DAMASK_EICMD/src/grid/grid_thermal_spectral.f90

383 lines
16 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Shaokang Zhang, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Spectral solver for thermal conduction
!--------------------------------------------------------------------------------------------------
module grid_thermal_spectral
#include <petsc/finclude/petscsnes.h>
#include <petsc/finclude/petscdmda.h>
use PETScDMDA
use PETScSNES
#if (PETSC_VERSION_MAJOR==3 && PETSC_VERSION_MINOR>14) && !defined(PETSC_HAVE_MPI_F90MODULE_VISIBILITY)
use MPI_f08
#endif
use prec
use parallelization
use IO
use CLI
use HDF5_utilities
use HDF5
use spectral_utilities
use discretization_grid
use homogenization
use YAML_types
use config
implicit none
private
type :: tNumerics
integer :: &
itmax !< maximum number of iterations
real(pReal) :: &
eps_thermal_atol, & !< absolute tolerance for thermal equilibrium
eps_thermal_rtol !< relative tolerance for thermal equilibrium
end type tNumerics
type(tNumerics) :: num
type(tSolutionParams) :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
SNES :: SNES_thermal
Vec :: solution_vec
real(pReal), dimension(:,:,:), allocatable :: &
T_current, & !< field of current temperature
T_lastInc, & !< field of previous temperature
T_stagInc !< field of staggered temperature
!--------------------------------------------------------------------------------------------------
! reference diffusion tensor, mobility etc.
integer :: totalIter = 0 !< total iteration in current increment
real(pReal), dimension(3,3) :: K_ref
real(pReal) :: mu_ref
public :: &
grid_thermal_spectral_init, &
grid_thermal_spectral_solution, &
grid_thermal_spectral_restartWrite, &
grid_thermal_spectral_forward
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data
!--------------------------------------------------------------------------------------------------
subroutine grid_thermal_spectral_init()
PetscInt, dimension(0:worldsize-1) :: localK
integer :: i, j, k, ce
DM :: thermal_grid
PetscScalar, dimension(:,:,:), pointer :: T_PETSc
integer(MPI_INTEGER_KIND) :: err_MPI
PetscErrorCode :: err_PETSc
integer(HID_T) :: fileHandle, groupHandle
class(tNode), pointer :: &
num_grid
print'(/,1x,a)', '<<<+- grid_thermal_spectral init -+>>>'
print'(/,1x,a)', 'P. Shanthraj et al., Handbook of Mechanics of Materials, 2019'
print'( 1x,a)', 'https://doi.org/10.1007/978-981-10-6855-3_80'
!-------------------------------------------------------------------------------------------------
! read numerical parameters and do sanity checks
num_grid => config_numerics%get('grid',defaultVal=emptyDict)
num%itmax = num_grid%get_asInt ('itmax', defaultVal=250)
num%eps_thermal_atol = num_grid%get_asFloat ('eps_thermal_atol',defaultVal=1.0e-2_pReal)
num%eps_thermal_rtol = num_grid%get_asFloat ('eps_thermal_rtol',defaultVal=1.0e-6_pReal)
if (num%itmax <= 1) call IO_error(301,ext_msg='itmax')
if (num%eps_thermal_atol <= 0.0_pReal) call IO_error(301,ext_msg='eps_thermal_atol')
if (num%eps_thermal_rtol <= 0.0_pReal) call IO_error(301,ext_msg='eps_thermal_rtol')
!--------------------------------------------------------------------------------------------------
! set default and user defined options for PETSc
call PetscOptionsInsertString(PETSC_NULL_OPTIONS,'-thermal_snes_type newtonls -thermal_snes_mf &
&-thermal_snes_ksp_ew -thermal_ksp_type fgmres',err_PETSc)
CHKERRQ(err_PETSc)
call PetscOptionsInsertString(PETSC_NULL_OPTIONS,num_grid%get_asString('petsc_options',defaultVal=''),err_PETSc)
CHKERRQ(err_PETSc)
!--------------------------------------------------------------------------------------------------
! init fields
T_current = discretization_grid_getInitialCondition('T')
T_lastInc = T_current
T_stagInc = T_current
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
call SNESCreate(PETSC_COMM_WORLD,SNES_thermal,err_PETSc)
CHKERRQ(err_PETSc)
call SNESSetOptionsPrefix(SNES_thermal,'thermal_',err_PETSc)
CHKERRQ(err_PETSc)
localK = 0_pPetscInt
localK(worldrank) = int(cells3,pPetscInt)
call MPI_Allreduce(MPI_IN_PLACE,localK,worldsize,MPI_INTEGER,MPI_SUM,MPI_COMM_WORLD,err_MPI)
if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error'
call DMDACreate3D(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary
DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point
int(cells(1),pPetscInt),int(cells(2),pPetscInt),int(cells(3),pPetscInt), & ! global cells
1_pPetscInt, 1_pPetscInt, int(worldsize,pPetscInt), &
1_pPetscInt, 0_pPetscInt, & ! #dof (T, scalar), ghost boundary width (domain overlap)
[int(cells(1),pPetscInt)],[int(cells(2),pPetscInt)],localK, & ! local cells
thermal_grid,err_PETSc) ! handle, error
CHKERRQ(err_PETSc)
call DMsetFromOptions(thermal_grid,err_PETSc)
CHKERRQ(err_PETSc)
call DMsetUp(thermal_grid,err_PETSc)
CHKERRQ(err_PETSc)
call DMCreateGlobalVector(thermal_grid,solution_vec,err_PETSc) ! global solution vector (cells x 1, i.e. every def grad tensor)
CHKERRQ(err_PETSc)
call DMDASNESSetFunctionLocal(thermal_grid,INSERT_VALUES,formResidual,PETSC_NULL_SNES,err_PETSc) ! residual vector of same shape as solution vector
CHKERRQ(err_PETSc)
call SNESSetDM(SNES_thermal,thermal_grid,err_PETSc)
CHKERRQ(err_PETSc)
call SNESSetFromOptions(SNES_thermal,err_PETSc) ! pull it all together with additional CLI arguments
CHKERRQ(err_PETSc)
restartRead: if (CLI_restartInc > 0) then
print'(/,1x,a,i0,a)', 'reading restart data of increment ', CLI_restartInc, ' from file'
fileHandle = HDF5_openFile(getSolverJobName()//'_restart.hdf5','r')
groupHandle = HDF5_openGroup(fileHandle,'solver')
call HDF5_read(T_current,groupHandle,'T',.false.)
call HDF5_read(T_lastInc,groupHandle,'T_lastInc',.false.)
end if restartRead
ce = 0
do k = 1, cells3; do j = 1, cells(2); do i = 1, cells(1)
ce = ce + 1
call homogenization_thermal_setField(T_current(i,j,k),0.0_pReal,ce)
end do; end do; end do
call DMDAVecGetArrayF90(thermal_grid,solution_vec,T_PETSc,err_PETSc)
CHKERRQ(err_PETSc)
T_PETSc = T_current
call DMDAVecRestoreArrayF90(thermal_grid,solution_vec,T_PETSc,err_PETSc)
CHKERRQ(err_PETSc)
call updateReference()
end subroutine grid_thermal_spectral_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the spectral thermal scheme with internal iterations
!--------------------------------------------------------------------------------------------------
function grid_thermal_spectral_solution(Delta_t) result(solution)
real(pReal), intent(in) :: &
Delta_t !< increment in time for current solution
integer :: i, j, k, ce
type(tSolutionState) :: solution
PetscInt :: devNull
PetscReal :: T_min, T_max, stagNorm
integer(MPI_INTEGER_KIND) :: err_MPI
PetscErrorCode :: err_PETSc
SNESConvergedReason :: reason
solution%converged =.false.
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
params%Delta_t = Delta_t
call SNESSolve(SNES_thermal,PETSC_NULL_VEC,solution_vec,err_PETSc)
CHKERRQ(err_PETSc)
call SNESGetConvergedReason(SNES_thermal,reason,err_PETSc)
CHKERRQ(err_PETSc)
if (reason < 1) then
solution%converged = .false.
solution%iterationsNeeded = num%itmax
else
solution%converged = .true.
solution%iterationsNeeded = totalIter
end if
stagNorm = maxval(abs(T_current - T_stagInc))
call MPI_Allreduce(MPI_IN_PLACE,stagNorm,1_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD,err_MPI)
if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error'
solution%stagConverged = stagNorm < max(num%eps_thermal_atol, num%eps_thermal_rtol*maxval(T_current))
call MPI_Allreduce(MPI_IN_PLACE,solution%stagConverged,1_MPI_INTEGER_KIND,MPI_LOGICAL,MPI_LAND,MPI_COMM_WORLD,err_MPI)
if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error'
T_stagInc = T_current
!--------------------------------------------------------------------------------------------------
! updating thermal state
ce = 0
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1)
ce = ce + 1
call homogenization_thermal_setField(T_current(i,j,k),(T_current(i,j,k)-T_lastInc(i,j,k))/params%Delta_t,ce)
end do; end do; end do
call VecMin(solution_vec,devNull,T_min,err_PETSc)
CHKERRQ(err_PETSc)
call VecMax(solution_vec,devNull,T_max,err_PETSc)
CHKERRQ(err_PETSc)
if (solution%converged) &
print'(/,1x,a)', '... thermal conduction converged ..................................'
print'(/,1x,a,f8.4,2x,f8.4,2x,f8.4)', 'Minimum|Maximum|Delta Temperature / K = ', T_min, T_max, stagNorm
print'(/,1x,a)', '==========================================================================='
flush(IO_STDOUT)
end function grid_thermal_spectral_solution
!--------------------------------------------------------------------------------------------------
!> @brief forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine grid_thermal_spectral_forward(cutBack)
logical, intent(in) :: cutBack
integer :: i, j, k, ce
DM :: dm_local
PetscScalar, dimension(:,:,:), pointer :: T_PETSc
PetscErrorCode :: err_PETSc
if (cutBack) then
T_current = T_lastInc
T_stagInc = T_lastInc
!--------------------------------------------------------------------------------------------------
! reverting thermal field state
call SNESGetDM(SNES_thermal,dm_local,err_PETSc)
CHKERRQ(err_PETSc)
call DMDAVecGetArrayF90(dm_local,solution_vec,T_PETSc,err_PETSc) !< get the data out of PETSc to work with
CHKERRQ(err_PETSc)
T_PETSc = T_current
call DMDAVecRestoreArrayF90(dm_local,solution_vec,T_PETSc,err_PETSc)
CHKERRQ(err_PETSc)
ce = 0
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1)
ce = ce + 1
call homogenization_thermal_setField(T_current(i,j,k),(T_current(i,j,k)-T_lastInc(i,j,k))/params%Delta_t,ce)
end do; end do; end do
else
T_lastInc = T_current
call updateReference
end if
end subroutine grid_thermal_spectral_forward
!--------------------------------------------------------------------------------------------------
!> @brief Write current solver and constitutive data for restart to file
!--------------------------------------------------------------------------------------------------
subroutine grid_thermal_spectral_restartWrite
PetscErrorCode :: err_PETSc
DM :: dm_local
integer(HID_T) :: fileHandle, groupHandle
PetscScalar, dimension(:,:,:), pointer :: T
call SNESGetDM(SNES_thermal,dm_local,err_PETSc);
CHKERRQ(err_PETSc)
call DMDAVecGetArrayF90(dm_local,solution_vec,T,err_PETSc);
CHKERRQ(err_PETSc)
print'(1x,a)', 'writing thermal solver data required for restart to file'; flush(IO_STDOUT)
fileHandle = HDF5_openFile(getSolverJobName()//'_restart.hdf5','a')
groupHandle = HDF5_openGroup(fileHandle,'solver')
call HDF5_write(T,groupHandle,'T')
call HDF5_write(T_lastInc,groupHandle,'T_lastInc')
call HDF5_closeGroup(groupHandle)
call HDF5_closeFile(fileHandle)
call DMDAVecRestoreArrayF90(dm_local,solution_vec,T,err_PETSc);
CHKERRQ(err_PETSc)
end subroutine grid_thermal_spectral_restartWrite
!--------------------------------------------------------------------------------------------------
!> @brief forms the spectral thermal residual vector
!--------------------------------------------------------------------------------------------------
subroutine formResidual(in,x_scal,r,dummy,err_PETSc)
DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, dimension( &
XG_RANGE,YG_RANGE,ZG_RANGE), intent(in) :: &
x_scal
PetscScalar, dimension( &
X_RANGE,Y_RANGE,Z_RANGE), intent(out) :: &
r
PetscObject :: dummy
PetscErrorCode :: err_PETSc
integer :: i, j, k, ce
T_current = x_scal
!--------------------------------------------------------------------------------------------------
! evaluate polarization field
scalarField_real = 0.0_pReal
scalarField_real(1:cells(1),1:cells(2),1:cells3) = T_current
call utilities_FFTscalarForward
call utilities_fourierScalarGradient !< calculate gradient of temperature field
call utilities_FFTvectorBackward
ce = 0
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1)
ce = ce + 1
vectorField_real(1:3,i,j,k) = matmul(homogenization_K_T(ce) - K_ref, vectorField_real(1:3,i,j,k))
end do; end do; end do
call utilities_FFTvectorForward
call utilities_fourierVectorDivergence !< calculate temperature divergence in fourier field
call utilities_FFTscalarBackward
ce = 0
do k = 1, cells3; do j = 1, cells(2); do i = 1,cells(1)
ce = ce + 1
scalarField_real(i,j,k) = params%Delta_t*(scalarField_real(i,j,k) + homogenization_f_T(ce)) &
+ homogenization_mu_T(ce) * (T_lastInc(i,j,k) - T_current(i,j,k)) &
+ mu_ref*T_current(i,j,k)
end do; end do; end do
!--------------------------------------------------------------------------------------------------
! convolution of temperature field with green operator
call utilities_FFTscalarForward
call utilities_fourierGreenConvolution(K_ref, mu_ref, params%Delta_t)
call utilities_FFTscalarBackward
!--------------------------------------------------------------------------------------------------
! constructing residual
r = T_current - scalarField_real(1:cells(1),1:cells(2),1:cells3)
err_PETSc = 0
end subroutine formResidual
!--------------------------------------------------------------------------------------------------
!> @brief update reference viscosity and conductivity
!--------------------------------------------------------------------------------------------------
subroutine updateReference()
integer :: ce
integer(MPI_INTEGER_KIND) :: err_MPI
K_ref = 0.0_pReal
mu_ref = 0.0_pReal
do ce = 1, product(cells(1:2))*cells3
K_ref = K_ref + homogenization_K_T(ce)
mu_ref = mu_ref + homogenization_mu_T(ce)
end do
K_ref = K_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,K_ref,9_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI)
if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error'
mu_ref = mu_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mu_ref,1_MPI_INTEGER_KIND,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD,err_MPI)
if (err_MPI /= 0_MPI_INTEGER_KIND) error stop 'MPI error'
end subroutine updateReference
end module grid_thermal_spectral