DAMASK_EICMD/processing/pre/geom_fromTable.py

290 lines
14 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys,re,string,math
import scipy.spatial, numpy as np
from optparse import OptionParser
import damask
scriptID = string.replace('$Id$','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0]
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
identifiers = {
'grid': ['a','b','c'],
'size': ['x','y','z'],
'origin': ['x','y','z'],
}
mappings = {
'grid': lambda x: int(x),
'size': lambda x: float(x),
'origin': lambda x: float(x),
'homogenization': lambda x: int(x),
'microstructures': lambda x: int(x),
}
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Generate geometry description and material configuration from position, phase, and orientation data.
""", version = scriptID)
parser.add_option('--coordinates',
dest = 'coordinates',
type = 'string', metavar = 'string',
help = 'coordinates label')
parser.add_option('--phase',
dest = 'phase',
type = 'string', metavar = 'string',
help = 'phase label')
parser.add_option('-t', '--tolerance',
dest = 'tolerance',
type = 'float', metavar = 'float',
help = 'angular tolerance for orientation squashing [%default]')
parser.add_option('-e', '--eulers',
dest = 'eulers',
type = 'string', metavar = 'string',
help = 'Euler angles label')
parser.add_option('-d', '--degrees',
dest = 'degrees',
action = 'store_true',
help = 'angles are given in degrees [%default]')
parser.add_option('-m', '--matrix',
dest = 'matrix',
type = 'string', metavar = 'string',
help = 'orientation matrix label')
parser.add_option('-a',
dest='a',
type = 'string', metavar = 'string',
help = 'crystal frame a vector label')
parser.add_option('-b',
dest='b',
type = 'string', metavar = 'string',
help = 'crystal frame b vector label')
parser.add_option('-c',
dest = 'c',
type = 'string', metavar='string',
help = 'crystal frame c vector label')
parser.add_option('-q', '--quaternion',
dest = 'quaternion',
type = 'string', metavar='string',
help = 'quaternion label')
parser.add_option('--axes',
dest = 'axes',
type = 'string', nargs = 3, metavar = ' '.join(['string']*3),
help = 'orientation coordinate frame in terms of position coordinate frame [same]')
parser.add_option('-s', '--symmetry',
dest = 'symmetry',
action = 'extend', metavar = '<string LIST>',
help = 'crystal symmetry %default {{{}}} '.format(', '.join(damask.Symmetry.lattices[1:])))
parser.add_option('--homogenization',
dest = 'homogenization',
type = 'int', metavar = 'int',
help = 'homogenization index to be used [%default]')
parser.add_option('--crystallite',
dest = 'crystallite',
type = 'int', metavar = 'int',
help = 'crystallite index to be used [%default]')
parser.set_defaults(symmetry = [damask.Symmetry.lattices[-1]],
tolerance = 0.0,
degrees = False,
homogenization = 1,
crystallite = 1,
)
(options,filenames) = parser.parse_args()
input = [options.eulers != None,
options.a != None and \
options.b != None and \
options.c != None,
options.matrix != None,
options.quaternion != None,
]
if np.sum(input) != 1: parser.error('needs exactly one orientation input format...')
if options.axes != None and not set(options.axes).issubset(set(['x','+x','-x','y','+y','-y','z','+z','-z'])):
parser.error('invalid axes {axes[0]} {axes[1]} {axes[2]}'.format(axes=options.axes))
(label,dim,inputtype) = [(options.eulers,3,'eulers'),
([options.a,options.b,options.c],[3,3,3],'frame'),
(options.matrix,9,'matrix'),
(options.quaternion,4,'quaternion'),
][np.where(input)[0][0]] # select input label that was requested
toRadians = math.pi/180.0 if options.degrees else 1.0 # rescale degrees to radians
options.tolerance *= toRadians # ensure angular tolerance in radians
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = ['STDIN']
for name in filenames:
if not (name == 'STDIN' or os.path.exists(name)): continue
table = damask.ASCIItable(name = name, outname = os.path.splitext(name)[0] + '.geom',
buffered = False)
table.croak('\033[1m'+scriptName+'\033[0m'+(': '+name if name != 'STDIN' else ''))
# ------------------------------------------ read head ---------------------------------------
table.head_read() # read ASCII header info
# ------------------------------------------ sanity checks ---------------------------------------
errors = []
if table.label_dimension(options.coordinates) != 2:
errors.append('coordinates {} need to have two dimensions.'.format(options.coordinates))
if not np.all(table.label_dimension(label) == dim):
errors.append('orientation {} needs to have dimension {}.'.format(label,dim))
if options.phase != None and table.label_dimension(options.phase) != 1:
errors.append('phase column {} is not scalar.'.format(options.phase))
if errors == []: # so far no errors?
table.data_readArray([options.coordinates,label]+([] if options.phase == None else [options.phase]))
if options.phase == None:
table.data = np.column_stack((table.data,np.ones(len(table.data)))) # add single phase if no phase column given
coordsX = np.unique(table.data[:,0])
coordsY = np.unique(table.data[:,1])
nX = len(coordsX)
nY = len(coordsY)
dX = (coordsX[-1]-coordsX[0])/(nX-1)
dY = (coordsY[-1]-coordsY[0])/(nY-1)
if nX*nY != len(table.data) \
or np.any(np.abs(np.log10((coordsX[1:]-coordsX[:-1])/dX)) > 0.01) \
or np.any(np.abs(np.log10((coordsY[1:]-coordsY[:-1])/dY)) > 0.01):
errors.append('data is not on square grid.')
if errors != []:
table.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ process data ------------------------------------------
colOri = table.label_index(label) # column(s) of orientation data
colPhase = colOri + np.sum(dim) # column of phase data comes after orientation
index = np.lexsort((table.data[:,0],table.data[:,1])) # index of rank when sorting x fast, y slow
rank = np.argsort(index) # rank of index
KDTree = scipy.spatial.KDTree((table.data[:,:2]-np.array([coordsX[0],coordsY[0]])) \
/ np.array([dX,dY])) # build KDTree with dX = dY = 1
microstructure = np.zeros(nX*nY,dtype='uint32') # initialize empty microstructure
symQuats = [] # empty list of sym equiv orientations
phases = [] # empty list of phase info
nGrains = 0 # counter for detected grains
myRank = 0 # rank of current grid point
for y in xrange(nY):
for x in xrange(nX):
if (myRank+1)%(nX*nY/100.) < 1: table.croak('.',False)
myData = table.data[index[myRank]]
mySym = options.symmetry[min(int(myData[colPhase]),len(options.symmetry))-1] # select symmetry from option (take last specified option for all with higher index)
if inputtype == 'eulers':
o = damask.Orientation(Eulers=toRadians*\
np.array(map(float,myData[colOri:colOri+3])),
symmetry=mySym).reduced()
elif inputtype == 'matrix':
o = damask.Orientation(matrix=\
np.array([map(float,myData[colOri:colOri+9])]).reshape(3,3).transpose(),
symmetry=mySym).reduced()
elif inputtype == 'frame':
o = damask.Orientation(matrix=\
np.array([map(float,myData[colOri[0]:colOri[0]+3] + \
myData[colOri[1]:colOri[1]+3] + \
myData[colOri[2]:colOri[2]+3]
)]).reshape(3,3),
symmetry=mySym).reduced()
elif inputtype == 'quaternion':
o = damask.Orientation(quaternion=\
np.array(map(float,myData[colOri:colOri+4])),
symmetry=mySym).reduced()
oInv = o.quaternion.conjugated()
neighbors = KDTree.query_ball_point([x,y], 3) # search points within radius
breaker = False
for n in neighbors: # check each neighbor
if myRank <= rank[n] or table.data[n,colPhase] != myData[colPhase]: continue # skip myself, anyone further ahead (cannot yet have a grain ID), and other phases
for q in symQuats[microstructure[rank[n]]-1]:
if abs((q*oInv).asAngleAxis()[0]) <= options.tolerance: # found existing orientation resembling me
microstructure[myRank] = microstructure[rank[n]]
breaker = True; break
if breaker: break
if microstructure[myRank] == 0: # no other orientation resembled me
nGrains += 1 # make new grain ...
microstructure[myRank] = nGrains # ... and assign to me
symQuats.append(o.equivalentQuaternions()) # store all symmetrically equivalent orientations for future comparison
phases.append(myData[colPhase]) # store phase info for future reporting
myRank += 1
table.croak('')
# --- generate header ----------------------------------------------------------------------------
info = {
'grid': np.array([nX,nY,1]),
'size': np.array([coordsX[-1]-coordsX[0],
coordsY[-1]-coordsY[0],
min((coordsX[-1]-coordsX[0])/nX,
(coordsY[-1]-coordsY[0])/nY,
)
]),
'origin': np.array([coordsX[0],coordsY[0],0.0]),
'microstructures': nGrains,
'homogenization': options.homogenization,
}
table.croak(['grid a b c: %s'%(' x '.join(map(str,info['grid']))),
'size x y z: %s'%(' x '.join(map(str,info['size']))),
'origin x y z: %s'%(' : '.join(map(str,info['origin']))),
'homogenization: %i'%info['homogenization'],
'microstructures: %i'%info['microstructures'],
])
# --- write header ---------------------------------------------------------------------------------
formatwidth = 1+int(math.log10(info['microstructures']))
config_header = ['<microstructure>']
for i,phase in enumerate(phases):
config_header += ['[Grain%s]'%(str(i+1).zfill(formatwidth)),
'crystallite %i'%options.crystallite,
'(constituent)\tphase %i\ttexture %s\tfraction 1.0'%(phase,str(i+1).rjust(formatwidth)),
]
config_header += ['<texture>']
for i,quats in enumerate(symQuats):
config_header += ['[Grain%s]'%(str(i+1).zfill(formatwidth)),
'axes\t%s %s %s'%tuple(options.axes) if options.axes != None else '',
'(gauss)\tphi1 %g\tPhi %g\tphi2 %g\tscatter 0.0\tfraction 1.0'%tuple(np.degrees(quats[0].asEulers())),
]
table.labels_clear()
table.info_clear()
table.info_append([
scriptID + ' ' + ' '.join(sys.argv[1:]),
"grid\ta {grid[0]}\tb {grid[1]}\tc {grid[2]}".format(grid=info['grid']),
"size\tx {size[0]}\ty {size[1]}\tz {size[2]}".format(size=info['size']),
"origin\tx {origin[0]}\ty {origin[1]}\tz {origin[2]}".format(origin=info['origin']),
"homogenization\t{homog}".format(homog=info['homogenization']),
"microstructures\t{microstructures}".format(microstructures=info['microstructures']),
config_header,
])
table.head_write()
# --- write microstructure information ------------------------------------------------------------
table.data = microstructure.reshape(info['grid'][1]*info['grid'][2],info['grid'][0])
table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ')
#--- output finalization --------------------------------------------------------------------------
table.close()