingElem)) ! CP id of neighbor's anchor node
else ! no matching, because not all nodes sit on the matching face
NmatchingNodes = 0_pInt
matchingNodes = 0_pInt
exit
endif
endif
enddo
if (NmatchingNodes /= NlinkedNodes) & ! this ip has wrong count of anchors on face
cycle checkCandidateIP
!*** check "normal" nodes whether they match or not
checkTwins = .false.
do a = 1_pInt,NlinkedNodes
if (all(matchingNodes /= linkedNodes(a))) then ! this linkedNode does not match any matchingNode
checkTwins = .true.
exit ! no need to search further
endif
enddo
!*** if no match found, then also check node twins
if(checkTwins) then
dir = int(maxloc(abs(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem)),1),pInt) ! check for twins only in direction of the surface normal
do a = 1_pInt,NlinkedNodes
twin_of_linkedNode = mesh_nodeTwins(dir,linkedNodes(a))
if (twin_of_linkedNode == 0_pInt .or. & ! twin of linkedNode does not exist...
all(matchingNodes /= twin_of_linkedNode)) then ! ... or it does not match any matchingNode
cycle checkCandidateIP ! ... then check next candidateIP
endif
enddo
endif
!*** we found a match !!!
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = candidateIP
exit checkCandidateIP
enddo checkCandidateIP
endif ! end of valid external matching
endif ! end of internal/external matching
enddo
enddo
enddo
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
do neighbor = 1_pInt,FE_NipNeighbors(myType) ! loop over neighbors of IP
neighboringElem = mesh_ipNeighborhood(1,neighbor,myIP,myElem)
neighboringIP = mesh_ipNeighborhood(2,neighbor,myIP,myElem)
if (neighboringElem > 0_pInt .and. neighboringIP > 0_pInt) then ! if neighbor exists ...
neighboringType = FE_geomtype(mesh_element(2,neighboringElem))
do pointingToMe = 1_pInt,FE_NipNeighbors(neighboringType) ! find neighboring index that points from my neighbor to myself
if ( myElem == mesh_ipNeighborhood(1,pointingToMe,neighboringIP,neighboringElem) &
.and. myIP == mesh_ipNeighborhood(2,pointingToMe,neighboringIP,neighboringElem)) then ! possible candidate
if (math_mul3x3(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem),&
mesh_ipAreaNormal(1:3,pointingToMe,neighboringIP,neighboringElem)) < 0.0_pReal) then ! area normals have opposite orientation (we have to check that because of special case for single element with two ips and periodicity. In this case the neighbor is identical in two different directions.)
mesh_ipNeighborhood(3,neighbor,myIP,myElem) = pointingToMe ! found match
exit ! so no need to search further
endif
endif
enddo
endif
enddo
enddo
enddo
end subroutine mesh_build_ipNeighborhood
!***********************************************************
! write statistics regarding input file parsing
! to the output file
!
!***********************************************************
subroutine mesh_tell_statistics
use math, only: math_range
use IO, only: IO_error
use debug, only: debug_level, &
debug_mesh, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i
implicit none
integer(pInt), dimension (:,:), allocatable :: mesh_HomogMicro
character(len=64) :: myFmt
integer(pInt) :: i,e,n,f,t, myDebug
myDebug = debug_level(debug_mesh)
if (mesh_maxValStateVar(1) < 1_pInt) call IO_error(error_ID=170_pInt) ! no homogenization specified
if (mesh_maxValStateVar(2) < 1_pInt) call IO_error(error_ID=180_pInt) ! no microstructure specified
allocate (mesh_HomogMicro(mesh_maxValStateVar(1),mesh_maxValStateVar(2))); mesh_HomogMicro = 0_pInt
do e = 1_pInt,mesh_NcpElems
if (mesh_element(3,e) < 1_pInt) call IO_error(error_ID=170_pInt,e=e) ! no homogenization specified
if (mesh_element(4,e) < 1_pInt) call IO_error(error_ID=180_pInt,e=e) ! no microstructure specified
mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) = &
mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) + 1_pInt ! count combinations of homogenization and microstructure
enddo
!$OMP CRITICAL (write2out)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
write(6,'(/,a,/)') ' Input Parser: STATISTICS'
write(6,*) mesh_Nelems, ' : total number of elements in mesh'
write(6,*) mesh_NcpElems, ' : total number of CP elements in mesh'
write(6,*) mesh_Nnodes, ' : total number of nodes in mesh'
write(6,*) mesh_maxNnodes, ' : max number of nodes in any CP element'
write(6,*) mesh_maxNips, ' : max number of IPs in any CP element'
write(6,*) mesh_maxNipNeighbors, ' : max number of IP neighbors in any CP element'
write(6,*) mesh_maxNsubNodes, ' : max number of (additional) subnodes in any CP element'
write(6,*) mesh_maxNsharedElems, ' : max number of CP elements sharing a node'
write(6,'(/,a,/)') ' Input Parser: HOMOGENIZATION/MICROSTRUCTURE'
write(6,*) mesh_maxValStateVar(1), ' : maximum homogenization index'
write(6,*) mesh_maxValStateVar(2), ' : maximum microstructure index'
write(6,*)
write (myFmt,'(a,i32.32,a)') '(9x,a2,1x,',mesh_maxValStateVar(2),'(i8))'
write(6,myFmt) '+-',math_range(mesh_maxValStateVar(2))
write (myFmt,'(a,i32.32,a)') '(i8,1x,a2,1x,',mesh_maxValStateVar(2),'(i8))'
do i=1_pInt,mesh_maxValStateVar(1) ! loop over all (possibly assigned) homogenizations
write(6,myFmt) i,'| ',mesh_HomogMicro(i,:) ! loop over all (possibly assigned) microstructures
enddo
write(6,'(/,a,/)') ' Input Parser: ADDITIONAL MPIE OPTIONS'
write(6,*) 'periodic surface : ', mesh_periodicSurface
write(6,*)
flush(6)
endif
if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then
write(6,*)
write(6,*) 'Input Parser: SUBNODE COORDINATES'
write(6,*)
write(6,'(a8,1x,a5,1x,2(a15,1x),a20,3(1x,a12))')&
'elem','IP','IP neighbor','IPFaceNodes','subNodeOnIPFace','x','y','z'
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
do f = 1_pInt,FE_NipNeighbors(t) ! loop over interfaces of IP
do n = 1_pInt,FE_NipFaceNodes ! loop over nodes on interface
write(6,'(i8,1x,i5,2(1x,i15),1x,i20,3(1x,f12.8))') e,i,f,n,FE_subNodeOnIPFace(n,f,i,t),&
mesh_subNodeCoord(1,FE_subNodeOnIPFace(n,f,i,t),e),&
mesh_subNodeCoord(2,FE_subNodeOnIPFace(n,f,i,t),e),&
mesh_subNodeCoord(3,FE_subNodeOnIPFace(n,f,i,t),e)
enddo
enddo
enddo
enddo
write(6,*)
write(6,*) 'Input Parser: IP COORDINATES'
write(6,'(a8,1x,a5,3(1x,a12))') 'elem','IP','x','y','z'
do e = 1_pInt,mesh_NcpElems
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
write(6,'(i8,1x,i5,3(1x,f12.8))') e, i, mesh_ipCoordinates(:,i,e)
enddo
enddo
write(6,*)
write(6,*) 'Input Parser: ELEMENT VOLUME'
write(6,*)
write(6,'(a13,1x,e15.8)') 'total volume', sum(mesh_ipVolume)
write(6,*)
write(6,'(a8,1x,a5,1x,a15,1x,a5,1x,a15,1x,a16)') 'elem','IP','volume','face','area','-- normal --'
do e = 1_pInt,mesh_NcpElems
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
do i = 1_pInt,FE_Nips(t)
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
write(6,'(i8,1x,i5,1x,e15.8)') e,i,mesh_IPvolume(i,e)
do f = 1_pInt,FE_NipNeighbors(t)
write(6,'(i33,1x,e15.8,1x,3(f6.3,1x))') f,mesh_ipArea(f,i,e),mesh_ipAreaNormal(:,f,i,e)
enddo
enddo
enddo
write(6,*)
write(6,*) 'Input Parser: NODE TWINS'
write(6,*)
write(6,'(a6,3(3x,a6))') ' node','twin_x','twin_y','twin_z'
do n = 1_pInt,mesh_Nnodes ! loop over cpNodes
if (debug_e <= mesh_NcpElems) then
if (any(mesh_element(5:,debug_e) == n)) then
write(6,'(i6,3(3x,i6))') n, mesh_nodeTwins(1:3,n)
endif
endif
enddo
write(6,*)
write(6,*) 'Input Parser: IP NEIGHBORHOOD'
write(6,*)
write(6,'(a8,1x,a10,1x,a10,1x,a3,1x,a13,1x,a13)') 'elem','IP','neighbor','','elemNeighbor','ipNeighbor'
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle
t = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
do i = 1_pInt,FE_Nips(t) ! loop over IPs of elem
if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle
do n = 1_pInt,FE_NipNeighbors(t) ! loop over neighbors of IP
write(6,'(i8,1x,i10,1x,i10,1x,a3,1x,i13,1x,i13)') e,i,n,'-->',mesh_ipNeighborhood(1,n,i,e),mesh_ipNeighborhood(2,n,i,e)
enddo
enddo
enddo
endif
!$OMP END CRITICAL (write2out)
deallocate(mesh_HomogMicro)
end subroutine mesh_tell_statistics
!***********************************************************
! mapping of FE element types to internal representation
!***********************************************************
integer(pInt) function FE_mapElemtype(what)
use IO, only: IO_lc
implicit none
character(len=*), intent(in) :: what
select case (IO_lc(what))
case ( '6')
FE_mapElemtype = 1_pInt ! Two-dimensional Plane Strain Triangle
case ( '155', &
'125', &
'128')
FE_mapElemtype = 2_pInt ! Two-dimensional Plane Strain triangle (155: cubic shape function, 125/128: second order isoparametric)
case ( '11', &
'cpe4')
FE_mapElemtype = 3_pInt ! Arbitrary Quadrilateral Plane-strain
case ( '27', &
'cpe8')
FE_mapElemtype = 4_pInt ! Plane Strain, Eight-node Distorted Quadrilateral
case ('134', &
'c3d4')
FE_mapElemtype = 5_pInt ! Three-dimensional Four-node Tetrahedron
case ('157')
FE_mapElemtype = 6_pInt ! Three-dimensional, Low-order, Tetrahedron, Herrmann Formulations
case ('127')
FE_mapElemtype = 7_pInt ! Three-dimensional Ten-node Tetrahedron
case ('136', &
'c3d6')
FE_mapElemtype = 8_pInt ! Three-dimensional Arbitrarily Distorted Pentahedral
case ( '117', &
'123', &
'c3d8r')
FE_mapElemtype = 9_pInt ! Three-dimensional Arbitrarily Distorted linear hexahedral with reduced integration
case ( '7', &
'c3d8')
FE_mapElemtype = 10_pInt ! Three-dimensional Arbitrarily Distorted Brick
case ( '57', &
'c3d20r')
FE_mapElemtype = 11_pInt ! Three-dimensional Arbitrarily Distorted quad hexahedral with reduced integration
case ( '21', &
'c3d20')
FE_mapElemtype = 12_pInt ! Three-dimensional Arbitrarily Distorted quadratic hexahedral
case default
FE_mapElemtype = 0_pInt ! unknown element --> should raise an error upstream..!
end select
end function FE_mapElemtype
!***********************************************************
! find face-matching element of same type
!***********************************************************
subroutine mesh_faceMatch(elem, face ,matchingElem, matchingFace)
implicit none
!*** output variables
integer(pInt), intent(out) :: matchingElem, & ! matching CP element ID
matchingFace ! matching FE face ID
!*** input variables
integer(pInt), intent(in) :: face, & ! FE face ID
elem ! FE elem ID
!*** local variables
integer(pInt), dimension(FE_NfaceNodes(face,FE_geomtype(mesh_element(2,elem)))) :: &
myFaceNodes ! global node ids on my face
integer(pInt) :: myType, &
candidateType, &
candidateElem, &
candidateFace, &
candidateFaceNode, &
minNsharedElems, &
NsharedElems, &
lonelyNode = 0_pInt, &
i, &
n, &
dir ! periodicity direction
integer(pInt), dimension(:), allocatable :: element_seen
logical checkTwins
matchingElem = 0_pInt
matchingFace = 0_pInt
minNsharedElems = mesh_maxNsharedElems + 1_pInt ! init to worst case
myType = FE_geomtype(mesh_element(2_pInt,elem)) ! figure elemGeomType
do n = 1_pInt,FE_NfaceNodes(face,myType) ! loop over nodes on face
myFaceNodes(n) = mesh_FEasCP('node',mesh_element(4_pInt+FE_nodeOnFace(n,face,myType),elem)) ! CP id of face node
NsharedElems = mesh_sharedElem(1_pInt,myFaceNodes(n)) ! figure # shared elements for this node
if (NsharedElems < minNsharedElems) then
minNsharedElems = NsharedElems ! remember min # shared elems
lonelyNode = n ! remember most lonely node
endif
enddo
allocate(element_seen(minNsharedElems))
element_seen = 0_pInt
checkCandidate: do i = 1_pInt,minNsharedElems ! iterate over lonelyNode's shared elements
candidateElem = mesh_sharedElem(1_pInt+i,myFaceNodes(lonelyNode)) ! present candidate elem
if (all(element_seen /= candidateElem)) then ! element seen for the first time?
element_seen(i) = candidateElem
candidateType = FE_geomtype(mesh_element(2_pInt,candidateElem)) ! figure elemGeomType of candidate
checkCandidateFace: do candidateFace = 1_pInt,FE_maxNipNeighbors ! check each face of candidate
if (FE_NfaceNodes(candidateFace,candidateType) /= FE_NfaceNodes(face,myType) & ! incompatible face
.or. (candidateElem == elem .and. candidateFace == face)) then ! this is my face
cycle checkCandidateFace
endif
checkTwins = .false.
do n = 1_pInt,FE_NfaceNodes(candidateFace,candidateType) ! loop through nodes on face
candidateFaceNode = mesh_FEasCP('node', mesh_element(4_pInt+FE_nodeOnFace(n,candidateFace,candidateType),candidateElem))
if (all(myFaceNodes /= candidateFaceNode)) then ! candidate node does not match any of my face nodes
checkTwins = .true. ! perhaps the twin nodes do match
exit
endif
enddo
if(checkTwins) then
checkCandidateFaceTwins: do dir = 1_pInt,3_pInt
do n = 1_pInt,FE_NfaceNodes(candidateFace,candidateType) ! loop through nodes on face
candidateFaceNode = mesh_FEasCP('node', mesh_element(4+FE_nodeOnFace(n,candidateFace,candidateType),candidateElem))
if (all(myFaceNodes /= mesh_nodeTwins(dir,candidateFaceNode))) then ! node twin does not match either
if (dir == 3_pInt) then
cycle checkCandidateFace
else
cycle checkCandidateFaceTwins ! try twins in next dimension
endif
endif
enddo
exit checkCandidateFaceTwins
enddo checkCandidateFaceTwins
endif
matchingFace = candidateFace
matchingElem = candidateElem
exit checkCandidate ! found my matching candidate
enddo checkCandidateFace
endif
enddo checkCandidate
deallocate(element_seen)
end subroutine mesh_faceMatch
!********************************************************************
! get properties of different types of finite elements
!
! assign globals:
! FE_nodesAtIP, FE_ipNeighbor, FE_subNodeParent, FE_subNodeOnIPFace
!********************************************************************
subroutine mesh_build_FEdata
implicit none
integer(pInt) :: me
allocate(FE_nodesAtIP(FE_maxmaxNnodesAtIP,FE_maxNips,FE_Ngeomtypes)) ; FE_nodesAtIP = 0_pInt
allocate(FE_ipNeighbor(FE_maxNipNeighbors,FE_maxNips,FE_Ngeomtypes)) ; FE_ipNeighbor = 0_pInt
allocate(FE_subNodeParent(FE_maxNips,FE_maxNsubNodes,FE_Ngeomtypes)) ; FE_subNodeParent = 0_pInt
allocate(FE_subNodeOnIPFace(FE_NipFaceNodes,FE_maxNipNeighbors,FE_maxNips,FE_Ngeomtypes)) ; FE_subNodeOnIPFace = 0_pInt
! fill FE_nodesAtIP with data
me = 0_pInt
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
reshape(int([&
1,2,3 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
1, &
2, &
3 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
1, &
2, &
4, &
3 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
1,0, &
1,2, &
2,0, &
1,4, &
0,0, &
2,3, &
4,0, &
3,4, &
3,0 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
reshape(int([&
1,2,3,4 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
1, &
2, &
3, &
4 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
1, &
2, &
3, &
4, &
5, &
6 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
reshape(int([&
1,2,3,4,5,6,7,8 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
1, &
2, &
4, &
3, &
5, &
6, &
8, &
7 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
1,0, 0,0, &
1,2, 0,0, &
2,0, 0,0, &
1,4, 0,0, &
1,3, 2,4, &
2,3, 0,0, &
4,0, 0,0, &
3,4, 0,0, &
3,0, 0,0, &
1,5, 0,0, &
1,6, 2,5, &
2,6, 0,0, &
1,8, 4,5, &
0,0, 0,0, &
2,7, 3,6, &
4,8, 0,0, &
3,8, 4,7, &
3,7, 0,0, &
5,0, 0,0, &
5,6, 0,0, &
6,0, 0,0, &
5,8, 0,0, &
5,7, 6,8, &
6,7, 0,0, &
8,0, 0,0, &
7,8, 0,0, &
7,0, 0,0 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
! *** FE_ipNeighbor ***
! is a list of the neighborhood of each IP.
! It is sorted in (local) +x,-x, +y,-y, +z,-z direction.
! Positive integers denote an intra-FE IP identifier.
! Negative integers denote the interface behind which the neighboring (extra-FE) IP will be located.
me = 0_pInt
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
reshape(int([&
-2,-3,-1 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
2,-3, 3,-1, &
-2, 1, 3,-1, &
2,-3,-2, 1 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
2,-4, 3,-1, &
-2, 1, 4,-1, &
4,-4,-3, 1, &
-2, 3,-3, 2 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
2,-4, 4,-1, &
3, 1, 5,-1, &
-2, 2, 6,-1, &
5,-4, 7, 1, &
6, 4, 8, 2, &
-2, 5, 9, 3, &
8,-4,-3, 4, &
9, 7,-3, 5, &
-2, 8,-3, 6 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
reshape(int([&
-1,-2,-3,-4 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
2,-4, 3,-2, 4,-1, &
-2, 1, 3,-2, 4,-1, &
2,-4,-3, 1, 4,-1, &
2,-4, 3,-2,-3, 1 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
2,-4, 3,-2, 4,-1, &
-3, 1, 3,-2, 5,-1, &
2,-4,-3, 1, 6,-1, &
5,-4, 6,-2,-5, 1, &
-3, 4, 6,-2,-5, 2, &
5,-4,-3, 4,-5, 3 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
reshape(int([&
-3,-5,-4,-2,-6,-1 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
2,-5, 3,-2, 5,-1, &
-3, 1, 4,-2, 6,-1, &
4,-5,-4, 1, 7,-1, &
-3, 3,-4, 2, 8,-1, &
6,-5, 7,-2,-6, 1, &
-3, 5, 8,-2,-6, 2, &
8,-5,-4, 5,-6, 3, &
-3, 7,-4, 6,-6, 4 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
2,-5, 4,-2,10,-1, &
3, 1, 5,-2,11,-1, &
-3, 2, 6,-2,12,-1, &
5,-5, 7, 1,13,-1, &
6, 4, 8, 2,14,-1, &
-3, 5, 9, 3,15,-1, &
8,-5,-4, 4,16,-1, &
9, 7,-4, 5,17,-1, &
-3, 8,-4, 6,18,-1, &
11,-5,13,-2,19, 1, &
12,10,14,-2,20, 2, &
-3,11,15,-2,21, 3, &
14,-5,16,10,22, 4, &
15,13,17,11,23, 5, &
-3,14,18,12,24, 6, &
17,-5,-4,13,25, 7, &
18,16,-4,14,26, 8, &
-3,17,-4,15,27, 9, &
20,-5,22,-2,-6,10, &
21,19,23,-2,-6,11, &
-3,20,24,-2,-6,12, &
23,-5,25,19,-6,13, &
24,22,26,20,-6,14, &
-3,23,27,21,-6,15, &
26,-5,-4,22,-6,16, &
27,25,-4,23,-6,17, &
-3,26,-4,24,-6,18 &
],pInt),[FE_NipNeighbors(me),FE_Nips(me)])
! *** FE_subNodeParent ***
! lists the group of nodes for which the center of gravity
! corresponds to the location of a each subnode.
! fill with 0.
! example: face-centered subnode with faceNodes 1,2,3,4 to be used in,
! e.g., a 8 IP grid, would be encoded:
! 1, 2, 3, 4, 0, 0, 0, 0
me = 0_pInt
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 6 (2D 3node 1ip) has no subnodes
0_pInt
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
1, 2, 0, &
2, 3, 0, &
3, 1, 0, &
1, 2, 3 &
],pInt),[FE_Nips(me),FE_NsubNodes(me)])
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
1, 2, 0, 0, &
2, 3, 0, 0, &
3, 4, 0, 0, &
4, 1, 0, 0, &
1, 2, 3, 4 &
],pInt),[FE_Nips(me),FE_NsubNodes(me)])
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
1, 1, 2, 0, 0, 0, 0, 0, 0, &
1, 2, 2, 0, 0, 0, 0, 0, 0, &
2, 2, 3, 0, 0, 0, 0, 0, 0, &
2, 3, 3, 0, 0, 0, 0, 0, 0, &
3, 3, 4, 0, 0, 0, 0, 0, 0, &
3, 4, 4, 0, 0, 0, 0, 0, 0, &
4, 4, 1, 0, 0, 0, 0, 0, 0, &
4, 1, 1, 0, 0, 0, 0, 0, 0, &
1, 1, 1, 1, 2, 2, 4, 4, 3, &
2, 2, 2, 2, 1, 1, 3, 3, 4, &
3, 3, 3, 3, 2, 2, 4, 4, 1, &
4, 4, 4, 4, 1, 1, 3, 3, 2 &
],pInt),[FE_Nips(me),FE_NsubNodes(me)])
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 134 (3D 4node 1ip) has no subnodes
0_pInt
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
1, 2, 0, 0, &
2, 3, 0, 0, &
3, 1, 0, 0, &
1, 4, 0, 0, &
2, 4, 0, 0, &
3, 4, 0, 0, &
1, 2, 3, 0, &
1, 2, 4, 0, &
2, 3, 4, 0, &
1, 3, 4, 0, &
1, 2, 3, 4 &
],pInt),[FE_Nips(me),FE_NsubNodes(me)])
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
1, 2, 0, 0, 0, 0, &
2, 3, 0, 0, 0, 0, &
3, 1, 0, 0, 0, 0, &
1, 4, 0, 0, 0, 0, &
2, 5, 0, 0, 0, 0, &
3, 6, 0, 0, 0, 0, &
4, 5, 0, 0, 0, 0, &
5, 6, 0, 0, 0, 0, &
6, 4, 0, 0, 0, 0, &
1, 2, 3, 0, 0, 0, &
1, 2, 4, 5, 0, 0, &
2, 3, 5, 6, 0, 0, &
1, 3, 4, 6, 0, 0, &
4, 5, 6, 0, 0, 0, &
1, 2, 3, 4, 5, 6 &
],pInt),[FE_Nips(me),FE_NsubNodes(me)])
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 117 (3D 8node 1ip) has no subnodes
0_pInt
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
1, 2, 0, 0, 0, 0, 0, 0, &
2, 3, 0, 0, 0, 0, 0, 0, &
3, 4, 0, 0, 0, 0, 0, 0, &
4, 1, 0, 0, 0, 0, 0, 0, &
1, 5, 0, 0, 0, 0, 0, 0, &
2, 6, 0, 0, 0, 0, 0, 0, &
3, 7, 0, 0, 0, 0, 0, 0, &
4, 8, 0, 0, 0, 0, 0, 0, &
5, 6, 0, 0, 0, 0, 0, 0, &
6, 7, 0, 0, 0, 0, 0, 0, &
7, 8, 0, 0, 0, 0, 0, 0, &
8, 5, 0, 0, 0, 0, 0, 0, &
1, 2, 3, 4, 0, 0, 0, 0, &
1, 2, 6, 5, 0, 0, 0, 0, &
2, 3, 7, 6, 0, 0, 0, 0, &
3, 4, 8, 7, 0, 0, 0, 0, &
1, 4, 8, 5, 0, 0, 0, 0, &
5, 6, 7, 8, 0, 0, 0, 0, &
1, 2, 3, 4, 5, 6, 7, 8 &
],pInt),[FE_Nips(me),FE_NsubNodes(me)])
me = me + 1_pInt
FE_subNodeParent(1:FE_Nips(me),1:FE_NsubNodes(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
1, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
1, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
2, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
2, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
3, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
4, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
1, 1, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
2, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
3, 3, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
4, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
1, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
2, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
3, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
4, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
5, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
5, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
6, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
6, 7, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
7, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
7, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
8, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
8, 5, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
1, 1, 1, 1, 2, 2, 4, 4, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
2, 2, 2, 2, 1, 1, 3, 3, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
3, 3, 3, 3, 2, 2, 4, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
4, 4, 4, 4, 1, 1, 3, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
1, 1, 1, 1, 2, 2, 5, 5, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
2, 2, 2, 2, 1, 1, 6, 6, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
2, 2, 2, 2, 3, 3, 6, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
3, 3, 3, 3, 2, 2, 7, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
3, 3, 3, 3, 4, 4, 7, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
4, 4, 4, 4, 3, 3, 8, 8, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
4, 4, 4, 4, 1, 1, 8, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
1, 1, 1, 1, 4, 4, 5, 5, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
5, 5, 5, 5, 1, 1, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
6, 6, 6, 6, 2, 2, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
6, 6, 6, 6, 2, 2, 7, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
7, 7, 7, 7, 3, 3, 6, 6, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
7, 7, 7, 7, 3, 3, 8, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
8, 8, 8, 8, 4, 4, 7, 7, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
8, 8, 8, 8, 4, 4, 5, 5, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
5, 5, 5, 5, 1, 1, 8, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
5, 5, 5, 5, 6, 6, 8, 8, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
6, 6, 6, 6, 5, 5, 7, 7, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
7, 7, 7, 7, 6, 6, 8, 8, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
8, 8, 8, 8, 5, 5, 7, 7, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 4, 5, 5, 5, 5, 3, 3, 6, 6, 8, 8, 7, &
2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 3, 3, 3, 3, 6, 6, 6, 6, 4, 4, 5, 5, 7, 7, 8, &
3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 4, 4, 4, 4, 7, 7, 7, 7, 1, 1, 6, 6, 8, 8, 5, &
4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 1, 1, 3, 3, 3, 3, 8, 8, 8, 8, 2, 2, 5, 5, 7, 7, 6, &
5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 6, 6, 6, 6, 8, 8, 8, 8, 2, 2, 4, 4, 7, 7, 3, &
6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2, 5, 5, 5, 5, 7, 7, 7, 7, 1, 1, 3, 3, 8, 8, 4, &
7, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3, 3, 6, 6, 6, 6, 8, 8, 8, 8, 2, 2, 4, 4, 5, 5, 1, &
8, 8, 8, 8, 8, 8, 8, 8, 4, 4, 4, 4, 5, 5, 5, 5, 7, 7, 7, 7, 1, 1, 3, 3, 6, 6, 2 &
],pInt),[FE_Nips(me),FE_NsubNodes(me)])
! *** FE_subNodeOnIPFace ***
! indicates which subnodes make up the interfaces enclosing the IP volume.
! The sorting convention is such that the outward pointing normal
! follows from a right-handed traversal of the face node list.
! For two-dimensional elements, which only have lines as "interface"
! one nevertheless has to specify each interface by a closed path,
! e.g., 1,2, 2,1, assuming the line connects nodes 1 and 2.
! This will result in zero ipVolume and interfaceArea, but is not
! detrimental at the moment since non-local constitutive laws are
! currently not foreseen in 2D cases.
me = 0_pInt
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
reshape(int([&
2, 3, 3, 2 , & ! 1
3, 1, 1, 3 , &
1, 2, 2, 1 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
4, 7, 7, 4 , & ! 1
6, 1, 1, 6 , &
7, 6, 6, 7 , &
1, 4, 4, 1 , &
2, 5, 5, 2 , & ! 2
7, 4, 4, 7 , &
5, 7, 7, 5 , &
4, 2, 2, 4 , &
7, 5, 5, 7 , & ! 3
3, 6, 6, 3 , &
5, 3, 3, 5 , &
6, 7, 7, 6 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
5, 9, 9, 5 , & ! 1
8, 1, 1, 8 , &
9, 8, 8, 9 , &
1, 5, 5, 1 , &
2, 6, 6, 2 , & ! 2
9, 5, 5, 9 , &
6, 9, 9, 6 , &
5, 2, 2, 5 , &
9, 7, 7, 9 , & ! 3
4, 8, 8, 4 , &
7, 4, 4, 7 , &
8, 9, 9, 8 , &
6, 3, 3, 6 , & ! 4
7, 9, 9, 7 , &
3, 7, 7, 3 , &
9, 6, 6, 9 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
5,13,13, 5 , & ! 1
12, 1, 1,12 , &
13,12,12,13 , &
1, 5, 5, 1 , &
6,14,14, 6 , & ! 2
13, 5, 5,13 , &
14,13,13,14 , &
5, 6, 6, 5 , &
2, 7, 7, 2 , & ! 3
14, 6, 6,14 , &
7,14,14, 7 , &
6, 2, 2, 6 , &
13,16,16,13 , & ! 4
11,12,12,11 , &
16,11,11,16 , &
12,13,13,12 , &
14,15,15,14 , & ! 5
16,13,13,16 , &
15,16,16,15 , &
13,14,14,13 , &
7, 8, 8, 7 , & ! 6
15,14,14,15 , &
8,15,15, 8 , &
14, 7, 7,14 , &
16,10,10,16 , & ! 7
4,11,11, 4 , &
10, 4, 4,10 , &
11,16,16,11 , &
15, 9, 9,15 , & ! 8
10,16,16,10 , &
9,10,10, 9 , &
16,15,15,16 , &
8, 3, 3, 8 , & ! 9
9,15,15, 9 , &
3, 9, 9, 3 , &
15, 8, 8,15 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
reshape(int([&
1, 1, 3, 2, & ! 1
1, 1, 2, 4, &
2, 2, 3, 4, &
1, 1, 4, 3 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
5,11,15,12 , & ! 1
1, 8,14, 7 , &
7,14,15,11 , &
1, 5,12, 8 , &
8,12,15,14 , &
1, 7,11, 5 , &
2, 6,13, 9 , & ! 2
5,12,15,11 , &
6,11,15,13 , &
2, 9,12, 5 , &
9,13,15,12 , &
2,13,11, 6 , &
6,13,15,11 , & ! 3
3, 7,14,10 , &
3,10,13, 6 , &
7,11,15,14 , &
13,10,14,15 , &
3, 6,11, 7 , &
9,12,15,13 , & ! 4
4,10,14, 8 , &
10,13,15,14 , &
4, 8,12, 9 , &
4, 9,13,10 , &
8,10,15,12 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
7,16,21,17, & ! 1
1,10,19, 9, &
9,19,21,16, &
1, 7,17,10, &
10,17,21,19, &
1, 9,16, 7, &
2, 8,18,11, & ! 2
7,17,21,16, &
8,16,21,18, &
2,11,17, 7, &
11,18,21,17, &
2, 7,16, 8, &
8,18,21,16, & ! 3
3, 9,19,12, &
3,12,18, 8, &
9,16,21,19, &
12,19,21,18, &
3, 8,16, 9, &
13,17,21,20, & ! 4
4,15,19,10, &
15,20,21,19, &
4,10,17,13, &
4,13,20,15, &
10,19,21,17, &
5,11,18,14, & ! 5
13,20,21,17, &
14,18,21,20, &
5,13,17,11, &
5,14,20,13, &
11,17,21,18, &
14,20,21,18, & ! 6
6,12,19,15, &
6,14,18,12, &
15,19,21,20, &
6,15,20,14, &
12,18,21,19 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
reshape(int([&
2, 3, 7, 6, & ! 1
1, 5, 8, 4, &
3, 4, 8, 7, &
1, 2, 6, 5, &
5, 6, 7, 8, &
1, 4, 3, 2 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
9,21,27,22, & ! 1
1,13,25,12, &
12,25,27,21, &
1, 9,22,13, &
13,22,27,25, &
1,12,21, 9, &
2,10,23,14, & ! 2
9,22,27,21, &
10,21,27,23, &
2,14,22, 9, &
14,23,27,22, &
2, 9,21,10, &
11,24,27,21, & ! 3
4,12,25,16, &
4,16,24,11, &
12,21,27,25, &
16,25,27,24, &
4,11,21,12, &
3,15,23,10, & ! 4
11,21,27,24, &
3,11,24,15, &
10,23,27,21, &
15,24,27,23, &
3,10,21,11, &
17,22,27,26, & ! 5
5,20,25,13, &
20,26,27,25, &
5,13,22,17, &
5,17,26,20, &
13,25,27,22, &
6,14,23,18, & ! 6
17,26,27,22, &
18,23,27,26, &
6,17,22,14, &
6,18,26,17, &
14,22,27,23, &
19,26,27,24, & ! 7
8,16,25,20, &
8,19,24,16, &
20,25,27,26, &
8,20,26,19, &
16,24,27,25, &
7,18,23,15, & ! 8
19,24,27,26, &
7,15,24,19, &
18,26,27,23, &
7,19,26,18, &
15,23,27,24 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
me = me + 1_pInt
FE_subNodeOnIPFace(1:FE_NipFaceNodes,1:FE_NipNeighbors(me),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
9,33,57,37, & ! 1
1,17,44,16, &
33,16,44,57, &
1, 9,37,17, &
17,37,57,44, &
1,16,33, 9, &
10,34,58,38, & ! 2
9,37,57,33, &
34,33,57,58, &
9,10,38,37, &
37,38,58,57, &
9,33,34,10, &
2,11,39,18, & ! 3
10,38,58,34, &
11,34,58,39, &
10, 2,18,38, &
38,18,39,58, &
10,34,11, 2, &
33,36,60,57, & ! 4
16,44,43,15, &
36,15,43,60, &
16,33,57,44, &
44,57,60,43, &
16,15,36,33, &
34,35,59,58, & ! 5
33,57,60,36, &
35,36,60,59, &
33,34,58,57, &
57,58,59,60, &
33,36,35,34, &
11,12,40,39, & ! 6
34,58,59,35, &
12,35,59,40, &
34,11,39,58, &
58,39,40,59, &
34,35,12,11, &
36,14,42,60, & ! 7
15,43,20, 4, &
14, 4,20,42, &
15,36,60,43, &
43,60,42,20, &
15, 4,14,36, &
35,13,41,59, & ! 8
36,60,42,14, &
13,14,42,41, &
36,35,59,60, &
60,59,41,42, &
36,14,13,35, &
12, 3,19,40, & ! 9
35,59,41,13, &
3,13,41,19, &
35,12,40,59, &
59,40,19,41, &
35,13, 3,12, &
37,57,61,45, & ! 10
17,21,52,44, &
57,44,52,61, &
17,37,45,21, &
21,45,61,52, &
17,44,57,37, &
38,58,62,46, & ! 11
37,45,61,57, &
58,57,61,62, &
37,38,46,45, &
45,46,62,61, &
37,57,58,38, &
18,39,47,22, & ! 12
38,46,62,58, &
39,58,62,47, &
38,18,22,46, &
46,22,47,62, &
38,58,39,18, &
57,60,64,61, & ! 13
44,52,51,43, &
60,43,51,64, &
44,57,61,52, &
52,61,64,51, &
44,43,60,57, &
58,59,63,62, & ! 14
57,61,64,60, &
59,60,64,63, &
57,58,62,61, &
61,62,63,64, &
57,60,59,58, &
39,40,48,47, & ! 15
58,62,63,59, &
40,59,63,48, &
58,39,47,62, &
62,47,48,63, &
58,59,40,39, &
60,42,50,64, & ! 16
43,51,24,20, &
42,20,24,50, &
43,60,64,51, &
51,64,50,24, &
43,20,42,60, &
59,41,49,63, & ! 17
60,64,50,42, &
41,42,50,49, &
60,59,63,64, &
64,63,49,50, &
60,42,41,59, &
40,19,23,48, & ! 18
59,63,49,41, &
19,41,49,23, &
59,40,48,63, &
63,48,23,49, &
59,41,19,40, &
45,61,53,25, & ! 19
21, 5,32,52, &
61,52,32,53, &
21,45,25, 5, &
5,25,53,32, &
21,52,61,45, &
46,62,54,26, & ! 20
45,25,53,61, &
62,61,53,54, &
45,46,26,25, &
25,26,54,53, &
45,61,62,46, &
22,47,27, 6, & ! 21
46,26,54,62, &
47,62,54,27, &
46,22, 6,26, &
26, 6,27,54, &
46,62,47,22, &
61,64,56,53, & ! 22
52,32,31,51, &
64,51,31,56, &
52,61,53,32, &
32,53,56,31, &
52,51,64,61, &
62,63,55,54, & ! 23
61,53,56,64, &
63,64,56,55, &
61,62,54,53, &
53,54,55,56, &
61,64,63,62, &
47,48,28,27, & ! 24
62,54,55,63, &
48,63,55,28, &
62,47,27,54, &
54,27,28,55, &
62,63,48,47, &
64,50,30,56, & ! 25
51,31, 8,24, &
50,24, 8,30, &
51,64,56,31, &
31,56,30, 8, &
51,24,50,64, &
63,49,29,55, & ! 26
64,56,30,50, &
49,50,30,29, &
64,63,55,56, &
56,55,29,30, &
64,50,49,63, &
48,23, 7,28, & ! 27
63,55,29,49, &
23,49,29, 7, &
63,48,28,55, &
55,28, 7,29, &
63,49,23,48 &
],pInt),[FE_NipFaceNodes,FE_NipNeighbors(me),FE_Nips(me)])
end subroutine mesh_build_FEdata
end module mesh