208 lines
8.3 KiB
Python
Executable File
208 lines
8.3 KiB
Python
Executable File
#!/usr/bin/python
|
|
|
|
import os,re,sys,math,string,numpy,damask
|
|
from optparse import OptionParser, Option
|
|
|
|
# -----------------------------
|
|
class extendableOption(Option):
|
|
# -----------------------------
|
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
|
|
|
ACTIONS = Option.ACTIONS + ("extend",)
|
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
|
|
|
def take_action(self, action, dest, opt, value, values, parser):
|
|
if action == "extend":
|
|
lvalue = value.split(",")
|
|
values.ensure_value(dest, []).extend(lvalue)
|
|
else:
|
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
|
|
def location(idx,res):
|
|
return ( idx % res[0], \
|
|
(idx // res[0]) % res[1], \
|
|
(idx // res[0] // res[1]) % res[2] )
|
|
|
|
def index(location,res):
|
|
return ( location[0] % res[0] + \
|
|
(location[1] % res[1]) * res[0] + \
|
|
(location[2] % res[2]) * res[0] * res[1] )
|
|
|
|
def prefixMultiply(what,len):
|
|
return {True: ['%i_%s'%(i+1,what) for i in range(len)],
|
|
False:[what]}[len>1]
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
|
Add column(s) containing curl of requested column(s).
|
|
Operates on periodic ordered three-dimensional data sets.
|
|
Deals with both vector- and tensor-valued fields.
|
|
|
|
""" + string.replace('$Id$','\n','\\n')
|
|
)
|
|
|
|
|
|
parser.add_option('-v','--vector', dest='vector', action='extend', type='string', \
|
|
help='heading of columns containing vector field values')
|
|
parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', \
|
|
help='heading of columns containing tensor field values')
|
|
parser.add_option('-d','--dimension', dest='dim', type='float', nargs=3, \
|
|
help='physical dimension of data set in x (fast) y z (slow) [%default]')
|
|
parser.add_option('-r','--resolution', dest='res', type='int', nargs=3, \
|
|
help='resolution of data set in x (fast) y z (slow)')
|
|
|
|
parser.set_defaults(vector = [])
|
|
parser.set_defaults(tensor = [])
|
|
parser.set_defaults(dim = [])
|
|
parser.set_defaults(skip = [0,0,0])
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
if len(options.vector) + len(options.tensor) == 0:
|
|
parser.error('no data column specified...')
|
|
if len(options.dim) < 3:
|
|
parser.error('improper dimension specification...')
|
|
if not options.res or len(options.res) < 3:
|
|
parser.error('improper resolution specification...')
|
|
|
|
resSkip = map(lambda (a,b): a+b,zip(options.res,options.skip))
|
|
datainfo = { # list of requested labels per datatype
|
|
'vector': {'len':3,
|
|
'label':[]},
|
|
'tensor': {'len':9,
|
|
'label':[]},
|
|
}
|
|
|
|
if options.vector != None: datainfo['vector']['label'] += options.vector
|
|
if options.tensor != None: datainfo['tensor']['label'] += options.tensor
|
|
|
|
# ------------------------------------------ setup file handles ---------------------------------------
|
|
|
|
files = []
|
|
if filenames == []:
|
|
files.append({'name':'STDIN', 'handle':sys.stdin})
|
|
else:
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name, 'handle':open(name)})
|
|
|
|
# ------------------------------------------ loop over input files ---------------------------------------
|
|
|
|
for file in files:
|
|
print file['name']
|
|
|
|
content = file['handle'].readlines()
|
|
file['handle'].close()
|
|
|
|
# get labels by either read the first row, or - if keyword header is present - the last line of the header
|
|
|
|
headerlines = 1
|
|
m = re.search('(\d+)\s*head', content[0].lower())
|
|
if m:
|
|
headerlines = int(m.group(1))
|
|
passOn = content[1:headerlines]
|
|
headers = content[headerlines].split()
|
|
data = content[headerlines+1:]
|
|
|
|
regexp = re.compile('1_\d+_')
|
|
for i,l in enumerate(headers):
|
|
if regexp.match(l):
|
|
headers[i] = l[2:]
|
|
|
|
active = {}
|
|
column = {}
|
|
values = {}
|
|
curl_field ={}
|
|
head = []
|
|
|
|
for datatype,info in datainfo.items():
|
|
for label in info['label']:
|
|
key = {True :'1_%s',
|
|
False:'%s' }[info['len']>1]%label
|
|
if key not in headers:
|
|
print 'column %s not found...'%key
|
|
else:
|
|
if datatype not in active: active[datatype] = []
|
|
if datatype not in column: column[datatype] = {}
|
|
if datatype not in values: values[datatype] = {}
|
|
if datatype not in curl_field: curl_field[datatype] = {}
|
|
active[datatype].append(label)
|
|
column[datatype][label] = headers.index(key)
|
|
values[datatype][label] = numpy.array([0.0 for i in xrange(datainfo[datatype]['len']*\
|
|
options.res[0]*options.res[1]*options.res[2])]).\
|
|
reshape((options.res[0],options.res[1],options.res[2],\
|
|
3,datainfo[datatype]['len']//3))
|
|
|
|
head += prefixMultiply('curlfft(%s)'%(label),datainfo[datatype]['len'])
|
|
|
|
# ------------------------------------------ assemble header ---------------------------------------
|
|
|
|
output = '%i\theader'%(headerlines+1) + '\n' + \
|
|
''.join(passOn) + \
|
|
string.replace('$Id$','\n','\\n')+ '\t' + \
|
|
' '.join(sys.argv[1:]) + '\n' + \
|
|
'\t'.join(headers + head) + '\n' # build extended header
|
|
|
|
# ------------------------------------------ read value field ---------------------------------------
|
|
|
|
idx = 0
|
|
for line in data:
|
|
items = line.split()[:len(headers)]
|
|
if len(items) < len(headers): # skip too short lines (probably comments or invalid)
|
|
continue
|
|
locSkip = location(idx,resSkip)
|
|
if ( locSkip[0] < options.res[0]
|
|
and locSkip[1] < options.res[1]
|
|
and locSkip[2] < options.res[2] ): # only take values that are not periodic images
|
|
for datatype,labels in active.items():
|
|
for label in labels:
|
|
values[datatype][label][locSkip[0]][locSkip[1]][locSkip[2]]\
|
|
= numpy.reshape(items[column[datatype][label]:
|
|
column[datatype][label]+datainfo[datatype]['len']],(3,datainfo[datatype]['len']//3))
|
|
idx += 1
|
|
else:
|
|
for datatype,labels in active.items():
|
|
for label in labels:
|
|
if label not in curl_field[datatype]: curl_field[datatype][label] = {}
|
|
curl_field[datatype][label] = numpy.array([0.0 for i in range((datainfo[datatype]['len'])*\
|
|
options.res[0]*options.res[1]*options.res[2])]).\
|
|
reshape(options.res[0],options.res[1],options.res[2],\
|
|
3,datainfo[datatype]['len']//3)
|
|
curl_field[datatype][label] = damask.core.math.curl_fft(options.res,options.dim,datainfo[datatype]['len']//3,values[datatype][label])
|
|
idx = 0
|
|
for line in data:
|
|
items = line.split()[:len(headers)]
|
|
if len(items) < len(headers):
|
|
continue
|
|
|
|
output += '\t'.join(items)
|
|
|
|
for datatype,labels in active.items():
|
|
for label in labels:
|
|
for i in range(3):
|
|
for j in range(datainfo[datatype]['len']//3):
|
|
output += '\t%f'%curl_field[datatype][label][location(idx,options.res)[0]][location(idx,options.res)[1]][location(idx,options.res)[2]][i][j]
|
|
output += '\n'
|
|
idx += 1
|
|
|
|
|
|
# ------------------------------------------ output result ---------------------------------------
|
|
|
|
if file['name'] == 'STDIN':
|
|
print output
|
|
else:
|
|
file['handle'] = open(file['name']+'_tmp','w')
|
|
try:
|
|
file['handle'].write(output)
|
|
file['handle'].close()
|
|
os.rename(file['name']+'_tmp',file['name'])
|
|
except:
|
|
print 'error during writing',file['name']+'_tmp'
|