DAMASK_EICMD/code/mpie_cpfem_marc.f90

309 lines
13 KiB
Fortran

!* $Id$
!********************************************************************
! Material subroutine for MSC.Marc
!
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts
! D.D. Tjahjanto
! C. Kords
!
! MPI fuer Eisenforschung, Duesseldorf
!
!********************************************************************
! Usage:
! - choose material as hypela2
! - set statevariable 2 to index of homogenization
! - set statevariable 3 to index of microstructure
! - make sure the file "material.config" exists in the working
! directory
! - make sure the file "numerics.config" exists in the working
! directory
! - use nonsymmetric option for solver (e.g. direct
! profile or multifrontal sparse, the latter seems
! to be faster!)
! - in case of ddm (domain decomposition)a SYMMETRIC
! solver has to be used, i.e uncheck "non-symmetric"
!********************************************************************
! Marc subroutines used:
! - hypela2
! - plotv
! - quit
!********************************************************************
! Marc common blocks included:
! - concom: lovl, ncycle, inc, incsub
! - creeps: timinc
!********************************************************************
!
MODULE cpfem_interface
character(len=64), parameter :: FEsolver = 'Marc'
CONTAINS
subroutine mpie_cpfem_init
write(6,*)
write(6,*) '<<<+- mpie_cpfem_marc init -+>>>'
write(6,*) '$Id$'
write(6,*)
return
end subroutine
END MODULE
include "prec.f90" ! uses nothing else
include "IO.f90" ! uses prec
include "numerics.f90" ! uses prec, IO
include "math.f90" ! uses prec, numerics
include "debug.f90" ! uses prec, numerics
include "FEsolving.f90" ! uses prec, IO
include "mesh.f90" ! uses prec, math, IO, FEsolving
include "material.f90" ! uses prec, math, IO, mesh
include "lattice.f90" ! uses prec, math, IO, material
include "constitutive_phenopowerlaw.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive_j2.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive_dislotwin.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive_nonlocal.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive.f90" ! uses prec, IO, math, lattice, mesh, debug
include "crystallite.f90" ! uses prec, math, IO, numerics
include "homogenization_isostrain.f90" ! uses prec, math, IO,
include "homogenization_RGC.f90" ! uses prec, math, IO, numerics, mesh: added <<<updated 31.07.2009>>>
include "homogenization.f90" ! uses prec, math, IO, numerics
include "CPFEM.f90" ! uses prec, math, IO, numerics, debug, FEsolving, mesh, lattice, constitutive, crystallite
!********************************************************************
! This is the Marc material routine
!********************************************************************
!
! ************* user subroutine for defining material behavior **************
!
!
! CAUTION : Due to calculation of the Deformation gradients, Stretch Tensors and
! Rotation tensors at previous and current states, the analysis can be
! computationally expensive. Please use the user subroutine -> hypela
! if these kinematic quantities are not needed in the constitutive model
!
!
! IMPORTANT NOTES :
!
! (1) F,R,U are only available for continuum and membrane elements (not for
! shells and beams).
!
! (2) For total Lagrangian formulation use the -> 'Elasticity,1' card(=
! total Lagrange with large disp) in the parameter section of input deck.
! For updated Lagrangian formulation use the -> 'Plasticity,3' card(=
! update+finite+large disp+constant d) in the parameter section of
! input deck.
!
! The following operation obtains U (stretch tensor) at t=n+1 :
!
! call scla(un1,0.d0,itel,itel,1)
! do 3 k=1,3
! do 2 i=1,3
! do 1 j=1,3
! un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k)
!1 continue
!2 continue
!3 continue
!
!********************************************************************
subroutine hypela2(&
d,& ! stress strain law to be formed
g,& ! change in stress due to temperature effects
e,& ! total elastic strain
de,& ! increment of strain
s,& ! stress - should be updated by user
t,& ! state variables (comes in at t=n, must be updated to have state variables at t=n+1)
dt,& ! increment of state variables
ngens,& ! size of stress - strain law
n,& ! element number
nn,& ! integration point number
kcus,& ! (1) layer number, (2) internal layer number
matus,& ! (1) user material identification number, (2) internal material identification number
ndi,& ! number of direct components
nshear,& ! number of shear components
disp,& ! incremental displacements
dispt,& ! displacements at t=n (at assembly, lovl=4) and displacements at t=n+1 (at stress recovery, lovl=6)
coord,& ! coordinates
ffn,& ! deformation gradient
frotn,& ! rotation tensor
strechn,& ! square of principal stretch ratios, lambda(i)
eigvn,& ! i principal direction components for j eigenvalues
ffn1,& ! deformation gradient
frotn1,& ! rotation tensor
strechn1,& ! square of principal stretch ratios, lambda(i)
eigvn1,& ! i principal direction components for j eigenvalues
ncrd,& ! number of coordinates
itel,& ! dimension of F and R, either 2 or 3
ndeg,& ! number of degrees of freedom ==> is this at correct list position ?!?
ndm,& !
nnode,& ! number of nodes per element
jtype,& ! element type
lclass,& ! element class
ifr,& ! set to 1 if R has been calculated
ifu & ! set to 1 if stretch has been calculated
)
use prec, only: pReal, &
pInt
use FEsolving, only: cycleCounter, &
theInc, &
cutBack, &
calcMode, &
lastMode, &
theTime, &
theDelta, &
lastIncConverged, &
outdatedByNewInc, &
outdatedFFN1, &
terminallyIll, &
symmetricSolver
use math, only: invnrmMandel
use debug, only: debug_info, &
debug_reset
use mesh, only: mesh_FEasCP
use CPFEM, only: CPFEM_general,CPFEM_init_done
implicit none
! ** Start of generated type statements **
real(pReal) coord, d, de, disp, dispt, dt, e, eigvn, eigvn1, ffn, ffn1
real(pReal) frotn, frotn1, g
integer(pInt) ifr, ifu, itel, jtype, kcus, lclass, matus, n, ncrd, ndeg
integer(pInt) ndi, ndm, ngens, nn, nnode, nshear
real(pReal) s, strechn, strechn1, t
! ** End of generated type statements **
dimension e(*),de(*),t(*),dt(*),g(*),d(ngens,*),s(*), n(2),coord(ncrd,*),disp(ndeg,*),matus(2),dispt(ndeg,*),ffn(itel,*),&
frotn(itel,*),strechn(itel),eigvn(itel,*),ffn1(itel,*),frotn1(itel,*),strechn1(itel),eigvn1(itel,*),kcus(2), lclass(2)
! Marc common blocks are in fixed format so they have to be reformated to free format (f90)
! Beware of changes in newer Marc versions
include "concom%%MARCVERSION%%" ! concom is needed for inc, subinc, ncycle, lovl
include "creeps%%MARCVERSION%%" ! creeps is needed for timinc (time increment)
real(pReal), dimension(6) :: stress
real(pReal), dimension(6,6) :: ddsdde
integer(pInt) computationMode, i, cp_en
if ( .not. CPFEM_init_done ) then
computationMode = 2 ! calc + init
theTime = cptim ! record current starting time
theDelta = timinc ! record current time increment
theInc = inc ! record current increment number
!$OMP CRITICAL (write2out)
write (6,'(a,x,i6,x,i2)') '<< hypela2 >> first call special case..!',n(1),nn; call flush(6)
!$OMP END CRITICAL (write2out)
else if (lovl == 4) then ! Marc requires stiffness in separate call
if ( timinc < theDelta .and. theInc == inc ) then ! first after cutback
computationMode = 7 ! --> restore tangent and return
else
computationMode = 6 ! --> just return known value
endif
else
cp_en = mesh_FEasCP('elem',n(1))
if (theTime < cptim .or. theInc /= inc) then ! reached convergence
lastIncConverged = .true.
outdatedByNewInc = .true.
terminallyIll = .false.
cycleCounter = 0
!$OMP CRITICAL (write2out)
write (6,'(i6,x,i2,x,a)') n(1),nn,'<< hypela2 >> lastIncConverged + outdated'; call flush(6)
!$OMP END CRITICAL (write2out)
else if ( timinc < theDelta ) then ! cutBack
calcMode = .true. ! pretend last step was calculation
terminallyIll = .false.
cycleCounter = 0
!$OMP CRITICAL (write2out)
write(6,'(i6,x,i2,x,a)') n(1),nn,'<< hypela2 >> cutback detected..!'; call flush(6)
!$OMP END CRITICAL (write2out)
endif
calcMode(nn,cp_en) = .not. calcMode(nn,cp_en) ! ping pong (calc <--> collect)
if ( calcMode(nn,cp_en) ) then ! now calc
if ( lastMode .ne. calcMode(nn,cp_en) ) then ! first after ping pong
call debug_reset() ! resets debugging
outdatedFFN1 = .false.
cycleCounter = cycleCounter + 1
endif
if ( outdatedByNewInc ) then
outdatedByNewInc = .false.
computationMode = 1 ! calc and age results
else
computationMode = 2 ! plain calc
endif
else ! now collect
if ( lastMode /= calcMode(nn,cp_en) ) call debug_info() ! first after ping pong reports debugging
if ( lastIncConverged ) then
lastIncConverged = .false.
computationMode = 4 ! collect and backup Jacobian after convergence
else
computationMode = 3 ! plain collect
endif
endif
theTime = cptim ! record current starting time
theDelta = timinc ! record current time increment
theInc = inc ! record current increment number
lastMode = calcMode(nn,cp_en) ! record calculationMode
endif
call CPFEM_general(computationMode,ffn,ffn1,t(1),timinc,n(1),nn,stress,ddsdde)
! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13
! Marc: 11, 22, 33, 12, 23, 13
! Marc: 11, 22, 33, 12
forall(i=1:ngens) d(1:ngens,i) = invnrmMandel(i)*ddsdde(1:ngens,i)*invnrmMandel(1:ngens)
s(1:ngens) = stress(1:ngens)*invnrmMandel(1:ngens)
if(symmetricSolver) d(1:ngens,1:ngens) = 0.5_pReal*(d(1:ngens,1:ngens)+transpose(d(1:ngens,1:ngens)))
return
end subroutine
!********************************************************************
! This routine sets user defined output variables for Marc
!********************************************************************
!
! select a variable contour plotting (user subroutine).
!
!********************************************************************
subroutine plotv(&
v,& ! variable
s,& ! stress array
sp,& ! stresses in preferred direction
etot,& ! total strain (generalized)
eplas,& ! total plastic strain
ecreep,& ! total creep strain
t,& ! current temperature
m,& ! element number
nn,& ! integration point number
layer,& ! layer number
ndi,& ! number of direct stress components
nshear,& ! number of shear stress components
jpltcd & ! user variable index
)
use prec, only: pReal,pInt
use mesh, only: mesh_FEasCP
use homogenization, only: materialpoint_results
implicit none
real(pReal) s(*),etot(*),eplas(*),ecreep(*),sp(*)
real(pReal) v, t(*)
integer(pInt) m, nn, layer, ndi, nshear, jpltcd
v = materialpoint_results(jpltcd,nn,mesh_FEasCP('elem', m))
return
end subroutine