DAMASK_EICMD/src/homogenization.f90

429 lines
21 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
!--------------------------------------------------------------------------------------------------
module homogenization
use prec
use IO
use config
use math
use material
use constitutive
use FEsolving
use discretization
use thermal_isothermal
use thermal_conduction
use damage_none
use damage_nonlocal
use results
implicit none
private
logical, public :: &
terminallyIll = .false. !< at least one material point is terminally ill
!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a material point
real(pReal), dimension(:,:,:), allocatable, public :: &
homogenization_F0, & !< def grad of IP at start of FE increment
homogenization_F !< def grad of IP to be reached at end of FE increment
real(pReal), dimension(:,:,:), allocatable, public :: & !, protected :: & Issue with ifort
homogenization_P !< first P--K stress of IP
real(pReal), dimension(:,:,:,:,:), allocatable, public :: & !, protected :: &
homogenization_dPdF !< tangent of first P--K stress at IP
!--------------------------------------------------------------------------------------------------
type :: tNumerics
integer :: &
nMPstate !< materialpoint state loop limit
real(pReal) :: &
subStepMinHomog, & !< minimum (relative) size of sub-step allowed during cutback in homogenization
subStepSizeHomog, & !< size of first substep when cutback in homogenization
stepIncreaseHomog !< increase of next substep size when previous substep converged in homogenization
end type tNumerics
type(tNumerics) :: num
type :: tDebugOptions
logical :: &
basic, &
extensive, &
selective
integer :: &
element, &
ip, &
grain
end type tDebugOptions
type(tDebugOptions) :: debugHomog
!--------------------------------------------------------------------------------------------------
interface
module subroutine mech_init(num_homog)
class(tNode), pointer, intent(in) :: &
num_homog !< pointer to mechanical homogenization numerics data
end subroutine mech_init
module subroutine mech_partition(subF,ip,el)
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
end subroutine mech_partition
module subroutine mech_homogenize(ip,el)
integer, intent(in) :: &
ip, & !< integration point
el !< element number
end subroutine mech_homogenize
module subroutine mech_results(group_base,h)
character(len=*), intent(in) :: group_base
integer, intent(in) :: h
end subroutine mech_results
! -------- ToDo ---------------------------------------------------------
module function mech_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el)
logical, dimension(2) :: mech_RGC_updateState
real(pReal), dimension(:,:,:), intent(in) :: &
P,& !< partitioned stresses
F,& !< partitioned deformation gradients
F0 !< partitioned initial deformation gradients
real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
real(pReal), intent(in) :: dt !< time increment
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
end function mech_RGC_updateState
end interface
! -----------------------------------------------------------------------
public :: &
homogenization_init, &
materialpoint_stressAndItsTangent, &
homogenization_results
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init
class (tNode) , pointer :: &
num_homog, &
num_homogGeneric, &
debug_homogenization
print'(/,a)', ' <<<+- homogenization init -+>>>'; flush(IO_STDOUT)
debug_homogenization => config_debug%get('homogenization', defaultVal=emptyList)
debugHomog%basic = debug_homogenization%contains('basic')
debugHomog%extensive = debug_homogenization%contains('extensive')
debugHomog%selective = debug_homogenization%contains('selective')
debugHomog%element = config_debug%get_asInt('element',defaultVal = 1)
debugHomog%ip = config_debug%get_asInt('integrationpoint',defaultVal = 1)
debugHomog%grain = config_debug%get_asInt('grain',defaultVal = 1)
if (debugHomog%grain < 1 &
.or. debugHomog%grain > homogenization_Nconstituents(material_homogenizationAt(debugHomog%element))) &
call IO_error(602,ext_msg='constituent', el=debugHomog%element, g=debugHomog%grain)
num_homog => config_numerics%get('homogenization',defaultVal=emptyDict)
num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict)
num%nMPstate = num_homogGeneric%get_asInt ('nMPstate', defaultVal=10)
num%subStepMinHomog = num_homogGeneric%get_asFloat('subStepMin', defaultVal=1.0e-3_pReal)
num%subStepSizeHomog = num_homogGeneric%get_asFloat('subStepSize', defaultVal=0.25_pReal)
num%stepIncreaseHomog = num_homogGeneric%get_asFloat('stepIncrease', defaultVal=1.5_pReal)
if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate')
if (num%subStepMinHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinHomog')
if (num%subStepSizeHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeHomog')
if (num%stepIncreaseHomog <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseHomog')
call mech_init(num_homog)
if (any(thermal_type == THERMAL_isothermal_ID)) call thermal_isothermal_init
if (any(thermal_type == THERMAL_conduction_ID)) call thermal_conduction_init
if (any(damage_type == DAMAGE_none_ID)) call damage_none_init
if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init
end subroutine homogenization_init
!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of stress and corresponding tangent at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(dt)
real(pReal), intent(in) :: dt !< time increment
integer :: &
NiterationHomog, &
NiterationMPstate, &
i, & !< integration point number
e, & !< element number
myNgrains
real(pReal), dimension(discretization_nIPs,discretization_Nelems) :: &
subFrac, &
subStep
logical, dimension(discretization_nIPs,discretization_Nelems) :: &
requested, &
converged
logical, dimension(2,discretization_nIPs,discretization_Nelems) :: &
doneAndHappy
integer :: m
!--------------------------------------------------------------------------------------------------
! initialize restoration points
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1),FEsolving_execIP(2);
call constitutive_initializeRestorationPoints(i,e)
subFrac(i,e) = 0.0_pReal
converged(i,e) = .false. ! pretend failed step ...
subStep(i,e) = 1.0_pReal/num%subStepSizeHomog ! ... larger then the requested calculation
requested(i,e) = .true. ! everybody requires calculation
if (homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
if (damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%State0( :,material_homogenizationMemberAt(i,e))
enddo
enddo
NiterationHomog = 0
cutBackLooping: do while (.not. terminallyIll .and. &
any(subStep(FEsolving_execIP(1):FEsolving_execIP(2),&
FEsolving_execElem(1):FEsolving_execElem(2)) > num%subStepMinHomog))
!$OMP PARALLEL DO PRIVATE(m)
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Nconstituents(material_homogenizationAt(e))
IpLooping1: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if (converged(i,e)) then
subFrac(i,e) = subFrac(i,e) + subStep(i,e)
subStep(i,e) = min(1.0_pReal-subFrac(i,e),num%stepIncreaseHomog*subStep(i,e)) ! introduce flexibility for step increase/acceleration
steppingNeeded: if (subStep(i,e) > num%subStepMinHomog) then
! wind forward grain starting point
call constitutive_windForward(i,e)
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
if(damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%State (:,material_homogenizationMemberAt(i,e))
endif steppingNeeded
else
if ( (myNgrains == 1 .and. subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
num%subStepSizeHomog * subStep(i,e) <= num%subStepMinHomog ) then ! would require too small subStep
! cutback makes no sense
if (.not. terminallyIll) then ! so first signals terminally ill...
print*, ' Integration point ', i,' at element ', e, ' terminally ill'
endif
terminallyIll = .true. ! ...and kills all others
else ! cutback makes sense
subStep(i,e) = num%subStepSizeHomog * subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
call crystallite_restore(i,e,subStep(i,e) < 1.0_pReal)
call constitutive_restore(i,e)
if(homogState(material_homogenizationAt(e))%sizeState > 0) &
homogState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
homogState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
if(damageState(material_homogenizationAt(e))%sizeState > 0) &
damageState(material_homogenizationAt(e))%State( :,material_homogenizationMemberAt(i,e)) = &
damageState(material_homogenizationAt(e))%subState0(:,material_homogenizationMemberAt(i,e))
endif
endif
if (subStep(i,e) > num%subStepMinHomog) then
requested(i,e) = .true.
doneAndHappy(1:2,i,e) = [.false.,.true.]
endif
enddo IpLooping1
enddo elementLooping1
!$OMP END PARALLEL DO
NiterationMPstate = 0
convergenceLooping: do while (.not. terminallyIll .and. &
any( requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
.and. .not. doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
) .and. &
NiterationMPstate < num%nMPstate)
NiterationMPstate = NiterationMPstate + 1
!--------------------------------------------------------------------------------------------------
! deformation partitioning
!$OMP PARALLEL DO PRIVATE(myNgrains,m)
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Nconstituents(material_homogenizationAt(e))
IpLooping2: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if(requested(i,e) .and. .not. doneAndHappy(1,i,e)) then ! requested but not yet done
m = (e-1)*discretization_nIPs + i
call mech_partition(homogenization_F0(1:3,1:3,m) &
+ (homogenization_F(1:3,1:3,m)-homogenization_F0(1:3,1:3,m))&
*(subStep(i,e)+subFrac(i,e)), &
i,e)
crystallite_dt(1:myNgrains,i,e) = dt*subStep(i,e) ! propagate materialpoint dt to grains
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
else
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
endif
enddo IpLooping2
enddo elementLooping2
!$OMP END PARALLEL DO
!--------------------------------------------------------------------------------------------------
! crystallite integration
converged = crystallite_stress() !ToDo: MD not sure if that is the best logic
!--------------------------------------------------------------------------------------------------
! state update
!$OMP PARALLEL DO PRIVATE(m)
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping3: do i = FEsolving_execIP(1),FEsolving_execIP(2)
if (requested(i,e) .and. .not. doneAndHappy(1,i,e)) then
if (.not. converged(i,e)) then
doneAndHappy(1:2,i,e) = [.true.,.false.]
else
m = (e-1)*discretization_nIPs + i
doneAndHappy(1:2,i,e) = updateState(dt*subStep(i,e), &
homogenization_F0(1:3,1:3,m) &
+ (homogenization_F(1:3,1:3,m)-homogenization_F0(1:3,1:3,m)) &
*(subStep(i,e)+subFrac(i,e)), &
i,e)
converged(i,e) = all(doneAndHappy(1:2,i,e)) ! converged if done and happy
endif
endif
enddo IpLooping3
enddo elementLooping3
!$OMP END PARALLEL DO
enddo convergenceLooping
NiterationHomog = NiterationHomog + 1
enddo cutBackLooping
if (.not. terminallyIll ) then
call crystallite_orientations() ! calculate crystal orientations
!$OMP PARALLEL DO
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
IpLooping4: do i = FEsolving_execIP(1),FEsolving_execIP(2)
call mech_homogenize(i,e)
enddo IpLooping4
enddo elementLooping4
!$OMP END PARALLEL DO
else
print'(/,a,/)', ' << HOMOG >> Material Point terminally ill'
endif
end subroutine materialpoint_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
!> "happy" with result
!--------------------------------------------------------------------------------------------------
function updateState(subdt,subF,ip,el)
real(pReal), intent(in) :: &
subdt !< current time step
real(pReal), intent(in), dimension(3,3) :: &
subF
integer, intent(in) :: &
ip, & !< integration point
el !< element number
integer :: c
logical, dimension(2) :: updateState
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
updateState = .true.
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
do c=1,homogenization_Nconstituents(material_homogenizationAt(el))
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el)
enddo
updateState = &
updateState .and. &
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
crystallite_partitionedF(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
crystallite_partitionedF0(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el),&
subF,&
subdt, &
dPdFs, &
ip, &
el)
end select chosenHomogenization
end function updateState
!--------------------------------------------------------------------------------------------------
!> @brief writes homogenization results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_results
use material, only: &
material_homogenization_type => homogenization_type
integer :: p
character(len=:), allocatable :: group_base,group
call results_closeGroup(results_addGroup('current/homogenization/'))
do p=1,size(material_name_homogenization)
group_base = 'current/homogenization/'//trim(material_name_homogenization(p))
call results_closeGroup(results_addGroup(group_base))
call mech_results(group_base,p)
group = trim(group_base)//'/damage'
call results_closeGroup(results_addGroup(group))
select case(damage_type(p))
case(DAMAGE_NONLOCAL_ID)
call damage_nonlocal_results(p,group)
end select
group = trim(group_base)//'/thermal'
call results_closeGroup(results_addGroup(group))
select case(thermal_type(p))
case(THERMAL_CONDUCTION_ID)
call thermal_conduction_results(p,group)
end select
enddo
end subroutine homogenization_results
end module homogenization