DAMASK_EICMD/processing/pre/seeds_fromDistribution.py

293 lines
15 KiB
Python
Executable File

#!/usr/bin/env python2.7
# -*- coding: UTF-8 no BOM -*-
import threading,time,os,sys,random
import numpy as np
from optparse import OptionParser
from cStringIO import StringIO
import damask
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
mismatch = None
currentSeedsName = None
#---------------------------------------------------------------------------------------------------
class myThread (threading.Thread):
"""perturbes seed in seed file, performes Voronoi tessellation, evaluates, and updates best match"""
def __init__(self, threadID):
threading.Thread.__init__(self)
self.threadID = threadID
def run(self):
global bestSeedsUpdate
global bestSeedsVFile
global nMicrostructures
global delta
global points
global target
global match
global baseFile
global maxSeeds
s.acquire()
bestMatch = match
s.release()
random.seed(options.randomSeed+self.threadID) # initializes to given seeds
knownSeedsUpdate = bestSeedsUpdate -1.0 # trigger update of local best seeds
randReset = True # aquire new direction
myBestSeedsVFile = StringIO() # store local copy of best seeds file
perturbedSeedsVFile = StringIO() # perturbed best seeds file
perturbedGeomVFile = StringIO() # tessellated geom file
#--- still not matching desired bin class ----------------------------------------------------------
while bestMatch < options.threshold:
s.acquire() # ensure only one thread acces global data
if bestSeedsUpdate > knownSeedsUpdate: # write best fit to virtual file
knownSeedsUpdate = bestSeedsUpdate
bestSeedsVFile.reset()
myBestSeedsVFile.close()
myBestSeedsVFile = StringIO()
i=0
for line in bestSeedsVFile:
myBestSeedsVFile.write(line)
s.release()
if randReset: # new direction because current one led to worse fit
randReset = False
NmoveGrains = random.randrange(1,maxSeeds)
selectedMs = []
direction = []
for i in range(NmoveGrains):
selectedMs.append(random.randrange(1,nMicrostructures))
direction.append(np.array(((random.random()-0.5)*delta[0],
(random.random()-0.5)*delta[1],
(random.random()-0.5)*delta[2])))
perturbedSeedsVFile.close() # reset virtual file
perturbedSeedsVFile = StringIO()
myBestSeedsVFile.reset()
perturbedSeedsTable = damask.ASCIItable(myBestSeedsVFile,perturbedSeedsVFile,labeled=True) # write best fit to perturbed seed file
perturbedSeedsTable.head_read()
perturbedSeedsTable.head_write()
outputAlive=True
ms = 1
i = 0
while outputAlive and perturbedSeedsTable.data_read(): # perturbe selected microstructure
if ms in selectedMs:
newCoords=np.array(tuple(map(float,perturbedSeedsTable.data[0:3]))+direction[i])
newCoords=np.where(newCoords>=1.0,newCoords-1.0,newCoords) # ensure that the seeds remain in the box
newCoords=np.where(newCoords <0.0,newCoords+1.0,newCoords)
perturbedSeedsTable.data[0:3]=[format(f, '8.6f') for f in newCoords]
direction[i]*=2.
i+= 1
ms+=1
perturbedSeedsTable.data_write()
#--- do tesselation with perturbed seed file ----------------------------------------------------------
perturbedGeomVFile.close()
perturbedGeomVFile = StringIO()
perturbedSeedsVFile.reset()
perturbedGeomVFile.write(damask.util.execute('geom_fromVoronoiTessellation '+
' -g '+' '.join(map(str, options.grid)),streamIn=perturbedSeedsVFile)[0])
perturbedGeomVFile.reset()
#--- evaluate current seeds file ----------------------------------------------------------------------
perturbedGeomTable = damask.ASCIItable(perturbedGeomVFile,None,labeled=False,readonly=True)
perturbedGeomTable.head_read()
for i in perturbedGeomTable.info:
if i.startswith('microstructures'): myNmicrostructures = int(i.split('\t')[1])
perturbedGeomTable.data_readArray()
perturbedGeomTable.output_flush()
currentData=np.bincount(perturbedGeomTable.data.astype(int).ravel())[1:]/points
currentError=[]
currentHist=[]
for i in range(nMicrostructures): # calculate the deviation in all bins per histogram
currentHist.append(np.histogram(currentData,bins=target[i]['bins'])[0])
currentError.append(np.sqrt(np.square(np.array(target[i]['histogram']-currentHist[i])).sum()))
# as long as not all grains are within the range of the target, use the deviation to left and right as error
if currentError[0]>0.0:
currentError[0] *=((target[0]['bins'][0]-np.min(currentData))**2.0+
(target[0]['bins'][1]-np.max(currentData))**2.0)**0.5 # norm of deviations by number of usual bin deviation
s.acquire() # do the evaluation serially
bestMatch = match
#--- count bin classes with no mismatch ----------------------------------------------------------------------
myMatch=0
for i in range(nMicrostructures):
if currentError[i] > 0.0: break
myMatch = i+1
if myNmicrostructures == nMicrostructures:
for i in range(min(nMicrostructures,myMatch+options.bins)):
if currentError[i] > target[i]['error']: # worse fitting, next try
randReset = True
break
elif currentError[i] < target[i]['error']: # better fit
bestSeedsUpdate = time.time() # save time of better fit
damask.util.croak('Thread {:d}: Better match ({:d} bins, {:6.4f} --> {:6.4f})'\
.format(self.threadID,i+1,target[i]['error'],currentError[i]))
damask.util.croak(' target: '+np.array_str(target[i]['histogram']))
damask.util.croak(' best: '+np.array_str(currentHist[i]))
currentSeedsName = baseFile+'_'+str(bestSeedsUpdate).replace('.','-') # name of new seed file (use time as unique identifier)
perturbedSeedsVFile.reset()
bestSeedsVFile.close()
bestSeedsVFile = StringIO()
sys.stdout.flush()
with open(currentSeedsName+'.seeds','w') as currentSeedsFile: # write to new file
for line in perturbedSeedsVFile:
currentSeedsFile.write(line)
bestSeedsVFile.write(line)
for j in range(nMicrostructures): # save new errors for all bins
target[j]['error'] = currentError[j]
if myMatch > match: # one or more new bins have no deviation
damask.util.croak( 'Stage {:d} cleared'.format(myMatch))
match=myMatch
sys.stdout.flush()
break
if i == min(nMicrostructures,myMatch+options.bins)-1: # same quality as before: take it to keep on moving
bestSeedsUpdate = time.time()
perturbedSeedsVFile.reset()
bestSeedsVFile.close()
bestSeedsVFile = StringIO()
for line in perturbedSeedsVFile:
bestSeedsVFile.write(line)
for j in range(nMicrostructures):
target[j]['error'] = currentError[j]
randReset = True
else: #--- not all grains are tessellated
damask.util.croak('Thread {:d}: Microstructure mismatch ({:d} microstructures mapped)'\
.format(self.threadID,myNmicrostructures))
randReset = True
s.release()
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Monte Carlo simulation to produce seed file that gives same size distribution like given geometry file.
""", version = scriptID)
parser.add_option('-s','--seeds', dest='seedFile', metavar='string',
help='name of the intial seed file. If not found, a new one is created [%default]')
parser.add_option('-g','--grid', dest='grid', type='int', nargs=3, metavar='int int int',
help='a,b,c grid of hexahedral box [%default]')
parser.add_option('-t','--threads', dest='threads', type='int', metavar='int',
help='number of parallel executions [%default]')
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int',
help='seed of random number generator [%default]')
parser.add_option('--target', dest='target', metavar='string',
help='name of the geom file with target distribution [%default]')
parser.add_option('--tolerance', dest='threshold', type='int', metavar='int',
help='stopping criterion (bin number) [%default]')
parser.add_option('--scale', dest='scale',type='float', metavar='float',
help='maximum moving distance of perturbed seed in pixel [%default]')
parser.add_option('--bins', dest='bins', type='int', metavar='int',
help='bins to sort beyond current best fit [%default]')
parser.add_option('--maxseeds', dest='maxseeds', type='int', metavar='int',
help='maximum number of seeds to move simulateneously [number of seeds]')
parser.set_defaults(seedFile = 'seeds')
parser.set_defaults(grid = (64,64,64))
parser.set_defaults(threads = 2)
parser.set_defaults(randomSeed = None)
parser.set_defaults(target = 'geom')
parser.set_defaults(threshold = 20)
parser.set_defaults(bins = 15)
parser.set_defaults(scale = 1.0)
parser.set_defaults(maxseeds = 0)
options = parser.parse_args()[0]
damask.util.report(scriptName,options.seedFile)
if options.randomSeed is None:
options.randomSeed = int(os.urandom(4).encode('hex'), 16)
damask.util.croak(options.randomSeed)
delta = (options.scale/options.grid[0],options.scale/options.grid[1],options.scale/options.grid[2])
baseFile=os.path.splitext(os.path.basename(options.seedFile))[0]
points = np.array(options.grid).prod().astype('float')
# ----------- calculate target distribution and bin edges
targetGeomFile = os.path.splitext(os.path.basename(options.target))[0]+'.geom'
targetGeomTable = damask.ASCIItable(targetGeomFile,None,labeled=False,readonly=True)
targetGeomTable.head_read()
info,devNull = targetGeomTable.head_getGeom()
nMicrostructures = info['microstructures']
targetVolFrac = np.bincount(targetGeomTable.microstructure_read(info['grid']))[1:nMicrostructures+1]/\
float(info['grid'].prod())
target=[]
for i in range(1,nMicrostructures+1):
targetHist,targetBins = np.histogram(targetVolFrac,bins=i) #bin boundaries
target.append({'histogram':targetHist,'bins':targetBins})
# ----------- create initial seed file or open existing one
bestSeedsVFile = StringIO()
if os.path.isfile(os.path.splitext(options.seedFile)[0]+'.seeds'):
with open(os.path.splitext(options.seedFile)[0]+'.seeds') as initialSeedFile:
for line in initialSeedFile: bestSeedsVFile.write(line)
else:
bestSeedsVFile.write(damask.util.execute('seeds_fromRandom'+\
' -g '+' '.join(map(str, options.grid))+\
' -r {:d}'.format(options.randomSeed)+\
' -N '+str(nMicrostructures))[0])
bestSeedsUpdate = time.time()
# ----------- tessellate initial seed file to get and evaluate geom file
bestSeedsVFile.reset()
initialGeomVFile = StringIO()
initialGeomVFile.write(damask.util.execute('geom_fromVoronoiTessellation '+
' -g '+' '.join(map(str, options.grid)),bestSeedsVFile)[0])
initialGeomVFile.reset()
initialGeomTable = damask.ASCIItable(initialGeomVFile,None,labeled=False,readonly=True)
initialGeomTable.head_read()
info,devNull = initialGeomTable.head_getGeom()
if info['microstructures'] != nMicrostructures: damask.util.croak('error. Microstructure count mismatch')
initialData = np.bincount(initialGeomTable.microstructure_read(info['grid']))/points
for i in range(nMicrostructures):
initialHist = np.histogram(initialData,bins=target[i]['bins'])[0]
target[i]['error']=np.sqrt(np.square(np.array(target[i]['histogram']-initialHist)).sum())
# as long as not all grain sizes are within the range, the error is the deviation to left and right
if target[0]['error'] > 0.0:
target[0]['error'] *=((target[0]['bins'][0]-np.min(initialData))**2.0+
(target[0]['bins'][1]-np.max(initialData))**2.0)**0.5
match=0
for i in range(nMicrostructures):
if target[i]['error'] > 0.0: break
match = i+1
if options.maxseeds < 1:
maxSeeds = info['microstructures']
else:
maxSeeds = options.maxseeds
if match >0: damask.util.croak('Stage {:d} cleared'.format(match))
sys.stdout.flush()
initialGeomVFile.close()
# start mulithreaded monte carlo simulation
threads=[]
s=threading.Semaphore(1)
for i in range(options.threads):
threads.append(myThread(i))
threads[i].start()
for i in range(options.threads):
threads[i].join()