DAMASK_EICMD/src/homogenization.f90

463 lines
18 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
!--------------------------------------------------------------------------------------------------
module homogenization
use prec
use IO
use config
use math
use material
use phase
use discretization
use damage_none
use damage_nonlocal
use HDF5_utilities
use results
implicit none
private
logical, public :: &
terminallyIll = .false. !< at least one material point is terminally ill
!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point
real(pReal), dimension(:,:,:), allocatable, public :: &
homogenization_F0, & !< def grad of IP at start of FE increment
homogenization_F !< def grad of IP to be reached at end of FE increment
real(pReal), dimension(:,:,:), allocatable, public :: & !, protected :: & Issue with ifort
homogenization_P !< first P--K stress of IP
real(pReal), dimension(:,:,:,:,:), allocatable, public :: & !, protected :: &
homogenization_dPdF !< tangent of first P--K stress at IP
!--------------------------------------------------------------------------------------------------
type :: tNumerics
integer :: &
nMPstate !< materialpoint state loop limit
end type tNumerics
type(tNumerics) :: num
!--------------------------------------------------------------------------------------------------
interface
module subroutine mech_init(num_homog)
class(tNode), pointer, intent(in) :: &
num_homog !< pointer to mechanical homogenization numerics data
end subroutine mech_init
module subroutine thermal_init
end subroutine thermal_init
module subroutine damage_init
end subroutine damage_init
module subroutine mech_partition(subF,ip,el)
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
end subroutine mech_partition
module subroutine thermal_partition(ce)
integer, intent(in) :: ce
end subroutine thermal_partition
module subroutine damage_partition(ce)
integer, intent(in) :: ce
end subroutine damage_partition
module subroutine thermal_homogenize(ip,el)
integer, intent(in) :: ip,el
end subroutine thermal_homogenize
module subroutine mech_homogenize(dt,ip,el)
real(pReal), intent(in) :: dt
integer, intent(in) :: &
ip, & !< integration point
el !< element number
end subroutine mech_homogenize
module subroutine mech_results(group_base,h)
character(len=*), intent(in) :: group_base
integer, intent(in) :: h
end subroutine mech_results
module function mech_updateState(subdt,subF,ip,el) result(doneAndHappy)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
logical, dimension(2) :: doneAndHappy
end function mech_updateState
module function thermal_conduction_getConductivity(ip,el) result(K)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: K
end function thermal_conduction_getConductivity
module function thermal_conduction_getSpecificHeat(ce) result(c_P)
integer, intent(in) :: ce
real(pReal) :: c_P
end function thermal_conduction_getSpecificHeat
module function thermal_conduction_getMassDensity(ce) result(rho)
integer, intent(in) :: ce
real(pReal) :: rho
end function thermal_conduction_getMassDensity
module subroutine homogenization_thermal_setField(T,dot_T, ce)
integer, intent(in) :: ce
real(pReal), intent(in) :: T, dot_T
end subroutine homogenization_thermal_setField
module subroutine thermal_conduction_results(ho,group)
integer, intent(in) :: ho
character(len=*), intent(in) :: group
end subroutine thermal_conduction_results
module function homogenization_thermal_T(ce) result(T)
integer, intent(in) :: ce
real(pReal) :: T
end function homogenization_thermal_T
module subroutine thermal_conduction_getSource(Tdot, ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(out) :: Tdot
end subroutine thermal_conduction_getSource
module function damage_nonlocal_getMobility(ip,el) result(M)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
integer :: &
co
real(pReal) :: M
end function damage_nonlocal_getMobility
module subroutine damage_nonlocal_getSourceAndItsTangent(phiDot, dPhiDot_dPhi, phi, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
phi
real(pReal) :: &
phiDot, dPhiDot_dPhi
end subroutine damage_nonlocal_getSourceAndItsTangent
module subroutine damage_nonlocal_putNonLocalDamage(phi,ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
phi
end subroutine damage_nonlocal_putNonLocalDamage
module subroutine damage_nonlocal_results(homog,group)
integer, intent(in) :: homog
character(len=*), intent(in) :: group
end subroutine damage_nonlocal_results
end interface
public :: &
homogenization_init, &
materialpoint_stressAndItsTangent, &
thermal_conduction_getSpecificHeat, &
thermal_conduction_getConductivity, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSource, &
damage_nonlocal_getMobility, &
damage_nonlocal_getSourceAndItsTangent, &
damage_nonlocal_putNonLocalDamage, &
homogenization_thermal_setfield, &
homogenization_thermal_T, &
homogenization_forward, &
homogenization_results, &
homogenization_restartRead, &
homogenization_restartWrite
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init()
class (tNode) , pointer :: &
num_homog, &
num_homogGeneric
print'(/,a)', ' <<<+- homogenization init -+>>>'; flush(IO_STDOUT)
num_homog => config_numerics%get('homogenization',defaultVal=emptyDict)
num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict)
num%nMPstate = num_homogGeneric%get_asInt ('nMPstate', defaultVal=10)
if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate')
call mech_init(num_homog)
call thermal_init()
call damage_init()
if (any(damage_type == DAMAGE_none_ID)) call damage_none_init
if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init
end subroutine homogenization_init
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of stress and corresponding tangent at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execElem)
real(pReal), intent(in) :: dt !< time increment
integer, dimension(2), intent(in) :: FEsolving_execElem, FEsolving_execIP
integer :: &
NiterationMPstate, &
ip, & !< integration point number
el, & !< element number
myNgrains, co, ce, ho, me, ph
logical :: &
converged
logical, dimension(2) :: &
doneAndHappy
!$OMP PARALLEL
!$OMP DO PRIVATE(ce,me,ho,myNgrains,NiterationMPstate,converged,doneAndHappy)
do el = FEsolving_execElem(1),FEsolving_execElem(2)
ho = material_homogenizationAt(el)
myNgrains = homogenization_Nconstituents(ho)
do ip = FEsolving_execIP(1),FEsolving_execIP(2)
ce = (el-1)*discretization_nIPs + ip
me = material_homogenizationMemberAt2(ce)
call constitutive_restore(ce,.false.) ! wrong name (is more a forward function)
if(homogState(ho)%sizeState > 0) homogState(ho)%State(:,me) = homogState(ho)%State0(:,me)
if(damageState_h(ho)%sizeState > 0) damageState_h(ho)%State(:,me) = damageState_h(ho)%State0(:,me)
doneAndHappy = [.false.,.true.]
NiterationMPstate = 0
convergenceLooping: do while (.not. (terminallyIll .or. doneAndHappy(1)) &
.and. NiterationMPstate < num%nMPstate)
NiterationMPstate = NiterationMPstate + 1
if (.not. doneAndHappy(1)) then
call mech_partition(homogenization_F(1:3,1:3,ce),ip,el)
converged = .true.
do co = 1, myNgrains
converged = converged .and. crystallite_stress(dt,co,ip,el)
enddo
if (.not. converged) then
doneAndHappy = [.true.,.false.]
else
doneAndHappy = mech_updateState(dt,homogenization_F(1:3,1:3,ce),ip,el)
converged = all(doneAndHappy)
endif
endif
enddo convergenceLooping
if (.not. converged) then
if (.not. terminallyIll) print*, ' Integration point ', ip,' at element ', el, ' terminally ill'
terminallyIll = .true.
endif
enddo
enddo
!$OMP END DO
if (.not. terminallyIll ) then
!$OMP DO PRIVATE(ho,ph,ce)
do el = FEsolving_execElem(1),FEsolving_execElem(2)
if (terminallyIll) continue
ho = material_homogenizationAt(el)
do ip = FEsolving_execIP(1),FEsolving_execIP(2)
ce = (el-1)*discretization_nIPs + ip
call thermal_partition(ce)
do co = 1, homogenization_Nconstituents(ho)
ph = material_phaseAt(co,el)
if (.not. thermal_stress(dt,ph,material_phaseMemberAt(co,ip,el))) then
if (.not. terminallyIll) & ! so first signals terminally ill...
print*, ' Integration point ', ip,' at element ', el, ' terminally ill'
terminallyIll = .true. ! ...and kills all others
endif
call thermal_homogenize(ip,el)
enddo
enddo
enddo
!$OMP END DO
! !$OMP DO PRIVATE(ho,ph,ce)
! do el = FEsolving_execElem(1),FEsolving_execElem(2)
! if (terminallyIll) continue
! ho = material_homogenizationAt(el)
! do ip = FEsolving_execIP(1),FEsolving_execIP(2)
! ce = (el-1)*discretization_nIPs + ip
! call damage_partition(ce)
! do co = 1, homogenization_Nconstituents(ho)
! ph = material_phaseAt(co,el)
! if (.not. thermal_stress(dt,ph,material_phaseMemberAt(co,ip,el))) then
! if (.not. terminallyIll) & ! so first signals terminally ill...
! print*, ' Integration point ', ip,' at element ', el, ' terminally ill'
! terminallyIll = .true. ! ...and kills all others
! endif
! call thermal_homogenize(ip,el)
! enddo
! enddo
! enddo
! !$OMP END DO
!$OMP DO PRIVATE(ho)
elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2)
ho = material_homogenizationAt(el)
IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2)
do co = 1, homogenization_Nconstituents(ho)
call crystallite_orientations(co,ip,el)
enddo
call mech_homogenize(dt,ip,el)
enddo IpLooping3
enddo elementLooping3
!$OMP END DO
else
print'(/,a,/)', ' << HOMOG >> Material Point terminally ill'
endif
!$OMP END PARALLEL
end subroutine materialpoint_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief writes homogenization results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_results
integer :: ho
character(len=:), allocatable :: group_base,group
call results_closeGroup(results_addGroup('current/homogenization/'))
do ho=1,size(material_name_homogenization)
group_base = 'current/homogenization/'//trim(material_name_homogenization(ho))
call results_closeGroup(results_addGroup(group_base))
call mech_results(group_base,ho)
group = trim(group_base)//'/damage'
call results_closeGroup(results_addGroup(group))
select case(damage_type(ho))
case(DAMAGE_NONLOCAL_ID)
call damage_nonlocal_results(ho,group)
end select
group = trim(group_base)//'/thermal'
call results_closeGroup(results_addGroup(group))
select case(thermal_type(ho))
case(THERMAL_CONDUCTION_ID)
call thermal_conduction_results(ho,group)
end select
enddo
end subroutine homogenization_results
!--------------------------------------------------------------------------------------------------
!> @brief Forward data after successful increment.
! ToDo: Any guessing for the current states possible?
!--------------------------------------------------------------------------------------------------
subroutine homogenization_forward
integer :: ho
do ho = 1, size(material_name_homogenization)
homogState (ho)%state0 = homogState (ho)%state
damageState_h(ho)%state0 = damageState_h(ho)%state
enddo
end subroutine homogenization_forward
!--------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
subroutine homogenization_restartWrite(fileHandle)
integer(HID_T), intent(in) :: fileHandle
integer(HID_T), dimension(2) :: groupHandle
integer :: ho
groupHandle(1) = HDF5_addGroup(fileHandle,'homogenization')
do ho = 1, size(material_name_homogenization)
groupHandle(2) = HDF5_addGroup(groupHandle(1),material_name_homogenization(ho))
call HDF5_read(groupHandle(2),homogState(ho)%state,'omega') ! ToDo: should be done by mech
call HDF5_closeGroup(groupHandle(2))
enddo
call HDF5_closeGroup(groupHandle(1))
end subroutine homogenization_restartWrite
!--------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
subroutine homogenization_restartRead(fileHandle)
integer(HID_T), intent(in) :: fileHandle
integer(HID_T), dimension(2) :: groupHandle
integer :: ho
groupHandle(1) = HDF5_openGroup(fileHandle,'homogenization')
do ho = 1, size(material_name_homogenization)
groupHandle(2) = HDF5_openGroup(groupHandle(1),material_name_homogenization(ho))
call HDF5_write(groupHandle(2),homogState(ho)%state,'omega') ! ToDo: should be done by mech
call HDF5_closeGroup(groupHandle(2))
enddo
call HDF5_closeGroup(groupHandle(1))
end subroutine homogenization_restartRead
end module homogenization