DAMASK_EICMD/processing/post/addCompatibilityMismatch.py

338 lines
16 KiB
Python
Executable File

#!/usr/bin/env python2
# -*- coding: UTF-8 no BOM -*-
import os
import math
import numpy as np
import scipy.ndimage
from optparse import OptionParser
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
#--------------------------------------------------------------------------------------------------
def cell2node(cellData,grid):
nodeData = 0.0
datalen = np.array(cellData.shape[3:]).prod()
for i in xrange(datalen):
node = scipy.ndimage.convolve(cellData.reshape(tuple(grid[::-1])+(datalen,))[...,i],
np.ones((2,2,2))/8., # 2x2x2 neighborhood of cells
mode = 'wrap',
origin = -1, # offset to have cell origin as center
) # now averaged at cell origins
node = np.append(node,node[np.newaxis,0,:,:,...],axis=0) # wrap along z
node = np.append(node,node[:,0,np.newaxis,:,...],axis=1) # wrap along y
node = np.append(node,node[:,:,0,np.newaxis,...],axis=2) # wrap along x
nodeData = node[...,np.newaxis] if i==0 else np.concatenate((nodeData,node[...,np.newaxis]),axis=-1)
return nodeData
#--------------------------------------------------------------------------------------------------
def deformationAvgFFT(F,grid,size,nodal=False,transformed=False):
"""calculate average cell center (or nodal) deformation for deformation gradient field specified in each grid cell"""
if nodal:
x, y, z = np.meshgrid(np.linspace(0,size[2],1+grid[2]),
np.linspace(0,size[1],1+grid[1]),
np.linspace(0,size[0],1+grid[0]),
indexing = 'ij')
else:
x, y, z = np.meshgrid(np.linspace(size[2]/grid[2]/2.,size[2]-size[2]/grid[2]/2.,grid[2]),
np.linspace(size[1]/grid[1]/2.,size[1]-size[1]/grid[1]/2.,grid[1]),
np.linspace(size[0]/grid[0]/2.,size[0]-size[0]/grid[0]/2.,grid[0]),
indexing = 'ij')
origCoords = np.concatenate((z[:,:,:,None],y[:,:,:,None],x[:,:,:,None]),axis = 3)
F_fourier = F if transformed else np.fft.rfftn(F,axes=(0,1,2)) # transform or use provided data
Favg = np.real(F_fourier[0,0,0,:,:])/grid.prod() # take zero freq for average
avgDeformation = np.einsum('ml,ijkl->ijkm',Favg,origCoords) # dX = Favg.X
return avgDeformation
#--------------------------------------------------------------------------------------------------
def displacementFluctFFT(F,grid,size,nodal=False,transformed=False):
"""calculate cell center (or nodal) displacement for deformation gradient field specified in each grid cell"""
integrator = 0.5j * size / math.pi
kk, kj, ki = np.meshgrid(np.where(np.arange(grid[2])>grid[2]//2,np.arange(grid[2])-grid[2],np.arange(grid[2])),
np.where(np.arange(grid[1])>grid[1]//2,np.arange(grid[1])-grid[1],np.arange(grid[1])),
np.arange(grid[0]//2+1),
indexing = 'ij')
k_s = np.concatenate((ki[:,:,:,None],kj[:,:,:,None],kk[:,:,:,None]),axis = 3)
k_sSquared = np.einsum('...l,...l',k_s,k_s)
k_sSquared[0,0,0] = 1.0 # ignore global average frequency
#--------------------------------------------------------------------------------------------------
# integration in Fourier space
displacement_fourier = -np.einsum('ijkml,ijkl,l->ijkm',
F if transformed else np.fft.rfftn(F,axes=(0,1,2)),
k_s,
integrator,
) / k_sSquared[...,np.newaxis]
#--------------------------------------------------------------------------------------------------
# backtransformation to real space
displacement = np.fft.irfftn(displacement_fourier,grid[::-1],axes=(0,1,2))
return cell2node(displacement,grid) if nodal else displacement
def volTetrahedron(coords):
"""
Return the volume of the tetrahedron with given vertices or sides.
Ifvertices are given they must be in a NumPy array with shape (4,3): the
position vectors of the 4 vertices in 3 dimensions; if the six sides are
given, they must be an array of length 6. If both are given, the sides
will be used in the calculation.
This method implements
Tartaglia's formula using the Cayley-Menger determinant:
|0 1 1 1 1 |
|1 0 s1^2 s2^2 s3^2|
288 V^2 = |1 s1^2 0 s4^2 s5^2|
|1 s2^2 s4^2 0 s6^2|
|1 s3^2 s5^2 s6^2 0 |
where s1, s2, ..., s6 are the tetrahedron side lengths.
from http://codereview.stackexchange.com/questions/77593/calculating-the-volume-of-a-tetrahedron
"""
# The indexes of rows in the vertices array corresponding to all
# possible pairs of vertices
vertex_pair_indexes = np.array(((0, 1), (0, 2), (0, 3),
(1, 2), (1, 3), (2, 3)))
# Get all the squares of all side lengths from the differences between
# the 6 different pairs of vertex positions
vertices = np.concatenate((coords[0],coords[1],coords[2],coords[3])).reshape([4,3])
vertex1, vertex2 = vertex_pair_indexes[:,0], vertex_pair_indexes[:,1]
sides_squared = np.sum((vertices[vertex1] - vertices[vertex2])**2,axis=-1)
# Set up the Cayley-Menger determinant
M = np.zeros((5,5))
# Fill in the upper triangle of the matrix
M[0,1:] = 1
# The squared-side length elements can be indexed using the vertex
# pair indices (compare with the determinant illustrated above)
M[tuple(zip(*(vertex_pair_indexes + 1)))] = sides_squared
# The matrix is symmetric, so we can fill in the lower triangle by
# adding the transpose
M = M + M.T
return np.sqrt(np.linalg.det(M) / 288)
def volumeMismatch(size,F,nodes):
"""
calculates the volume mismatch
volume mismatch is defined as the difference between volume of reconstructed
(compatible) cube and determinant of defgrad at the FP
"""
coords = np.empty([8,3])
vMismatch = np.empty(grid[::-1])
volInitial = size.prod()/grid.prod()
#--------------------------------------------------------------------------------------------------
# calculate actual volume and volume resulting from deformation gradient
for k in xrange(grid[2]):
for j in xrange(grid[1]):
for i in xrange(grid[0]):
coords[0,0:3] = nodes[k, j, i ,0:3]
coords[1,0:3] = nodes[k ,j, i+1,0:3]
coords[2,0:3] = nodes[k ,j+1,i+1,0:3]
coords[3,0:3] = nodes[k, j+1,i ,0:3]
coords[4,0:3] = nodes[k+1,j, i ,0:3]
coords[5,0:3] = nodes[k+1,j, i+1,0:3]
coords[6,0:3] = nodes[k+1,j+1,i+1,0:3]
coords[7,0:3] = nodes[k+1,j+1,i ,0:3]
vMismatch[k,j,i] = \
( abs(volTetrahedron([coords[6,0:3],coords[0,0:3],coords[7,0:3],coords[3,0:3]])) \
+ abs(volTetrahedron([coords[6,0:3],coords[0,0:3],coords[7,0:3],coords[4,0:3]])) \
+ abs(volTetrahedron([coords[6,0:3],coords[0,0:3],coords[2,0:3],coords[3,0:3]])) \
+ abs(volTetrahedron([coords[6,0:3],coords[0,0:3],coords[2,0:3],coords[1,0:3]])) \
+ abs(volTetrahedron([coords[6,0:3],coords[4,0:3],coords[1,0:3],coords[5,0:3]])) \
+ abs(volTetrahedron([coords[6,0:3],coords[4,0:3],coords[1,0:3],coords[0,0:3]]))) \
/np.linalg.det(F[k,j,i,0:3,0:3])
return vMismatch/volInitial
def shapeMismatch(size,F,nodes,centres):
"""
Routine to calculate the shape mismatch
shape mismatch is defined as difference between the vectors from the central point to
the corners of reconstructed (combatible) volume element and the vectors calculated by deforming
the initial volume element with the current deformation gradient
"""
coordsInitial = np.empty([8,3])
sMismatch = np.empty(grid[::-1])
#--------------------------------------------------------------------------------------------------
# initial positions
coordsInitial[0,0:3] = [-size[0]/grid[0],-size[1]/grid[1],-size[2]/grid[2]]
coordsInitial[1,0:3] = [+size[0]/grid[0],-size[1]/grid[1],-size[2]/grid[2]]
coordsInitial[2,0:3] = [+size[0]/grid[0],+size[1]/grid[1],-size[2]/grid[2]]
coordsInitial[3,0:3] = [-size[0]/grid[0],+size[1]/grid[1],-size[2]/grid[2]]
coordsInitial[4,0:3] = [-size[0]/grid[0],-size[1]/grid[1],+size[2]/grid[2]]
coordsInitial[5,0:3] = [+size[0]/grid[0],-size[1]/grid[1],+size[2]/grid[2]]
coordsInitial[6,0:3] = [+size[0]/grid[0],+size[1]/grid[1],+size[2]/grid[2]]
coordsInitial[7,0:3] = [-size[0]/grid[0],+size[1]/grid[1],+size[2]/grid[2]]
coordsInitial = coordsInitial/2.0
#--------------------------------------------------------------------------------------------------
# compare deformed original and deformed positions to actual positions
for k in xrange(grid[2]):
for j in xrange(grid[1]):
for i in xrange(grid[0]):
sMismatch[k,j,i] = \
+ np.linalg.norm(nodes[k, j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[0,0:3]))\
+ np.linalg.norm(nodes[k, j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[1,0:3]))\
+ np.linalg.norm(nodes[k, j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[2,0:3]))\
+ np.linalg.norm(nodes[k, j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[3,0:3]))\
+ np.linalg.norm(nodes[k+1,j, i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[4,0:3]))\
+ np.linalg.norm(nodes[k+1,j, i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[5,0:3]))\
+ np.linalg.norm(nodes[k+1,j+1,i+1,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[6,0:3]))\
+ np.linalg.norm(nodes[k+1,j+1,i ,0:3] - centres[k,j,i,0:3] - np.dot(F[k,j,i,:,:], coordsInitial[7,0:3]))
return sMismatch
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options file[s]', description = """
Add column(s) containing the shape and volume mismatch resulting from given deformation gradient.
Operates on periodic three-dimensional x,y,z-ordered data sets.
""", version = scriptID)
parser.add_option('-c','--coordinates',
dest = 'pos',
type = 'string', metavar = 'string',
help = 'column heading of coordinates [%default]')
parser.add_option('-f','--defgrad',
dest = 'defgrad',
type = 'string', metavar = 'string ',
help = 'column heading of deformation gradient [%default]')
parser.add_option('--no-shape','-s',
dest = 'shape',
action = 'store_false',
help = 'omit shape mismatch')
parser.add_option('--no-volume','-v',
dest = 'volume',
action = 'store_false',
help = 'omit volume mismatch')
parser.set_defaults(pos = 'pos',
defgrad = 'f',
shape = True,
volume = True,
)
(options,filenames) = parser.parse_args()
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
buffered = False)
except: continue
damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
remarks = []
if table.label_dimension(options.defgrad) != 9:
errors.append('deformation gradient "{}" is not a 3x3 tensor.'.format(options.defgrad))
coordDim = table.label_dimension(options.pos)
if not 3 >= coordDim >= 1:
errors.append('coordinates "{}" need to have one, two, or three dimensions.'.format(options.pos))
elif coordDim < 3:
remarks.append('appending {} dimension{} to coordinates "{}"...'.format(3-coordDim,
's' if coordDim < 2 else '',
options.pos))
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss=True)
continue
# --------------- figure out size and grid ---------------------------------------------------------
table.data_readArray([options.defgrad,options.pos])
table.data_rewind()
if len(table.data.shape) < 2: table.data.shape += (1,) # expand to 2D shape
if table.data[:,9:].shape[1] < 3:
table.data = np.hstack((table.data,
np.zeros((table.data.shape[0],
3-table.data[:,9:].shape[1]),dtype='f'))) # fill coords up to 3D with zeros
coords = [np.unique(table.data[:,9+i]) for i in xrange(3)]
mincorner = np.array(map(min,coords))
maxcorner = np.array(map(max,coords))
grid = np.array(map(len,coords),'i')
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 set to smallest among other spacings
N = grid.prod()
if N != len(table.data): errors.append('data count {} does not match grid {}x{}x{}.'.format(N,*grid))
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# -----------------------------process data and assemble header -------------------------------------
F_fourier = np.fft.rfftn(table.data[:,:9].reshape(grid[2],grid[1],grid[0],3,3),axes=(0,1,2)) # perform transform only once...
nodes = displacementFluctFFT(F_fourier,grid,size,True,transformed=True)\
+ deformationAvgFFT (F_fourier,grid,size,True,transformed=True)
if options.shape:
table.labels_append(['shapeMismatch({})'.format(options.defgrad)])
centres = displacementFluctFFT(F_fourier,grid,size,False,transformed=True)\
+ deformationAvgFFT (F_fourier,grid,size,False,transformed=True)
if options.volume:
table.labels_append(['volMismatch({})'.format(options.defgrad)])
table.head_write()
if options.shape:
shapeMismatch = shapeMismatch( size,table.data[:,:9].reshape(grid[2],grid[1],grid[0],3,3),nodes,centres)
if options.volume:
volumeMismatch = volumeMismatch(size,table.data[:,:9].reshape(grid[2],grid[1],grid[0],3,3),nodes)
# ------------------------------------------ output data -------------------------------------------
for i in xrange(grid[2]):
for j in xrange(grid[1]):
for k in xrange(grid[0]):
table.data_read()
if options.shape: table.data_append(shapeMismatch[i,j,k])
if options.volume: table.data_append(volumeMismatch[i,j,k])
table.data_write()
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables