DAMASK_EICMD/python/damask/_rotation.py

1443 lines
55 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
from . import tensor
from . import util
from . import grid_filters
_P = -1
# parameters for conversion from/to cubochoric
_sc = np.pi**(1./6.)/6.**(1./6.)
_beta = np.pi**(5./6.)/6.**(1./6.)/2.
_R1 = (3.*np.pi/4.)**(1./3.)
class Rotation:
u"""
Rotation with functionality for conversion between different representations.
The following conventions apply:
- Coordinate frames are right-handed.
- A rotation angle ω is taken to be positive for a counterclockwise rotation
when viewing from the end point of the rotation axis towards the origin.
- Rotations will be interpreted in the passive sense.
- Euler angle triplets are implemented using the Bunge convention,
with angular ranges of [0,2π], [0,π], [0,2π].
- The rotation angle ω is limited to the interval [0,π].
- The real part of a quaternion is positive, Re(q) > 0
- P = -1 (as default).
Examples
--------
Rotate vector "a" (defined in coordinate system "A") to
coordinates "b" expressed in system "B":
- b = Q @ a
- b = np.dot(Q.as_matrix(),a)
References
----------
D. Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015
https://doi.org/10.1088/0965-0393/23/8/083501
"""
__slots__ = ['quaternion']
def __init__(self,rotation = np.array([1.0,0.0,0.0,0.0])):
"""
Initialize rotation object.
Parameters
----------
rotation : list, numpy.ndarray, Rotation, optional
Unit quaternion in positive real hemisphere.
Use .from_quaternion to perform a sanity check.
Defaults to no rotation.
"""
if isinstance(rotation,Rotation):
self.quaternion = rotation.quaternion.copy()
elif np.array(rotation).shape[-1] == 4:
self.quaternion = np.array(rotation)
else:
raise ValueError('"rotation" is neither a Rotation nor a quaternion')
def __repr__(self):
"""Represent rotation as unit quaternion, rotation matrix, and Bunge-Euler angles."""
return 'Quaternions:\n'+str(self.quaternion) \
if self.quaternion.shape != (4,) else \
'\n'.join([
'Quaternion: (real={:.3f}, imag=<{:+.3f}, {:+.3f}, {:+.3f}>)'.format(*(self.quaternion)),
'Matrix:\n{}'.format(np.round(self.as_matrix(),8)),
'Bunge Eulers / deg: ({:3.2f}, {:3.2f}, {:3.2f})'.format(*self.as_Eulers(degrees=True)),
])
# ToDo: Check difference __copy__ vs __deepcopy__
def __copy__(self,**kwargs):
"""Copy."""
return self.__class__(rotation=kwargs['rotation'] if 'rotation' in kwargs else self.quaternion)
copy = __copy__
def __getitem__(self,item):
"""Return slice according to item."""
return self.copy() \
if self.shape == () else \
self.copy(rotation=self.quaternion[item+(slice(None),)] if isinstance(item,tuple) else self.quaternion[item])
def __eq__(self,other):
"""
Equal to other.
Equality is determined taking limited floating point precision into
account. See numpy.allclose for details.
Parameters
----------
other : Rotation
Rotation to check for equality.
"""
return np.prod(self.shape,dtype=int) == np.prod(other.shape,dtype=int) \
and np.allclose(self.quaternion,other.quaternion)
def __neq__(self,other):
"""
Not Equal to other.
Equality is determined taking limited floating point precision into
account. See numpy.allclose for details.
Parameters
----------
other : Rotation
Rotation to check for inequality.
"""
return not self.__eq__(other)
@property
def shape(self):
return self.quaternion.shape[:-1]
def __len__(self):
"""Length of leading/leftmost dimension of Rotation array."""
return 0 if self.shape == () else self.shape[0]
def __invert__(self):
"""Inverse rotation (backward rotation)."""
dup = self.copy()
dup.quaternion[...,1:] *= -1
return dup
def __pow__(self,pwr):
"""
Raise quaternion to power.
Equivalent to performing the rotation 'pwr' times.
Parameters
----------
pwr : float
Power to raise quaternion to.
"""
phi = np.arccos(self.quaternion[...,0:1])
p = self.quaternion[...,1:]/np.linalg.norm(self.quaternion[...,1:],axis=-1,keepdims=True)
return self.copy(rotation=Rotation(np.block([np.cos(pwr*phi),np.sin(pwr*phi)*p]))._standardize())
def __matmul__(self,other):
"""
Rotation of vector, second or fourth order tensor, or rotation object.
Parameters
----------
other : numpy.ndarray or Rotation
Vector, second or fourth order tensor, or rotation object that is rotated.
Returns
-------
other_rot : numpy.ndarray or Rotation
Rotated vector, second or fourth order tensor, or rotation object.
"""
if isinstance(other,Rotation):
q_m = self.quaternion[...,0:1]
p_m = self.quaternion[...,1:]
q_o = other.quaternion[...,0:1]
p_o = other.quaternion[...,1:]
q = (q_m*q_o - np.einsum('...i,...i',p_m,p_o).reshape(self.shape+(1,)))
p = q_m*p_o + q_o*p_m + _P * np.cross(p_m,p_o)
return Rotation(np.block([q,p]))._standardize()
elif isinstance(other,np.ndarray):
if self.shape + (3,) == other.shape:
q_m = self.quaternion[...,0]
p_m = self.quaternion[...,1:]
A = q_m**2.0 - np.einsum('...i,...i',p_m,p_m)
B = 2.0 * np.einsum('...i,...i',p_m,other)
C = 2.0 * _P * q_m
return np.block([(A * other[...,i]).reshape(self.shape+(1,)) +
(B * p_m[...,i]).reshape(self.shape+(1,)) +
(C * ( p_m[...,(i+1)%3]*other[...,(i+2)%3]\
- p_m[...,(i+2)%3]*other[...,(i+1)%3])).reshape(self.shape+(1,))
for i in [0,1,2]])
if self.shape + (3,3) == other.shape:
R = self.as_matrix()
return np.einsum('...im,...jn,...mn',R,R,other)
if self.shape + (3,3,3,3) == other.shape:
R = self.as_matrix()
return np.einsum('...im,...jn,...ko,...lp,...mnop',R,R,R,R,other)
else:
raise ValueError('Can only rotate vectors, 2nd order tensors, and 4th order tensors')
else:
raise TypeError(f'Cannot rotate {type(other)}')
def _standardize(self):
"""Standardize quaternion (ensure positive real hemisphere)."""
self.quaternion[self.quaternion[...,0] < 0.0] *= -1
return self
def append(self,other):
"""Extend rotation array along first dimension with other array."""
return self.copy(rotation=np.vstack((self.quaternion,other.quaternion)))
def flatten(self,order = 'C'):
"""Flatten quaternion array."""
return self.copy(rotation=self.quaternion.reshape((-1,4),order=order))
def reshape(self,shape,order = 'C'):
"""Reshape quaternion array."""
if isinstance(shape,(int,np.integer)): shape = (shape,)
return self.copy(rotation=self.quaternion.reshape(tuple(shape)+(4,),order=order))
def broadcast_to(self,shape,mode = 'right'):
"""
Broadcast quaternion array to shape.
Parameters
----------
shape : tuple
Shape of broadcasted array.
mode : str, optional
Where to preferentially locate missing dimensions.
Either 'left' or 'right' (default).
"""
if isinstance(shape,(int,np.integer)): shape = (shape,)
return self.copy(rotation=np.broadcast_to(self.quaternion.reshape(util.shapeshifter(self.shape,shape,mode)+(4,)),
shape+(4,)))
def average(self,weights = None):
"""
Average rotations along last dimension.
Parameters
----------
weights : list of floats, optional
Relative weight of each rotation.
Returns
-------
average : Rotation
Weighted average of original Rotation field.
References
----------
Quaternion averaging
F. Landis Markley, Yang Cheng, John L. Crassidis, Yaakov Oshman
Journal of Guidance, Control, and Dynamics 30(4):1193-1197, 2007
10.2514/1.28949
"""
def _M(quat):
"""Intermediate representation supporting quaternion averaging."""
return np.einsum('...i,...j',quat,quat)
if not weights:
weights = np.ones(self.shape,dtype=float)
eig, vec = np.linalg.eig(np.sum(_M(self.quaternion) * weights[...,np.newaxis,np.newaxis],axis=-3) \
/np.sum( weights[...,np.newaxis,np.newaxis],axis=-3))
return Rotation.from_quaternion(np.real(
np.squeeze(
np.take_along_axis(vec,
eig.argmax(axis=-1)[...,np.newaxis,np.newaxis],
axis=-1),
axis=-1)),
accept_homomorph = True)
def misorientation(self,other):
"""
Calculate misorientation from self to other Rotation.
Parameters
----------
other : Rotation
Rotation to which the misorientation is computed.
"""
return other@~self
################################################################################################
# convert to different orientation representations (numpy arrays)
def as_quaternion(self):
"""
Represent as unit quaternion.
Returns
-------
q : numpy.ndarray of shape (...,4)
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3), ǀqǀ=1, q_0 ≥ 0.
"""
return self.quaternion.copy()
def as_Eulers(self,
degrees = False):
"""
Represent as Bunge-Euler angles.
Parameters
----------
degrees : bool, optional
Return angles in degrees.
Returns
-------
phi : numpy.ndarray of shape (...,3)
Bunge-Euler angles: (φ_1, ϕ, φ_2), φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]
unless degrees == True: φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360]
"""
eu = Rotation._qu2eu(self.quaternion)
if degrees: eu = np.degrees(eu)
return eu
def as_axis_angle(self,
degrees = False,
pair = False):
"""
Represent as axis angle pair.
Parameters
----------
degrees : bool, optional
Return rotation angle in degrees. Defaults to False.
pair : bool, optional
Return tuple of axis and angle. Defaults to False.
Returns
-------
axis_angle : numpy.ndarray of shape (...,4) unless pair == True:
tuple containing numpy.ndarray of shapes (...,3) and (...)
Axis angle pair: (n_1, n_2, n_3, ω), ǀnǀ = 1 and ω ∈ [0,π]
unless degrees = True: ω ∈ [0,180].
"""
ax = Rotation._qu2ax(self.quaternion)
if degrees: ax[...,3] = np.degrees(ax[...,3])
return (ax[...,:3],ax[...,3]) if pair else ax
def as_matrix(self):
"""
Represent as rotation matrix.
Returns
-------
R : numpy.ndarray of shape (...,3,3)
Rotation matrix R, det(R) = 1, R.T∙R=I.
"""
return Rotation._qu2om(self.quaternion)
def as_Rodrigues(self,
vector = False):
"""
Represent as Rodrigues-Frank vector with separated axis and angle argument.
Parameters
----------
vector : bool, optional
Return as actual Rodrigues-Frank vector, i.e. axis
and angle argument are not separated.
Returns
-------
rho : numpy.ndarray of shape (...,4) unless vector == True:
numpy.ndarray of shape (...,3)
Rodrigues-Frank vector: [n_1, n_2, n_3, tan(ω/2)], ǀnǀ = 1 and ω ∈ [0,π].
"""
ro = Rotation._qu2ro(self.quaternion)
if vector:
with np.errstate(invalid='ignore'):
return ro[...,:3]*ro[...,3:4]
else:
return ro
def as_homochoric(self):
"""
Represent as homochoric vector.
Returns
-------
h : numpy.ndarray of shape (...,3)
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < 1/2*π^(2/3).
"""
return Rotation._qu2ho(self.quaternion)
def as_cubochoric(self):
"""
Represent as cubochoric vector.
Returns
-------
c : numpy.ndarray of shape (...,3)
Cubochoric vector: (c_1, c_2, c_3), max(c_i) < 1/2*π^(2/3).
"""
return Rotation._qu2cu(self.quaternion)
################################################################################################
# Static constructors. The input data needs to follow the conventions, options allow to
# relax the conventions.
@staticmethod
def from_quaternion(q,
accept_homomorph = False,
P = -1,
**kwargs):
"""
Initialize from quaternion.
Parameters
----------
q : numpy.ndarray of shape (...,4)
Unit quaternion in positive real hemisphere: (q_0, q_1, q_2, q_3),
ǀqǀ=1, q_0 ≥ 0.
accept_homomorph : boolean, optional
Allow homomorphic variants, i.e. q_0 < 0 (negative real hemisphere).
Defaults to False.
P : int ∈ {-1,1}, optional
Convention used. Defaults to -1.
"""
qu = np.array(q,dtype=float)
if qu.shape[:-2:-1] != (4,):
raise ValueError('Invalid shape.')
if abs(P) != 1:
raise ValueError('P ∉ {-1,1}')
qu[...,1:4] *= -P
if accept_homomorph:
qu[qu[...,0] < 0.0] *= -1
else:
if np.any(qu[...,0] < 0.0):
raise ValueError('Quaternion with negative first (real) component.')
if not np.all(np.isclose(np.linalg.norm(qu,axis=-1), 1.0)):
raise ValueError('Quaternion is not of unit length.')
return Rotation(qu)
@staticmethod
def from_Eulers(phi,
degrees = False,
**kwargs):
"""
Initialize from Bunge-Euler angles.
Parameters
----------
phi : numpy.ndarray of shape (...,3)
Bunge-Euler angles: (φ_1, ϕ, φ_2), φ_1 ∈ [0,2π], ϕ ∈ [0,π], φ_2 ∈ [0,2π]
unless degrees == True: φ_1 ∈ [0,360], ϕ ∈ [0,180], φ_2 ∈ [0,360].
degrees : boolean, optional
Bunge-Euler angles are given in degrees. Defaults to False.
"""
eu = np.array(phi,dtype=float)
if eu.shape[:-2:-1] != (3,):
raise ValueError('Invalid shape.')
eu = np.radians(eu) if degrees else eu
if np.any(eu < 0.0) or np.any(eu > 2.0*np.pi) or np.any(eu[...,1] > np.pi): # ToDo: No separate check for PHI
raise ValueError('Euler angles outside of [0..2π],[0..π],[0..2π].')
return Rotation(Rotation._eu2qu(eu))
@staticmethod
def from_axis_angle(axis_angle,
degrees = False,
normalize = False,
P = -1,
**kwargs):
"""
Initialize from Axis angle pair.
Parameters
----------
axis_angle : numpy.ndarray of shape (...,4)
Axis angle pair: [n_1, n_2, n_3, ω], ǀnǀ = 1 and ω ∈ [0,π]
unless degrees = True: ω ∈ [0,180].
degrees : boolean, optional
Angle ω is given in degrees. Defaults to False.
normalize: boolean, optional
Allow ǀnǀ ≠ 1. Defaults to False.
P : int ∈ {-1,1}, optional
Convention used. Defaults to -1.
"""
ax = np.array(axis_angle,dtype=float)
if ax.shape[:-2:-1] != (4,):
raise ValueError('Invalid shape.')
if abs(P) != 1:
raise ValueError('P ∉ {-1,1}')
ax[...,0:3] *= -P
if degrees: ax[..., 3] = np.radians(ax[...,3])
if normalize: ax[...,0:3] /= np.linalg.norm(ax[...,0:3],axis=-1,keepdims=True)
if np.any(ax[...,3] < 0.0) or np.any(ax[...,3] > np.pi):
raise ValueError('Axis angle rotation angle outside of [0..π].')
if not np.all(np.isclose(np.linalg.norm(ax[...,0:3],axis=-1), 1.0)):
print(np.linalg.norm(ax[...,0:3],axis=-1))
raise ValueError('Axis angle rotation axis is not of unit length.')
return Rotation(Rotation._ax2qu(ax))
@staticmethod
def from_basis(basis,
orthonormal = True,
reciprocal = False,
**kwargs):
"""
Initialize from lattice basis vectors.
Parameters
----------
basis : numpy.ndarray of shape (...,3,3)
Three three-dimensional lattice basis vectors.
orthonormal : boolean, optional
Basis is strictly orthonormal, i.e. is free of stretch components. Defaults to True.
reciprocal : boolean, optional
Basis vectors are given in reciprocal (instead of real) space. Defaults to False.
"""
om = np.array(basis,dtype=float)
if om.shape[-2:] != (3,3):
raise ValueError('Invalid shape.')
if reciprocal:
om = np.linalg.inv(tensor.transpose(om)/np.pi) # transform reciprocal basis set
orthonormal = False # contains stretch
if not orthonormal:
(U,S,Vh) = np.linalg.svd(om) # singular value decomposition
om = np.einsum('...ij,...jl->...il',U,Vh)
if not np.all(np.isclose(np.linalg.det(om),1.0)):
raise ValueError('Orientation matrix has determinant ≠ 1.')
if not np.all(np.isclose(np.einsum('...i,...i',om[...,0],om[...,1]), 0.0)) \
or not np.all(np.isclose(np.einsum('...i,...i',om[...,1],om[...,2]), 0.0)) \
or not np.all(np.isclose(np.einsum('...i,...i',om[...,2],om[...,0]), 0.0)):
raise ValueError('Orientation matrix is not orthogonal.')
return Rotation(Rotation._om2qu(om))
@staticmethod
def from_matrix(R,**kwargs):
"""
Initialize from rotation matrix.
Parameters
----------
R : numpy.ndarray of shape (...,3,3)
Rotation matrix: det(R) = 1, R.T∙R=I.
"""
return Rotation.from_basis(R)
@staticmethod
def from_parallel(a,b,
**kwargs):
"""
Initialize from pairs of two orthogonal lattice basis vectors.
Parameters
----------
a : numpy.ndarray of shape (...,2,3)
Two three-dimensional lattice vectors of first orthogonal basis.
b : numpy.ndarray of shape (...,2,3)
Corresponding three-dimensional lattice vectors of second basis.
"""
a_ = np.array(a)
b_ = np.array(b)
if a_.shape[-2:] != (2,3) or b_.shape[-2:] != (2,3) or a_.shape != b_.shape:
raise ValueError('Invalid shape.')
am = np.stack([ a_[...,0,:],
a_[...,1,:],
np.cross(a_[...,0,:],a_[...,1,:]) ],axis=-2)
bm = np.stack([ b_[...,0,:],
b_[...,1,:],
np.cross(b_[...,0,:],b_[...,1,:]) ],axis=-2)
return Rotation.from_basis(np.swapaxes(am/np.linalg.norm(am,axis=-1,keepdims=True),-1,-2))\
.misorientation(Rotation.from_basis(np.swapaxes(bm/np.linalg.norm(bm,axis=-1,keepdims=True),-1,-2)))
@staticmethod
def from_Rodrigues(rho,
normalize = False,
P = -1,
**kwargs):
"""
Initialize from Rodrigues-Frank vector.
Parameters
----------
rho : numpy.ndarray of shape (...,4)
Rodrigues-Frank vector (angle separated from axis).
(n_1, n_2, n_3, tan(ω/2)), ǀnǀ = 1 and ω ∈ [0,π].
normalize : boolean, optional
Allow ǀnǀ ≠ 1. Defaults to False.
P : int ∈ {-1,1}, optional
Convention used. Defaults to -1.
"""
ro = np.array(rho,dtype=float)
if ro.shape[:-2:-1] != (4,):
raise ValueError('Invalid shape.')
if abs(P) != 1:
raise ValueError('P ∉ {-1,1}')
ro[...,0:3] *= -P
if normalize: ro[...,0:3] /= np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True)
if np.any(ro[...,3] < 0.0):
raise ValueError('Rodrigues vector rotation angle not positive.')
if not np.all(np.isclose(np.linalg.norm(ro[...,0:3],axis=-1), 1.0)):
raise ValueError('Rodrigues vector rotation axis is not of unit length.')
return Rotation(Rotation._ro2qu(ro))
@staticmethod
def from_homochoric(h,
P = -1,
**kwargs):
"""
Initialize from homochoric vector.
Parameters
----------
h : numpy.ndarray of shape (...,3)
Homochoric vector: (h_1, h_2, h_3), ǀhǀ < (3/4*π)^(1/3).
P : int ∈ {-1,1}, optional
Convention used. Defaults to -1.
"""
ho = np.array(h,dtype=float)
if ho.shape[:-2:-1] != (3,):
raise ValueError('Invalid shape.')
if abs(P) != 1:
raise ValueError('P ∉ {-1,1}')
ho *= -P
if np.any(np.linalg.norm(ho,axis=-1) >_R1+1e-9):
raise ValueError('Homochoric coordinate outside of the sphere.')
return Rotation(Rotation._ho2qu(ho))
@staticmethod
def from_cubochoric(c,
P = -1,
**kwargs):
"""
Initialize from cubochoric vector.
Parameters
----------
c : numpy.ndarray of shape (...,3)
Cubochoric vector: (c_1, c_2, c_3), max(c_i) < 1/2*π^(2/3).
P : int ∈ {-1,1}, optional
Convention used. Defaults to -1.
"""
cu = np.array(c,dtype=float)
if cu.shape[:-2:-1] != (3,):
raise ValueError('Invalid shape.')
if abs(P) != 1:
raise ValueError('P ∉ {-1,1}')
if np.abs(np.max(cu)) > np.pi**(2./3.) * 0.5+1e-9:
raise ValueError('Cubochoric coordinate outside of the cube.')
ho = -P * Rotation._cu2ho(cu)
return Rotation(Rotation._ho2qu(ho))
@staticmethod
def from_random(shape = None,
seed = None,
**kwargs):
"""
Draw random rotation.
Rotations are uniformly distributed.
Parameters
----------
shape : tuple of ints, optional
Shape of the sample. Defaults to None which gives a
single rotation
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None.
If None, then fresh, unpredictable entropy will be pulled from the OS.
"""
rng = np.random.default_rng(seed)
r = rng.random(3 if shape is None else tuple(shape)+(3,) if hasattr(shape, '__iter__') else (shape,3))
A = np.sqrt(r[...,2])
B = np.sqrt(1.0-r[...,2])
q = np.stack([np.cos(2.0*np.pi*r[...,0])*A,
np.sin(2.0*np.pi*r[...,1])*B,
np.cos(2.0*np.pi*r[...,1])*B,
np.sin(2.0*np.pi*r[...,0])*A],axis=-1)
return Rotation(q if shape is None else q.reshape(r.shape[:-1]+(4,)))._standardize()
@staticmethod
def from_ODF(weights,
Eulers,
N = 500,
degrees = True,
fractions = True,
seed = None,
**kwargs):
"""
Sample discrete values from a binned ODF.
Parameters
----------
weights : numpy.ndarray of shape (n)
Texture intensity values (probability density or volume fraction) at Euler grid points.
Eulers : numpy.ndarray of shape (n,3)
Grid coordinates in Euler space at which weights are defined.
N : integer, optional
Number of discrete orientations to be sampled from the given ODF.
Defaults to 500.
degrees : boolean, optional
Euler grid values are in degrees. Defaults to True.
fractions : boolean, optional
ODF values correspond to volume fractions, not probability density.
Defaults to True.
seed: {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy
will be pulled from the OS.
Returns
-------
samples : damask.Rotation of shape (N)
Array of sampled rotations closely representing the input ODF.
Notes
-----
Due to the distortion of Euler space in the vicinity of ϕ = 0, probability densities, p, defined on
grid points with ϕ = 0 will never result in reconstructed orientations as their dV/V = p dγ = p × 0.
Hence, it is recommended to transform any such dataset to cell centers that avoid grid points at ϕ = 0.
References
----------
P. Eisenlohr, F. Roters, Computational Materials Science 42(4), 670-678, 2008
https://doi.org/10.1016/j.commatsci.2007.09.015
"""
def _dg(eu,deg):
"""Return infinitesimal Euler space volume of bin(s)."""
Eulers_sorted = eu[np.lexsort((eu[:,0],eu[:,1],eu[:,2]))]
steps,size,_ = grid_filters.cell_coord0_gridSizeOrigin(Eulers_sorted)
delta = np.radians(size/steps) if deg else size/steps
return delta[0]*2.0*np.sin(delta[1]/2.0)*delta[2] / 8.0 / np.pi**2 * np.sin(np.radians(eu[:,1]) if deg else eu[:,1])
dg = 1.0 if fractions else _dg(Eulers,degrees)
dV_V = dg * np.maximum(0.0,weights.squeeze())
return Rotation.from_Eulers(Eulers[util.hybrid_IA(dV_V,N,seed)],degrees)
@staticmethod
def from_spherical_component(center,
sigma,
N = 500,
degrees = True,
seed = None,
**kwargs):
"""
Calculate set of rotations with Gaussian distribution around center.
Parameters
----------
center : Rotation
Central Rotation.
sigma : float
Standard deviation of (Gaussian) misorientation distribution.
N : int, optional
Number of samples, defaults to 500.
degrees : boolean, optional
sigma is given in degrees.
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy
will be pulled from the OS.
"""
rng = np.random.default_rng(seed)
sigma = np.radians(sigma) if degrees else sigma
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
omega = abs(rng.normal(scale=sigma,size=N))
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
np.sqrt(1-u**2)*np.sin(Theta),
u, omega])
return Rotation.from_axis_angle(p) @ center
@staticmethod
def from_fiber_component(alpha,
beta,
sigma = 0.0,
N = 500,
degrees = True,
seed = None,
**kwargs):
"""
Calculate set of rotations with Gaussian distribution around direction.
Parameters
----------
alpha : numpy.ndarray of size 2
Polar coordinates (phi from x,theta from z) of fiber direction in crystal frame.
beta : numpy.ndarray of size 2
Polar coordinates (phi from x,theta from z) of fiber direction in sample frame.
sigma : float, optional
Standard deviation of (Gaussian) misorientation distribution.
Defaults to 0.
N : int, optional
Number of samples, defaults to 500.
degrees : boolean, optional
sigma, alpha, and beta are given in degrees.
seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None, i.e. unpredictable entropy
will be pulled from the OS.
"""
rng = np.random.default_rng(seed)
sigma_,alpha_,beta_ = map(np.radians,(sigma,alpha,beta)) if degrees else (sigma,alpha,beta)
d_cr = np.array([np.sin(alpha_[0])*np.cos(alpha_[1]), np.sin(alpha_[0])*np.sin(alpha_[1]), np.cos(alpha_[0])])
d_lab = np.array([np.sin( beta_[0])*np.cos( beta_[1]), np.sin( beta_[0])*np.sin( beta_[1]), np.cos( beta_[0])])
ax_align = np.append(np.cross(d_lab,d_cr), np.arccos(np.dot(d_lab,d_cr)))
if np.isclose(ax_align[3],0.0): ax_align[:3] = np.array([1,0,0])
R_align = Rotation.from_axis_angle(ax_align if ax_align[3] > 0.0 else -ax_align,normalize=True) # rotate fiber axis from sample to crystal frame
u,Theta = (rng.random((N,2)) * 2.0 * np.array([1,np.pi]) - np.array([1.0, 0])).T
omega = abs(rng.normal(scale=sigma_,size=N))
p = np.column_stack([np.sqrt(1-u**2)*np.cos(Theta),
np.sqrt(1-u**2)*np.sin(Theta),
u, omega])
p[:,:3] = np.einsum('ij,...j',np.eye(3)-np.outer(d_lab,d_lab),p[:,:3]) # remove component along fiber axis
f = np.column_stack((np.broadcast_to(d_lab,(N,3)),rng.random(N)*np.pi))
f[::2,:3] *= -1 # flip half the rotation axes to negative sense
return R_align.broadcast_to(N) \
@ Rotation.from_axis_angle(p,normalize=True) \
@ Rotation.from_axis_angle(f)
####################################################################################################
# Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations
####################################################################################################
# Copyright (c) 2017-2020, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without modification, are
# permitted provided that the following conditions are met:
#
# - Redistributions of source code must retain the above copyright notice, this list
# of conditions and the following disclaimer.
# - Redistributions in binary form must reproduce the above copyright notice, this
# list of conditions and the following disclaimer in the documentation and/or
# other materials provided with the distribution.
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
# of its contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
####################################################################################################
#---------- Quaternion ----------
@staticmethod
def _qu2om(qu):
qq = qu[...,0:1]**2-(qu[...,1:2]**2 + qu[...,2:3]**2 + qu[...,3:4]**2)
om = np.block([qq + 2.0*qu[...,1:2]**2,
2.0*(qu[...,2:3]*qu[...,1:2]-_P*qu[...,0:1]*qu[...,3:4]),
2.0*(qu[...,3:4]*qu[...,1:2]+_P*qu[...,0:1]*qu[...,2:3]),
2.0*(qu[...,1:2]*qu[...,2:3]+_P*qu[...,0:1]*qu[...,3:4]),
qq + 2.0*qu[...,2:3]**2,
2.0*(qu[...,3:4]*qu[...,2:3]-_P*qu[...,0:1]*qu[...,1:2]),
2.0*(qu[...,1:2]*qu[...,3:4]-_P*qu[...,0:1]*qu[...,2:3]),
2.0*(qu[...,2:3]*qu[...,3:4]+_P*qu[...,0:1]*qu[...,1:2]),
qq + 2.0*qu[...,3:4]**2,
]).reshape(qu.shape[:-1]+(3,3))
return om
@staticmethod
def _qu2eu(qu):
"""Quaternion to Bunge-Euler angles."""
q02 = qu[...,0:1]*qu[...,2:3]
q13 = qu[...,1:2]*qu[...,3:4]
q01 = qu[...,0:1]*qu[...,1:2]
q23 = qu[...,2:3]*qu[...,3:4]
q03_s = qu[...,0:1]**2+qu[...,3:4]**2
q12_s = qu[...,1:2]**2+qu[...,2:3]**2
chi = np.sqrt(q03_s*q12_s)
eu = np.where(np.abs(q12_s) < 1.0e-8,
np.block([np.arctan2(-_P*2.0*qu[...,0:1]*qu[...,3:4],qu[...,0:1]**2-qu[...,3:4]**2),
np.zeros(qu.shape[:-1]+(2,))]),
np.where(np.abs(q03_s) < 1.0e-8,
np.block([np.arctan2( 2.0*qu[...,1:2]*qu[...,2:3],qu[...,1:2]**2-qu[...,2:3]**2),
np.broadcast_to(np.pi,qu[...,0:1].shape),
np.zeros(qu.shape[:-1]+(1,))]),
np.block([np.arctan2((-_P*q02+q13)*chi, (-_P*q01-q23)*chi),
np.arctan2( 2.0*chi, q03_s-q12_s ),
np.arctan2(( _P*q02+q13)*chi, (-_P*q01+q23)*chi)])
)
)
# reduce Euler angles to definition range
eu[np.abs(eu)<1.e-6] = 0.0
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu) # needed?
return eu
@staticmethod
def _qu2ax(qu):
"""
Quaternion to axis angle pair.
Modified version of the original formulation, should be numerically more stable
"""
with np.errstate(invalid='ignore',divide='ignore'):
s = np.sign(qu[...,0:1])/np.sqrt(qu[...,1:2]**2+qu[...,2:3]**2+qu[...,3:4]**2)
omega = 2.0 * np.arccos(np.clip(qu[...,0:1],-1.0,1.0))
ax = np.where(np.broadcast_to(qu[...,0:1] < 1.0e-8,qu.shape),
np.block([qu[...,1:4],np.broadcast_to(np.pi,qu[...,0:1].shape)]),
np.block([qu[...,1:4]*s,omega]))
ax[np.isclose(qu[...,0],1.,rtol=0.0)] = [0.0, 0.0, 1.0, 0.0]
return ax
@staticmethod
def _qu2ro(qu):
"""Quaternion to Rodrigues-Frank vector."""
with np.errstate(invalid='ignore',divide='ignore'):
s = np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True)
ro = np.where(np.broadcast_to(np.abs(qu[...,0:1]) < 1.0e-12,qu.shape),
np.block([qu[...,1:2], qu[...,2:3], qu[...,3:4], np.broadcast_to(np.inf,qu[...,0:1].shape)]),
np.block([qu[...,1:2]/s,qu[...,2:3]/s,qu[...,3:4]/s,
np.tan(np.arccos(np.clip(qu[...,0:1],-1.0,1.0)))
])
)
ro[np.abs(s).squeeze(-1) < 1.0e-12] = [0.0,0.0,_P,0.0]
return ro
@staticmethod
def _qu2ho(qu):
"""Quaternion to homochoric vector."""
with np.errstate(invalid='ignore'):
omega = 2.0 * np.arccos(np.clip(qu[...,0:1],-1.0,1.0))
ho = np.where(np.abs(omega) < 1.0e-12,
np.zeros(3),
qu[...,1:4]/np.linalg.norm(qu[...,1:4],axis=-1,keepdims=True) \
* (0.75*(omega - np.sin(omega)))**(1./3.))
return ho
@staticmethod
def _qu2cu(qu):
"""Quaternion to cubochoric vector."""
return Rotation._ho2cu(Rotation._qu2ho(qu))
#---------- Rotation matrix ----------
@staticmethod
def _om2qu(om):
"""
Rotation matrix to quaternion.
This formulation is from www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion.
The original formulation had issues.
"""
trace = om[...,0,0:1]+om[...,1,1:2]+om[...,2,2:3]
with np.errstate(invalid='ignore',divide='ignore'):
s = [
0.5 / np.sqrt( 1.0 + trace),
2.0 * np.sqrt( 1.0 + om[...,0,0:1] - om[...,1,1:2] - om[...,2,2:3]),
2.0 * np.sqrt( 1.0 + om[...,1,1:2] - om[...,2,2:3] - om[...,0,0:1]),
2.0 * np.sqrt( 1.0 + om[...,2,2:3] - om[...,0,0:1] - om[...,1,1:2] )
]
qu= np.where(trace>0,
np.block([0.25 / s[0],
(om[...,2,1:2] - om[...,1,2:3] ) * s[0],
(om[...,0,2:3] - om[...,2,0:1] ) * s[0],
(om[...,1,0:1] - om[...,0,1:2] ) * s[0]]),
np.where(om[...,0,0:1] > np.maximum(om[...,1,1:2],om[...,2,2:3]),
np.block([(om[...,2,1:2] - om[...,1,2:3]) / s[1],
0.25 * s[1],
(om[...,0,1:2] + om[...,1,0:1]) / s[1],
(om[...,0,2:3] + om[...,2,0:1]) / s[1]]),
np.where(om[...,1,1:2] > om[...,2,2:3],
np.block([(om[...,0,2:3] - om[...,2,0:1]) / s[2],
(om[...,0,1:2] + om[...,1,0:1]) / s[2],
0.25 * s[2],
(om[...,1,2:3] + om[...,2,1:2]) / s[2]]),
np.block([(om[...,1,0:1] - om[...,0,1:2]) / s[3],
(om[...,0,2:3] + om[...,2,0:1]) / s[3],
(om[...,1,2:3] + om[...,2,1:2]) / s[3],
0.25 * s[3]]),
)
)
)*np.array([1,_P,_P,_P])
qu[qu[...,0]<0] *=-1
return qu
@staticmethod
def _om2eu(om):
"""Rotation matrix to Bunge-Euler angles."""
with np.errstate(invalid='ignore',divide='ignore'):
zeta = 1.0/np.sqrt(1.0-om[...,2,2:3]**2)
eu = np.where(np.isclose(np.abs(om[...,2,2:3]),1.0,0.0),
np.block([np.arctan2(om[...,0,1:2],om[...,0,0:1]),
np.pi*0.5*(1-om[...,2,2:3]),
np.zeros(om.shape[:-2]+(1,)),
]),
np.block([np.arctan2(om[...,2,0:1]*zeta,-om[...,2,1:2]*zeta),
np.arccos( om[...,2,2:3]),
np.arctan2(om[...,0,2:3]*zeta,+om[...,1,2:3]*zeta)
])
)
eu[np.abs(eu)<1.e-8] = 0.0
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
return eu
@staticmethod
def _om2ax(om):
"""Rotation matrix to axis angle pair."""
#return Rotation._qu2ax(Rotation._om2qu(om)) # HOTFIX
diag_delta = -_P*np.block([om[...,1,2:3]-om[...,2,1:2],
om[...,2,0:1]-om[...,0,2:3],
om[...,0,1:2]-om[...,1,0:1]
])
t = 0.5*(om.trace(axis2=-2,axis1=-1) -1.0).reshape(om.shape[:-2]+(1,))
w,vr = np.linalg.eig(om)
# mask duplicated real eigenvalues
w[np.isclose(w[...,0],1.0+0.0j),1:] = 0.
w[np.isclose(w[...,1],1.0+0.0j),2:] = 0.
vr = np.swapaxes(vr,-1,-2)
ax = np.where(np.abs(diag_delta)<1e-12,
np.real(vr[np.isclose(w,1.0+0.0j)]).reshape(om.shape[:-2]+(3,)),
np.abs(np.real(vr[np.isclose(w,1.0+0.0j)]).reshape(om.shape[:-2]+(3,))) \
*np.sign(diag_delta))
ax = np.block([ax,np.arccos(np.clip(t,-1.0,1.0))])
ax[np.abs(ax[...,3])<1.e-8] = [ 0.0, 0.0, 1.0, 0.0]
return ax
@staticmethod
def _om2ro(om):
"""Rotation matrix to Rodrigues-Frank vector."""
return Rotation._eu2ro(Rotation._om2eu(om))
@staticmethod
def _om2ho(om):
"""Rotation matrix to homochoric vector."""
return Rotation._ax2ho(Rotation._om2ax(om))
@staticmethod
def _om2cu(om):
"""Rotation matrix to cubochoric vector."""
return Rotation._ho2cu(Rotation._om2ho(om))
#---------- Bunge-Euler angles ----------
@staticmethod
def _eu2qu(eu):
"""Bunge-Euler angles to quaternion."""
ee = 0.5*eu
cPhi = np.cos(ee[...,1:2])
sPhi = np.sin(ee[...,1:2])
qu = np.block([ cPhi*np.cos(ee[...,0:1]+ee[...,2:3]),
-_P*sPhi*np.cos(ee[...,0:1]-ee[...,2:3]),
-_P*sPhi*np.sin(ee[...,0:1]-ee[...,2:3]),
-_P*cPhi*np.sin(ee[...,0:1]+ee[...,2:3])])
qu[qu[...,0]<0.0]*=-1
return qu
@staticmethod
def _eu2om(eu):
"""Bunge-Euler angles to rotation matrix."""
c = np.cos(eu)
s = np.sin(eu)
om = np.block([+c[...,0:1]*c[...,2:3]-s[...,0:1]*s[...,2:3]*c[...,1:2],
+s[...,0:1]*c[...,2:3]+c[...,0:1]*s[...,2:3]*c[...,1:2],
+s[...,2:3]*s[...,1:2],
-c[...,0:1]*s[...,2:3]-s[...,0:1]*c[...,2:3]*c[...,1:2],
-s[...,0:1]*s[...,2:3]+c[...,0:1]*c[...,2:3]*c[...,1:2],
+c[...,2:3]*s[...,1:2],
+s[...,0:1]*s[...,1:2],
-c[...,0:1]*s[...,1:2],
+c[...,1:2]
]).reshape(eu.shape[:-1]+(3,3))
om[np.abs(om)<1.e-12] = 0.0
return om
@staticmethod
def _eu2ax(eu):
"""Bunge-Euler angles to axis angle pair."""
t = np.tan(eu[...,1:2]*0.5)
sigma = 0.5*(eu[...,0:1]+eu[...,2:3])
delta = 0.5*(eu[...,0:1]-eu[...,2:3])
tau = np.linalg.norm(np.block([t,np.sin(sigma)]),axis=-1,keepdims=True)
alpha = np.where(np.abs(np.cos(sigma))<1.e-12,np.pi,2.0*np.arctan(tau/np.cos(sigma)))
with np.errstate(invalid='ignore',divide='ignore'):
ax = np.where(np.broadcast_to(np.abs(alpha)<1.0e-12,eu.shape[:-1]+(4,)),
[0.0,0.0,1.0,0.0],
np.block([-_P/tau*t*np.cos(delta),
-_P/tau*t*np.sin(delta),
-_P/tau* np.sin(sigma),
alpha
]))
ax[(alpha<0.0).squeeze()] *=-1
return ax
@staticmethod
def _eu2ro(eu):
"""Bunge-Euler angles to Rodrigues-Frank vector."""
ax = Rotation._eu2ax(eu)
ro = np.block([ax[...,:3],np.tan(ax[...,3:4]*.5)])
ro[ax[...,3]>=np.pi,3] = np.inf
ro[np.abs(ax[...,3])<1.e-16] = [ 0.0, 0.0, _P, 0.0 ]
return ro
@staticmethod
def _eu2ho(eu):
"""Bunge-Euler angles to homochoric vector."""
return Rotation._ax2ho(Rotation._eu2ax(eu))
@staticmethod
def _eu2cu(eu):
"""Bunge-Euler angles to cubochoric vector."""
return Rotation._ho2cu(Rotation._eu2ho(eu))
#---------- Axis angle pair ----------
@staticmethod
def _ax2qu(ax):
"""Axis angle pair to quaternion."""
c = np.cos(ax[...,3:4]*.5)
s = np.sin(ax[...,3:4]*.5)
qu = np.where(np.abs(ax[...,3:4])<1.e-6,[1.0, 0.0, 0.0, 0.0],np.block([c, ax[...,:3]*s]))
return qu
@staticmethod
def _ax2om(ax):
"""Axis angle pair to rotation matrix."""
c = np.cos(ax[...,3:4])
s = np.sin(ax[...,3:4])
omc = 1. -c
om = np.block([c+omc*ax[...,0:1]**2,
omc*ax[...,0:1]*ax[...,1:2] + s*ax[...,2:3],
omc*ax[...,0:1]*ax[...,2:3] - s*ax[...,1:2],
omc*ax[...,0:1]*ax[...,1:2] - s*ax[...,2:3],
c+omc*ax[...,1:2]**2,
omc*ax[...,1:2]*ax[...,2:3] + s*ax[...,0:1],
omc*ax[...,0:1]*ax[...,2:3] + s*ax[...,1:2],
omc*ax[...,1:2]*ax[...,2:3] - s*ax[...,0:1],
c+omc*ax[...,2:3]**2]).reshape(ax.shape[:-1]+(3,3))
return om if _P < 0.0 else np.swapaxes(om,-1,-2)
@staticmethod
def _ax2eu(ax):
"""Rotation matrix to Bunge Euler angles."""
return Rotation._om2eu(Rotation._ax2om(ax))
@staticmethod
def _ax2ro(ax):
"""Axis angle pair to Rodrigues-Frank vector."""
ro = np.block([ax[...,:3],
np.where(np.isclose(ax[...,3:4],np.pi,atol=1.e-15,rtol=.0),
np.inf,
np.tan(ax[...,3:4]*0.5))
])
ro[np.abs(ax[...,3])<1.e-6] = [.0,.0,_P,.0]
return ro
@staticmethod
def _ax2ho(ax):
"""Axis angle pair to homochoric vector."""
f = (0.75 * ( ax[...,3:4] - np.sin(ax[...,3:4]) ))**(1.0/3.0)
ho = ax[...,:3] * f
return ho
@staticmethod
def _ax2cu(ax):
"""Axis angle pair to cubochoric vector."""
return Rotation._ho2cu(Rotation._ax2ho(ax))
#---------- Rodrigues-Frank vector ----------
@staticmethod
def _ro2qu(ro):
"""Rodrigues-Frank vector to quaternion."""
return Rotation._ax2qu(Rotation._ro2ax(ro))
@staticmethod
def _ro2om(ro):
"""Rodgrigues-Frank vector to rotation matrix."""
return Rotation._ax2om(Rotation._ro2ax(ro))
@staticmethod
def _ro2eu(ro):
"""Rodrigues-Frank vector to Bunge-Euler angles."""
return Rotation._om2eu(Rotation._ro2om(ro))
@staticmethod
def _ro2ax(ro):
"""Rodrigues-Frank vector to axis angle pair."""
with np.errstate(invalid='ignore',divide='ignore'):
ax = np.where(np.isfinite(ro[...,3:4]),
np.block([ro[...,0:3]*np.linalg.norm(ro[...,0:3],axis=-1,keepdims=True),2.*np.arctan(ro[...,3:4])]),
np.block([ro[...,0:3],np.broadcast_to(np.pi,ro[...,3:4].shape)]))
ax[np.abs(ro[...,3]) < 1.e-8] = np.array([ 0.0, 0.0, 1.0, 0.0 ])
return ax
@staticmethod
def _ro2ho(ro):
"""Rodrigues-Frank vector to homochoric vector."""
f = np.where(np.isfinite(ro[...,3:4]),2.0*np.arctan(ro[...,3:4]) -np.sin(2.0*np.arctan(ro[...,3:4])),np.pi)
ho = np.where(np.broadcast_to(np.sum(ro[...,0:3]**2.0,axis=-1,keepdims=True) < 1.e-8,ro[...,0:3].shape),
np.zeros(3), ro[...,0:3]* (0.75*f)**(1.0/3.0))
return ho
@staticmethod
def _ro2cu(ro):
"""Rodrigues-Frank vector to cubochoric vector."""
return Rotation._ho2cu(Rotation._ro2ho(ro))
#---------- Homochoric vector----------
@staticmethod
def _ho2qu(ho):
"""Homochoric vector to quaternion."""
return Rotation._ax2qu(Rotation._ho2ax(ho))
@staticmethod
def _ho2om(ho):
"""Homochoric vector to rotation matrix."""
return Rotation._ax2om(Rotation._ho2ax(ho))
@staticmethod
def _ho2eu(ho):
"""Homochoric vector to Bunge-Euler angles."""
return Rotation._ax2eu(Rotation._ho2ax(ho))
@staticmethod
def _ho2ax(ho):
"""Homochoric vector to axis angle pair."""
tfit = np.array([+1.0000000000018852, -0.5000000002194847,
-0.024999992127593126, -0.003928701544781374,
-0.0008152701535450438, -0.0002009500426119712,
-0.00002397986776071756, -0.00008202868926605841,
+0.00012448715042090092, -0.0001749114214822577,
+0.0001703481934140054, -0.00012062065004116828,
+0.000059719705868660826, -0.00001980756723965647,
+0.000003953714684212874, -0.00000036555001439719544])
hmag_squared = np.sum(ho**2.,axis=-1,keepdims=True)
hm = hmag_squared.copy()
s = tfit[0] + tfit[1] * hmag_squared
for i in range(2,16):
hm *= hmag_squared
s += tfit[i] * hm
with np.errstate(invalid='ignore'):
ax = np.where(np.broadcast_to(np.abs(hmag_squared)<1.e-8,ho.shape[:-1]+(4,)),
[ 0.0, 0.0, 1.0, 0.0 ],
np.block([ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0))]))
return ax
@staticmethod
def _ho2ro(ho):
"""Axis angle pair to Rodrigues-Frank vector."""
return Rotation._ax2ro(Rotation._ho2ax(ho))
@staticmethod
def _ho2cu(ho):
"""
Homochoric vector to cubochoric vector.
References
----------
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
https://doi.org/10.1088/0965-0393/22/7/075013
"""
rs = np.linalg.norm(ho,axis=-1,keepdims=True)
xyz3 = np.take_along_axis(ho,Rotation._get_pyramid_order(ho,'forward'),-1)
with np.errstate(invalid='ignore',divide='ignore'):
# inverse M_3
xyz2 = xyz3[...,0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[...,2:3])) )
qxy = np.sum(xyz2**2,axis=-1,keepdims=True)
q2 = qxy + np.max(np.abs(xyz2),axis=-1,keepdims=True)**2
sq2 = np.sqrt(q2)
q = (_beta/np.sqrt(2.0)/_R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2))
tt = np.clip((np.min(np.abs(xyz2),axis=-1,keepdims=True)**2\
+np.max(np.abs(xyz2),axis=-1,keepdims=True)*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
T_inv = np.where(np.abs(xyz2[...,1:2]) <= np.abs(xyz2[...,0:1]),
np.block([np.ones_like(tt),np.arccos(tt)/np.pi*12.0]),
np.block([np.arccos(tt)/np.pi*12.0,np.ones_like(tt)]))*q
T_inv[xyz2<0.0] *= -1.0
T_inv[np.broadcast_to(np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-12),T_inv.shape)] = 0.0
cu = np.block([T_inv, np.where(xyz3[...,2:3]<0.0,-np.ones_like(xyz3[...,2:3]),np.ones_like(xyz3[...,2:3])) \
* rs/np.sqrt(6.0/np.pi),
])/ _sc
cu[np.isclose(np.sum(np.abs(ho),axis=-1),0.0,rtol=0.0,atol=1.0e-16)] = 0.0
cu = np.take_along_axis(cu,Rotation._get_pyramid_order(ho,'backward'),-1)
return cu
#---------- Cubochoric ----------
@staticmethod
def _cu2qu(cu):
"""Cubochoric vector to quaternion."""
return Rotation._ho2qu(Rotation._cu2ho(cu))
@staticmethod
def _cu2om(cu):
"""Cubochoric vector to rotation matrix."""
return Rotation._ho2om(Rotation._cu2ho(cu))
@staticmethod
def _cu2eu(cu):
"""Cubochoric vector to Bunge-Euler angles."""
return Rotation._ho2eu(Rotation._cu2ho(cu))
@staticmethod
def _cu2ax(cu):
"""Cubochoric vector to axis angle pair."""
return Rotation._ho2ax(Rotation._cu2ho(cu))
@staticmethod
def _cu2ro(cu):
"""Cubochoric vector to Rodrigues-Frank vector."""
return Rotation._ho2ro(Rotation._cu2ho(cu))
@staticmethod
def _cu2ho(cu):
"""
Cubochoric vector to homochoric vector.
References
----------
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
https://doi.org/10.1088/0965-0393/22/7/075013
"""
with np.errstate(invalid='ignore',divide='ignore'):
# get pyramide and scale by grid parameter ratio
XYZ = np.take_along_axis(cu,Rotation._get_pyramid_order(cu,'forward'),-1) * _sc
order = np.abs(XYZ[...,1:2]) <= np.abs(XYZ[...,0:1])
q = np.pi/12.0 * np.where(order,XYZ[...,1:2],XYZ[...,0:1]) \
/ np.where(order,XYZ[...,0:1],XYZ[...,1:2])
c = np.cos(q)
s = np.sin(q)
q = _R1*2.0**0.25/_beta/ np.sqrt(np.sqrt(2.0)-c) \
* np.where(order,XYZ[...,0:1],XYZ[...,1:2])
T = np.block([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
# transform to sphere grid (inverse Lambert)
c = np.sum(T**2,axis=-1,keepdims=True)
s = c * np.pi/24.0 /XYZ[...,2:3]**2
c = c * np.sqrt(np.pi/24.0)/XYZ[...,2:3]
q = np.sqrt( 1.0 - s)
ho = np.where(np.isclose(np.sum(np.abs(XYZ[...,0:2]),axis=-1,keepdims=True),0.0,rtol=0.0,atol=1.0e-16),
np.block([np.zeros_like(XYZ[...,0:2]),np.sqrt(6.0/np.pi) *XYZ[...,2:3]]),
np.block([np.where(order,T[...,0:1],T[...,1:2])*q,
np.where(order,T[...,1:2],T[...,0:1])*q,
np.sqrt(6.0/np.pi) * XYZ[...,2:3] - c])
)
ho[np.isclose(np.sum(np.abs(cu),axis=-1),0.0,rtol=0.0,atol=1.0e-16)] = 0.0
ho = np.take_along_axis(ho,Rotation._get_pyramid_order(cu,'backward'),-1)
return ho
@staticmethod
def _get_pyramid_order(xyz,direction=None):
"""
Get order of the coordinates.
Depending on the pyramid in which the point is located, the order need to be adjusted.
Parameters
----------
xyz : numpy.ndarray
coordinates of a point on a uniform refinable grid on a ball or
in a uniform refinable cubical grid.
References
----------
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
https://doi.org/10.1088/0965-0393/22/7/075013
"""
order = {'forward': np.array([[0,1,2],[1,2,0],[2,0,1]]),
'backward':np.array([[0,1,2],[2,0,1],[1,2,0]])}
p = np.where(np.maximum(np.abs(xyz[...,0]),np.abs(xyz[...,1])) <= np.abs(xyz[...,2]),0,
np.where(np.maximum(np.abs(xyz[...,1]),np.abs(xyz[...,2])) <= np.abs(xyz[...,0]),1,2))
return order[direction][p]