1592 lines
58 KiB
Python
1592 lines
58 KiB
Python
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import math
|
|
import numpy as np
|
|
from . import Lambert
|
|
|
|
P = -1
|
|
|
|
####################################################################################################
|
|
class Quaternion:
|
|
u"""
|
|
Quaternion with basic operations
|
|
|
|
q is the real part, p = (x, y, z) are the imaginary parts.
|
|
Defintion of multiplication depends on variable P, P ∉ {-1,1}.
|
|
"""
|
|
|
|
def __init__(self,
|
|
q = 0.0,
|
|
p = np.zeros(3,dtype=float)):
|
|
"""Initializes to identity unless specified"""
|
|
self.q = q
|
|
self.p = np.array(p)
|
|
|
|
|
|
def __copy__(self):
|
|
"""Copy"""
|
|
return self.__class__(q=self.q,
|
|
p=self.p.copy())
|
|
|
|
copy = __copy__
|
|
|
|
|
|
def __iter__(self):
|
|
"""Components"""
|
|
return iter(self.asList())
|
|
|
|
def asArray(self):
|
|
"""As numpy array"""
|
|
return np.array((self.q,self.p[0],self.p[1],self.p[2]))
|
|
|
|
def asList(self):
|
|
return [self.q]+list(self.p)
|
|
|
|
|
|
def __repr__(self):
|
|
"""Readable string"""
|
|
return 'Quaternion: (real={q:+.6f}, imag=<{p[0]:+.6f}, {p[1]:+.6f}, {p[2]:+.6f}>)'.format(q=self.q,p=self.p)
|
|
|
|
|
|
def __add__(self, other):
|
|
"""Addition"""
|
|
if isinstance(other, Quaternion):
|
|
return self.__class__(q=self.q + other.q,
|
|
p=self.p + other.p)
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __iadd__(self, other):
|
|
"""In-place addition"""
|
|
if isinstance(other, Quaternion):
|
|
self.q += other.q
|
|
self.p += other.p
|
|
return self
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __pos__(self):
|
|
"""Unary positive operator"""
|
|
return self
|
|
|
|
|
|
def __sub__(self, other):
|
|
"""Subtraction"""
|
|
if isinstance(other, Quaternion):
|
|
return self.__class__(q=self.q - other.q,
|
|
p=self.p - other.p)
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __isub__(self, other):
|
|
"""In-place subtraction"""
|
|
if isinstance(other, Quaternion):
|
|
self.q -= other.q
|
|
self.p -= other.p
|
|
return self
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __neg__(self):
|
|
"""Unary positive operator"""
|
|
self.q *= -1.0
|
|
self.p *= -1.0
|
|
return self
|
|
|
|
|
|
def __mul__(self, other):
|
|
"""Multiplication with quaternion or scalar"""
|
|
if isinstance(other, Quaternion):
|
|
return self.__class__(q=self.q*other.q - np.dot(self.p,other.p),
|
|
p=self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p))
|
|
elif isinstance(other, (int, float)):
|
|
return self.__class__(q=self.q*other,
|
|
p=self.p*other)
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __imul__(self, other):
|
|
"""In-place multiplication with quaternion or scalar"""
|
|
if isinstance(other, Quaternion):
|
|
self.q = self.q*other.q - np.dot(self.p,other.p)
|
|
self.p = self.q*other.p + other.q*self.p + P * np.cross(self.p,other.p)
|
|
return self
|
|
elif isinstance(other, (int, float)):
|
|
self *= other
|
|
return self
|
|
else:
|
|
return NotImplemented
|
|
|
|
|
|
def __truediv__(self, other):
|
|
"""Divsion with quaternion or scalar"""
|
|
if isinstance(other, Quaternion):
|
|
s = other.conjugate()/abs(other)**2.
|
|
return self.__class__(q=self.q * s,
|
|
p=self.p * s)
|
|
elif isinstance(other, (int, float)):
|
|
self.q /= other
|
|
self.p /= other
|
|
return self
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __itruediv__(self, other):
|
|
"""In-place divsion with quaternion or scalar"""
|
|
if isinstance(other, Quaternion):
|
|
s = other.conjugate()/abs(other)**2.
|
|
self *= s
|
|
return self
|
|
elif isinstance(other, (int, float)):
|
|
self.q /= other
|
|
return self
|
|
else:
|
|
return NotImplemented
|
|
|
|
|
|
def __pow__(self, exponent):
|
|
"""Power"""
|
|
if isinstance(exponent, (int, float)):
|
|
omega = np.acos(self.q)
|
|
return self.__class__(q= np.cos(exponent*omega),
|
|
p=self.p * np.sin(exponent*omega)/np.sin(omega))
|
|
else:
|
|
return NotImplemented
|
|
|
|
def __ipow__(self, exponent):
|
|
"""In-place power"""
|
|
if isinstance(exponent, (int, float)):
|
|
omega = np.acos(self.q)
|
|
self.q = np.cos(exponent*omega)
|
|
self.p *= np.sin(exponent*omega)/np.sin(omega)
|
|
else:
|
|
return NotImplemented
|
|
|
|
|
|
def __abs__(self):
|
|
"""Norm"""
|
|
return math.sqrt(self.q ** 2 + np.dot(self.p,self.p))
|
|
|
|
magnitude = __abs__
|
|
|
|
|
|
def __eq__(self,other):
|
|
"""Equal (sufficiently close) to each other"""
|
|
return np.isclose(( self-other).magnitude(),0.0) \
|
|
or np.isclose((-self-other).magnitude(),0.0)
|
|
|
|
def __ne__(self,other):
|
|
"""Not equal (sufficiently close) to each other"""
|
|
return not self.__eq__(other)
|
|
|
|
|
|
def normalize(self):
|
|
d = self.magnitude()
|
|
if d > 0.0:
|
|
self.q /= d
|
|
self.p /= d
|
|
return self
|
|
|
|
def normalized(self):
|
|
return self.copy().normalize()
|
|
|
|
|
|
def conjugate(self):
|
|
self.p = -self.p
|
|
return self
|
|
|
|
def conjugated(self):
|
|
return self.copy().conjugate()
|
|
|
|
|
|
def homomorph(self):
|
|
if self.q < 0.0:
|
|
self.q = -self.q
|
|
self.p = -self.p
|
|
return self
|
|
|
|
def homomorphed(self):
|
|
return self.copy().homomorph()
|
|
|
|
|
|
|
|
####################################################################################################
|
|
class Rotation:
|
|
u"""
|
|
Orientation stored as unit quaternion.
|
|
|
|
Following: D Rowenhorst et al. Consistent representations of and conversions between 3D rotations
|
|
10.1088/0965-0393/23/8/083501
|
|
Convention 1: coordinate frames are right-handed
|
|
Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation
|
|
when viewing from the end point of the rotation axis towards the origin
|
|
Convention 3: rotations will be interpreted in the passive sense
|
|
Convention 4: Euler angle triplets are implemented using the Bunge convention,
|
|
with the angular ranges as [0, 2π],[0, π],[0, 2π]
|
|
Convention 5: the rotation angle ω is limited to the interval [0, π]
|
|
Convention 6: P = -1 (as default)
|
|
|
|
q is the real part, p = (x, y, z) are the imaginary parts.
|
|
|
|
Vector "a" (defined in coordinate system "A") is passively rotated
|
|
resulting in new coordinates "b" when expressed in system "B".
|
|
b = Q * a
|
|
b = np.dot(Q.asMatrix(),a)
|
|
"""
|
|
|
|
__slots__ = ['quaternion']
|
|
|
|
def __init__(self,quaternion = np.array([1.0,0.0,0.0,0.0])):
|
|
"""
|
|
Initializes to identity unless specified
|
|
|
|
If a quaternion is given, it needs to comply with the convection. Use .fromQuaternion
|
|
to check the input.
|
|
"""
|
|
if isinstance(quaternion,Quaternion):
|
|
self.quaternion = quaternion.copy()
|
|
else:
|
|
self.quaternion = Quaternion(q=quaternion[0],p=quaternion[1:4])
|
|
self.quaternion.homomorph() # ToDo: Needed?
|
|
|
|
def __repr__(self):
|
|
"""Value in selected representation"""
|
|
return '\n'.join([
|
|
'{}'.format(self.quaternion),
|
|
'Matrix:\n{}'.format( '\n'.join(['\t'.join(list(map(str,self.asMatrix()[i,:]))) for i in range(3)]) ),
|
|
'Bunge Eulers / deg: {}'.format('\t'.join(list(map(str,self.asEulers(degrees=True)))) ),
|
|
])
|
|
|
|
|
|
################################################################################################
|
|
# convert to different orientation representations (numpy arrays)
|
|
|
|
def asQuaternion(self):
|
|
"""Unit quaternion: (q, [p_1, p_2, p_3])"""
|
|
return self.quaternion.asArray()
|
|
|
|
def asEulers(self,
|
|
degrees = False):
|
|
"""Bunge-Euler angles: (φ_1, ϕ, φ_2)"""
|
|
eu = qu2eu(self.quaternion.asArray())
|
|
if degrees: eu = np.degrees(eu)
|
|
return eu
|
|
|
|
def asAxisAngle(self,
|
|
degrees = False):
|
|
"""Axis-angle pair: ([n_1, n_2, n_3], ω)"""
|
|
ax = qu2ax(self.quaternion.asArray())
|
|
if degrees: ax[3] = np.degrees(ax[3])
|
|
return ax
|
|
|
|
def asMatrix(self):
|
|
"""Rotation matrix"""
|
|
return qu2om(self.quaternion.asArray())
|
|
|
|
def asRodrigues(self):
|
|
"""Rodrigues-Frank vector: ([n_1, n_2, n_3], tan(ω/2))"""
|
|
return qu2ro(self.quaternion.asArray())
|
|
|
|
def asHomochoric(self):
|
|
"""Homochoric vector: (h_1, h_2, h_3)"""
|
|
return qu2ho(self.quaternion.asArray())
|
|
|
|
def asCubochoric(self):
|
|
return qu2cu(self.quaternion.asArray())
|
|
|
|
|
|
################################################################################################
|
|
# static constructors. The input data needs to follow the convention, options allow to
|
|
# relax these convections
|
|
@classmethod
|
|
def fromQuaternion(cls,
|
|
quaternion,
|
|
acceptHomomorph = False,
|
|
P = -1):
|
|
|
|
qu = quaternion if isinstance(quaternion, np.ndarray) else np.array(quaternion)
|
|
if P > 0: qu[1:4] *= -1 # convert from P=1 to P=-1
|
|
if qu[0] < 0.0:
|
|
if acceptHomomorph:
|
|
qu *= -1.
|
|
else:
|
|
raise ValueError('Quaternion has negative first component.\n{}'.format(qu[0]))
|
|
if not np.isclose(np.linalg.norm(qu), 1.0):
|
|
raise ValueError('Quaternion is not of unit length.\n{} {} {} {}'.format(*qu))
|
|
|
|
return cls(qu)
|
|
|
|
@classmethod
|
|
def fromEulers(cls,
|
|
eulers,
|
|
degrees = False):
|
|
|
|
eu = eulers if isinstance(eulers, np.ndarray) else np.array(eulers)
|
|
eu = np.radians(eu) if degrees else eu
|
|
if np.any(eu < 0.0) or np.any(eu > 2.0*np.pi) or eu[1] > np.pi:
|
|
raise ValueError('Euler angles outside of [0..2π],[0..π],[0..2π].\n{} {} {}.'.format(*eu))
|
|
|
|
return cls(eu2qu(eu))
|
|
|
|
@classmethod
|
|
def fromAxisAngle(cls,
|
|
angleAxis,
|
|
degrees = False,
|
|
normalise = False,
|
|
P = -1):
|
|
|
|
ax = angleAxis if isinstance(angleAxis, np.ndarray) else np.array(angleAxis)
|
|
if P > 0: ax[0:3] *= -1 # convert from P=1 to P=-1
|
|
if degrees: ax[3] = np.radians(ax[3])
|
|
if normalise: ax[0:3] /=np.linalg.norm(ax[0:3])
|
|
if ax[3] < 0.0 or ax[3] > np.pi:
|
|
raise ValueError('Axis angle rotation angle outside of [0..π].\n'.format(ax[3]))
|
|
if not np.isclose(np.linalg.norm(ax[0:3]), 1.0):
|
|
raise ValueError('Axis angle rotation axis is not of unit length.\n{} {} {}'.format(*ax[0:3]))
|
|
|
|
return cls(ax2qu(ax))
|
|
|
|
@classmethod
|
|
def fromMatrix(cls,
|
|
matrix,
|
|
containsStretch = False): #ToDo: better name?
|
|
|
|
om = matrix if isinstance(matrix, np.ndarray) else np.array(matrix).reshape((3,3)) # ToDo: Reshape here or require explicit?
|
|
if containsStretch:
|
|
(U,S,Vh) = np.linalg.svd(om) # singular value decomposition
|
|
om = np.dot(U,Vh)
|
|
if not np.isclose(np.linalg.det(om),1.0):
|
|
raise ValueError('matrix is not a proper rotation.\n{}'.format(om))
|
|
if not np.isclose(np.dot(om[0],om[1]), 0.0) \
|
|
or not np.isclose(np.dot(om[1],om[2]), 0.0) \
|
|
or not np.isclose(np.dot(om[2],om[0]), 0.0):
|
|
raise ValueError('matrix is not orthogonal.\n{}'.format(om))
|
|
|
|
return cls(om2qu(om))
|
|
|
|
@classmethod
|
|
def fromRodrigues(cls,
|
|
rodrigues,
|
|
normalise = False,
|
|
P = -1):
|
|
|
|
ro = rodrigues if isinstance(rodrigues, np.ndarray) else np.array(rodrigues)
|
|
if P > 0: ro[0:3] *= -1 # convert from P=1 to P=-1
|
|
if normalise: ro[0:3] /=np.linalg.norm(ro[0:3])
|
|
if not np.isclose(np.linalg.norm(ro[0:3]), 1.0):
|
|
raise ValueError('Rodrigues rotation axis is not of unit length.\n{} {} {}'.format(*ro[0:3]))
|
|
if ro[3] < 0.0:
|
|
raise ValueError('Rodriques rotation angle not positive.\n'.format(ro[3]))
|
|
|
|
return cls(ro2qu(ro))
|
|
|
|
@classmethod
|
|
def fromHomochoric(cls,
|
|
homochoric,
|
|
P = -1):
|
|
|
|
ho = homochoric if isinstance(homochoric, np.ndarray) else np.array(homochoric)
|
|
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
|
|
|
return cls(ho2qu(ho))
|
|
|
|
@classmethod
|
|
def fromCubochoric(cls,
|
|
cubochoric,
|
|
P = -1):
|
|
|
|
cu = cubochoric if isinstance(cubochoric, np.ndarray) else np.array(cubochoric)
|
|
ho = cu2ho(cu)
|
|
if P > 0: ho *= -1 # convert from P=1 to P=-1
|
|
|
|
return cls(ho2qu(ho))
|
|
|
|
|
|
def __mul__(self, other):
|
|
"""
|
|
Multiplication
|
|
|
|
Rotation: Details needed (active/passive), rotation of (3,3,3,3)-matrix should be considered
|
|
"""
|
|
if isinstance(other, Rotation): # rotate a rotation
|
|
return self.__class__((self.quaternion * other.quaternion).asArray())
|
|
elif isinstance(other, np.ndarray):
|
|
if other.shape == (3,): # rotate a single (3)-vector
|
|
( x, y, z) = self.quaternion.p
|
|
(Vx,Vy,Vz) = other[0:3]
|
|
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p)
|
|
B = 2.0 * (x*Vx + y*Vy + z*Vz)
|
|
C = 2.0 * P*self.quaternion.q
|
|
|
|
return np.array([
|
|
A*Vx + B*x + C*(y*Vz - z*Vy),
|
|
A*Vy + B*y + C*(z*Vx - x*Vz),
|
|
A*Vz + B*z + C*(x*Vy - y*Vx),
|
|
])
|
|
elif other.shape == (3,3,): # rotate a single (3x3)-matrix
|
|
return np.dot(self.asMatrix(),np.dot(other,self.asMatrix().T))
|
|
elif other.shape == (3,3,3,3):
|
|
raise NotImplementedError
|
|
else:
|
|
return NotImplemented
|
|
elif isinstance(other, tuple): # used to rotate a meshgrid-tuple
|
|
( x, y, z) = self.quaternion.p
|
|
(Vx,Vy,Vz) = other[0:3]
|
|
A = self.quaternion.q*self.quaternion.q - np.dot(self.quaternion.p,self.quaternion.p)
|
|
B = 2.0 * (x*Vx + y*Vy + z*Vz)
|
|
C = 2.0 * P*self.quaternion.q
|
|
|
|
return np.array([
|
|
A*Vx + B*x + C*(y*Vz - z*Vy),
|
|
A*Vy + B*y + C*(z*Vx - x*Vz),
|
|
A*Vz + B*z + C*(x*Vy - y*Vx),
|
|
])
|
|
else:
|
|
return NotImplemented
|
|
|
|
|
|
def inverse(self):
|
|
"""Inverse rotation/backward rotation"""
|
|
self.quaternion.conjugate()
|
|
return self
|
|
|
|
def inversed(self):
|
|
"""In-place inverse rotation/backward rotation"""
|
|
return self.__class__(self.quaternion.conjugated())
|
|
|
|
|
|
def misorientation(self,other):
|
|
"""Misorientation"""
|
|
return self.__class__(other.quaternion*self.quaternion.conjugated())
|
|
|
|
|
|
# ******************************************************************************************
|
|
class Symmetry:
|
|
"""
|
|
Symmetry operations for lattice systems
|
|
|
|
https://en.wikipedia.org/wiki/Crystal_system
|
|
"""
|
|
|
|
lattices = [None,'orthorhombic','tetragonal','hexagonal','cubic',]
|
|
|
|
def __init__(self, symmetry = None):
|
|
if isinstance(symmetry, str) and symmetry.lower() in Symmetry.lattices:
|
|
self.lattice = symmetry.lower()
|
|
else:
|
|
self.lattice = None
|
|
|
|
|
|
def __copy__(self):
|
|
"""Copy"""
|
|
return self.__class__(self.lattice)
|
|
|
|
copy = __copy__
|
|
|
|
|
|
def __repr__(self):
|
|
"""Readable string"""
|
|
return '{}'.format(self.lattice)
|
|
|
|
|
|
def __eq__(self, other):
|
|
"""Equal to other"""
|
|
return self.lattice == other.lattice
|
|
|
|
def __neq__(self, other):
|
|
"""Not equal to other"""
|
|
return not self.__eq__(other)
|
|
|
|
def __cmp__(self,other):
|
|
"""Linear ordering"""
|
|
myOrder = Symmetry.lattices.index(self.lattice)
|
|
otherOrder = Symmetry.lattices.index(other.lattice)
|
|
return (myOrder > otherOrder) - (myOrder < otherOrder)
|
|
|
|
def symmetryOperations(self):
|
|
"""List of symmetry operations as quaternions."""
|
|
if self.lattice == 'cubic':
|
|
symQuats = [
|
|
[ 1.0, 0.0, 0.0, 0.0 ],
|
|
[ 0.0, 1.0, 0.0, 0.0 ],
|
|
[ 0.0, 0.0, 1.0, 0.0 ],
|
|
[ 0.0, 0.0, 0.0, 1.0 ],
|
|
[ 0.0, 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2) ],
|
|
[ 0.0, 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2) ],
|
|
[ 0.0, 0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2) ],
|
|
[ 0.0, 0.5*math.sqrt(2), 0.0, -0.5*math.sqrt(2) ],
|
|
[ 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ],
|
|
[ 0.0, -0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ],
|
|
[ 0.5, 0.5, 0.5, 0.5 ],
|
|
[-0.5, 0.5, 0.5, 0.5 ],
|
|
[-0.5, 0.5, 0.5, -0.5 ],
|
|
[-0.5, 0.5, -0.5, 0.5 ],
|
|
[-0.5, -0.5, 0.5, 0.5 ],
|
|
[-0.5, -0.5, 0.5, -0.5 ],
|
|
[-0.5, -0.5, -0.5, 0.5 ],
|
|
[-0.5, 0.5, -0.5, -0.5 ],
|
|
[-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
|
|
[ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
|
|
[-0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2), 0.0 ],
|
|
[-0.5*math.sqrt(2), 0.0, -0.5*math.sqrt(2), 0.0 ],
|
|
[-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0, 0.0 ],
|
|
[-0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0, 0.0 ],
|
|
]
|
|
elif self.lattice == 'hexagonal':
|
|
symQuats = [
|
|
[ 1.0,0.0,0.0,0.0 ],
|
|
[-0.5*math.sqrt(3), 0.0, 0.0,-0.5 ],
|
|
[ 0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
|
|
[ 0.0,0.0,0.0,1.0 ],
|
|
[-0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
|
|
[-0.5*math.sqrt(3), 0.0, 0.0, 0.5 ],
|
|
[ 0.0,1.0,0.0,0.0 ],
|
|
[ 0.0,-0.5*math.sqrt(3), 0.5, 0.0 ],
|
|
[ 0.0, 0.5,-0.5*math.sqrt(3), 0.0 ],
|
|
[ 0.0,0.0,1.0,0.0 ],
|
|
[ 0.0,-0.5,-0.5*math.sqrt(3), 0.0 ],
|
|
[ 0.0, 0.5*math.sqrt(3), 0.5, 0.0 ],
|
|
]
|
|
elif self.lattice == 'tetragonal':
|
|
symQuats = [
|
|
[ 1.0,0.0,0.0,0.0 ],
|
|
[ 0.0,1.0,0.0,0.0 ],
|
|
[ 0.0,0.0,1.0,0.0 ],
|
|
[ 0.0,0.0,0.0,1.0 ],
|
|
[ 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ],
|
|
[ 0.0,-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ],
|
|
[ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
|
|
[-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
|
|
]
|
|
elif self.lattice == 'orthorhombic':
|
|
symQuats = [
|
|
[ 1.0,0.0,0.0,0.0 ],
|
|
[ 0.0,1.0,0.0,0.0 ],
|
|
[ 0.0,0.0,1.0,0.0 ],
|
|
[ 0.0,0.0,0.0,1.0 ],
|
|
]
|
|
else:
|
|
symQuats = [
|
|
[ 1.0,0.0,0.0,0.0 ],
|
|
]
|
|
|
|
return [Rotation(q) for q in symQuats]
|
|
|
|
|
|
def inFZ(self,R):
|
|
"""
|
|
Check whether given Rodrigues vector falls into fundamental zone of own symmetry.
|
|
|
|
Fundamental zone in Rodrigues space is point symmetric around origin.
|
|
"""
|
|
Rabs = abs(R[0:3]*R[3])
|
|
|
|
if self.lattice == 'cubic':
|
|
return math.sqrt(2.0)-1.0 >= Rabs[0] \
|
|
and math.sqrt(2.0)-1.0 >= Rabs[1] \
|
|
and math.sqrt(2.0)-1.0 >= Rabs[2] \
|
|
and 1.0 >= Rabs[0] + Rabs[1] + Rabs[2]
|
|
elif self.lattice == 'hexagonal':
|
|
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2] \
|
|
and 2.0 >= math.sqrt(3)*Rabs[0] + Rabs[1] \
|
|
and 2.0 >= math.sqrt(3)*Rabs[1] + Rabs[0] \
|
|
and 2.0 >= math.sqrt(3) + Rabs[2]
|
|
elif self.lattice == 'tetragonal':
|
|
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] \
|
|
and math.sqrt(2.0) >= Rabs[0] + Rabs[1] \
|
|
and math.sqrt(2.0) >= Rabs[2] + 1.0
|
|
elif self.lattice == 'orthorhombic':
|
|
return 1.0 >= Rabs[0] and 1.0 >= Rabs[1] and 1.0 >= Rabs[2]
|
|
else:
|
|
return True
|
|
|
|
|
|
def inDisorientationSST(self,rodrigues):
|
|
"""
|
|
Check whether given Rodrigues vector (of misorientation) falls into standard stereographic triangle of own symmetry.
|
|
|
|
Determination of disorientations follow the work of A. Heinz and P. Neumann:
|
|
Representation of Orientation and Disorientation Data for Cubic, Hexagonal, Tetragonal and Orthorhombic Crystals
|
|
Acta Cryst. (1991). A47, 780-789
|
|
"""
|
|
if isinstance(rodrigues, Quaternion):
|
|
R = rodrigues.asRodrigues() # translate accidentially passed quaternion
|
|
else:
|
|
R = rodrigues
|
|
|
|
if R.shape[0]==4: # transition old (length not stored separately) to new
|
|
R = (R[0:3]*R[3])
|
|
|
|
epsilon = 0.0
|
|
if self.lattice == 'cubic':
|
|
return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon
|
|
|
|
elif self.lattice == 'hexagonal':
|
|
return R[0] >= math.sqrt(3)*(R[1]-epsilon) and R[1] >= epsilon and R[2] >= epsilon
|
|
|
|
elif self.lattice == 'tetragonal':
|
|
return R[0] >= R[1]-epsilon and R[1] >= epsilon and R[2] >= epsilon
|
|
|
|
elif self.lattice == 'orthorhombic':
|
|
return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon
|
|
|
|
else:
|
|
return True
|
|
|
|
|
|
def inSST(self,
|
|
vector,
|
|
proper = False,
|
|
color = False):
|
|
"""
|
|
Check whether given vector falls into standard stereographic triangle of own symmetry.
|
|
|
|
proper considers only vectors with z >= 0, hence uses two neighboring SSTs.
|
|
Return inverse pole figure color if requested.
|
|
Bases are computed from
|
|
|
|
basis = {'cubic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
|
[1.,0.,1.]/np.sqrt(2.), # direction of green
|
|
[1.,1.,1.]/np.sqrt(3.)]).T), # direction of blue
|
|
'hexagonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
|
[1.,0.,0.], # direction of green
|
|
[np.sqrt(3.),1.,0.]/np.sqrt(4.)]).T), # direction of blue
|
|
'tetragonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
|
[1.,0.,0.], # direction of green
|
|
[1.,1.,0.]/np.sqrt(2.)]).T), # direction of blue
|
|
'orthorhombic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
|
|
[1.,0.,0.], # direction of green
|
|
[0.,1.,0.]]).T), # direction of blue
|
|
}
|
|
"""
|
|
if self.lattice == 'cubic':
|
|
basis = {'improper':np.array([ [-1. , 0. , 1. ],
|
|
[ np.sqrt(2.) , -np.sqrt(2.) , 0. ],
|
|
[ 0. , np.sqrt(3.) , 0. ] ]),
|
|
'proper':np.array([ [ 0. , -1. , 1. ],
|
|
[-np.sqrt(2.) , np.sqrt(2.) , 0. ],
|
|
[ np.sqrt(3.) , 0. , 0. ] ]),
|
|
}
|
|
elif self.lattice == 'hexagonal':
|
|
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
|
[ 1. , -np.sqrt(3.) , 0. ],
|
|
[ 0. , 2. , 0. ] ]),
|
|
'proper':np.array([ [ 0. , 0. , 1. ],
|
|
[-1. , np.sqrt(3.) , 0. ],
|
|
[ np.sqrt(3.) , -1. , 0. ] ]),
|
|
}
|
|
elif self.lattice == 'tetragonal':
|
|
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
|
|
[ 1. , -1. , 0. ],
|
|
[ 0. , np.sqrt(2.) , 0. ] ]),
|
|
'proper':np.array([ [ 0. , 0. , 1. ],
|
|
[-1. , 1. , 0. ],
|
|
[ np.sqrt(2.) , 0. , 0. ] ]),
|
|
}
|
|
elif self.lattice == 'orthorhombic':
|
|
basis = {'improper':np.array([ [ 0., 0., 1.],
|
|
[ 1., 0., 0.],
|
|
[ 0., 1., 0.] ]),
|
|
'proper':np.array([ [ 0., 0., 1.],
|
|
[-1., 0., 0.],
|
|
[ 0., 1., 0.] ]),
|
|
}
|
|
else: # direct exit for unspecified symmetry
|
|
if color:
|
|
return (True,np.zeros(3,'d'))
|
|
else:
|
|
return True
|
|
|
|
v = np.array(vector,dtype=float)
|
|
if proper: # check both improper ...
|
|
theComponents = np.dot(basis['improper'],v)
|
|
inSST = np.all(theComponents >= 0.0)
|
|
if not inSST: # ... and proper SST
|
|
theComponents = np.dot(basis['proper'],v)
|
|
inSST = np.all(theComponents >= 0.0)
|
|
else:
|
|
v[2] = abs(v[2]) # z component projects identical
|
|
theComponents = np.dot(basis['improper'],v) # for positive and negative values
|
|
inSST = np.all(theComponents >= 0.0)
|
|
|
|
if color: # have to return color array
|
|
if inSST:
|
|
rgb = np.power(theComponents/np.linalg.norm(theComponents),0.5) # smoothen color ramps
|
|
rgb = np.minimum(np.ones(3,dtype=float),rgb) # limit to maximum intensity
|
|
rgb /= max(rgb) # normalize to (HS)V = 1
|
|
else:
|
|
rgb = np.zeros(3,dtype=float)
|
|
return (inSST,rgb)
|
|
else:
|
|
return inSST
|
|
|
|
# code derived from https://github.com/ezag/pyeuclid
|
|
# suggested reading: http://web.mit.edu/2.998/www/QuaternionReport1.pdf
|
|
|
|
|
|
# ******************************************************************************************
|
|
class Lattice:
|
|
"""
|
|
Lattice system
|
|
|
|
Currently, this contains only a mapping from Bravais lattice to symmetry
|
|
and orientation relationships. It could include twin and slip systems.
|
|
https://en.wikipedia.org/wiki/Bravais_lattice
|
|
"""
|
|
|
|
lattices = {
|
|
'triclinic':{'symmetry':None},
|
|
'bct':{'symmetry':'tetragonal'},
|
|
'hex':{'symmetry':'hexagonal'},
|
|
'fcc':{'symmetry':'cubic','c/a':1.0},
|
|
'bcc':{'symmetry':'cubic','c/a':1.0},
|
|
}
|
|
|
|
|
|
def __init__(self, lattice):
|
|
self.lattice = lattice
|
|
self.symmetry = Symmetry(self.lattices[lattice]['symmetry'])
|
|
|
|
|
|
def __repr__(self):
|
|
"""Report basic lattice information"""
|
|
return 'Bravais lattice {} ({} symmetry)'.format(self.lattice,self.symmetry)
|
|
|
|
|
|
# Kurdjomov--Sachs orientation relationship for fcc <-> bcc transformation
|
|
# from S. Morito et al. Journal of Alloys and Compounds 577 (2013) 587-S592
|
|
# also see K. Kitahara et al. Acta Materialia 54 (2006) 1279-1288
|
|
KS = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]],
|
|
[[ 1, 1, -1],[ 0, 1, 1]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ -1, 0, 1],[ -1, -1, 1]],
|
|
[[ -1, 0, 1],[ -1, 1, -1]],
|
|
[[ 0, 1, -1],[ -1, -1, 1]],
|
|
[[ 0, 1, -1],[ -1, 1, -1]],
|
|
[[ 1, -1, 0],[ -1, -1, 1]],
|
|
[[ 1, -1, 0],[ -1, 1, -1]],
|
|
[[ 1, 0, -1],[ -1, -1, 1]],
|
|
[[ 1, 0, -1],[ -1, 1, -1]],
|
|
[[ -1, -1, 0],[ -1, -1, 1]],
|
|
[[ -1, -1, 0],[ -1, 1, -1]],
|
|
[[ 0, 1, 1],[ -1, -1, 1]],
|
|
[[ 0, 1, 1],[ -1, 1, -1]],
|
|
[[ 0, -1, 1],[ -1, -1, 1]],
|
|
[[ 0, -1, 1],[ -1, 1, -1]],
|
|
[[ -1, 0, -1],[ -1, -1, 1]],
|
|
[[ -1, 0, -1],[ -1, 1, -1]],
|
|
[[ 1, 1, 0],[ -1, -1, 1]],
|
|
[[ 1, 1, 0],[ -1, 1, -1]],
|
|
[[ -1, 1, 0],[ -1, -1, 1]],
|
|
[[ -1, 1, 0],[ -1, 1, -1]],
|
|
[[ 0, -1, -1],[ -1, -1, 1]],
|
|
[[ 0, -1, -1],[ -1, 1, -1]],
|
|
[[ 1, 0, 1],[ -1, -1, 1]],
|
|
[[ 1, 0, 1],[ -1, 1, -1]]],dtype='float')}
|
|
|
|
# Greninger--Troiano orientation relationship for fcc <-> bcc transformation
|
|
# from Y. He et al. Journal of Applied Crystallography 39 (2006) 72-81
|
|
GT = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 1, 1, 1],[ 1, 0, 1]],
|
|
[[ 1, 1, 1],[ 1, 1, 0]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, -1, 1],[ -1, 0, 1]],
|
|
[[ -1, -1, 1],[ -1, -1, 0]],
|
|
[[ -1, -1, 1],[ 0, -1, 1]],
|
|
[[ -1, 1, 1],[ -1, 0, 1]],
|
|
[[ -1, 1, 1],[ -1, 1, 0]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 1, 0, 1]],
|
|
[[ 1, -1, 1],[ 1, -1, 0]],
|
|
[[ 1, -1, 1],[ 0, -1, 1]],
|
|
[[ 1, 1, 1],[ 1, 1, 0]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 1, 0, 1]],
|
|
[[ -1, -1, 1],[ -1, -1, 0]],
|
|
[[ -1, -1, 1],[ 0, -1, 1]],
|
|
[[ -1, -1, 1],[ -1, 0, 1]],
|
|
[[ -1, 1, 1],[ -1, 1, 0]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ -1, 0, 1]],
|
|
[[ 1, -1, 1],[ 1, -1, 0]],
|
|
[[ 1, -1, 1],[ 0, -1, 1]],
|
|
[[ 1, -1, 1],[ 1, 0, 1]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ -5,-12, 17],[-17, -7, 17]],
|
|
[[ 17, -5,-12],[ 17,-17, -7]],
|
|
[[-12, 17, -5],[ -7, 17,-17]],
|
|
[[ 5, 12, 17],[ 17, 7, 17]],
|
|
[[-17, 5,-12],[-17, 17, -7]],
|
|
[[ 12,-17, -5],[ 7,-17,-17]],
|
|
[[ -5, 12,-17],[-17, 7,-17]],
|
|
[[ 17, 5, 12],[ 17, 17, 7]],
|
|
[[-12,-17, 5],[ -7,-17, 17]],
|
|
[[ 5,-12,-17],[ 17, -7,-17]],
|
|
[[-17, -5, 12],[-17,-17, 7]],
|
|
[[ 12, 17, 5],[ 7, 17, 17]],
|
|
[[ -5, 17,-12],[-17, 17, -7]],
|
|
[[-12, -5, 17],[ -7,-17, 17]],
|
|
[[ 17,-12, -5],[ 17, -7,-17]],
|
|
[[ 5,-17,-12],[ 17,-17, -7]],
|
|
[[ 12, 5, 17],[ 7, 17, 17]],
|
|
[[-17, 12, -5],[-17, 7,-17]],
|
|
[[ -5,-17, 12],[-17,-17, 7]],
|
|
[[-12, 5,-17],[ -7, 17,-17]],
|
|
[[ 17, 12, 5],[ 17, 7, 17]],
|
|
[[ 5, 17, 12],[ 17, 17, 7]],
|
|
[[ 12, -5,-17],[ 7,-17,-17]],
|
|
[[-17,-12, 5],[-17, 7, 17]]],dtype='float')}
|
|
|
|
# Greninger--Troiano' orientation relationship for fcc <-> bcc transformation
|
|
# from Y. He et al. Journal of Applied Crystallography 39 (2006) 72-81
|
|
GTdash = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 7, 17, 17],[ 12, 5, 17]],
|
|
[[ 17, 7, 17],[ 17, 12, 5]],
|
|
[[ 17, 17, 7],[ 5, 17, 12]],
|
|
[[ -7,-17, 17],[-12, -5, 17]],
|
|
[[-17, -7, 17],[-17,-12, 5]],
|
|
[[-17,-17, 7],[ -5,-17, 12]],
|
|
[[ 7,-17,-17],[ 12, -5,-17]],
|
|
[[ 17, -7,-17],[ 17,-12, -5]],
|
|
[[ 17,-17, -7],[ 5,-17,-12]],
|
|
[[ -7, 17,-17],[-12, 5,-17]],
|
|
[[-17, 7,-17],[-17, 12, -5]],
|
|
[[-17, 17, -7],[ -5, 17,-12]],
|
|
[[ 7, 17, 17],[ 12, 17, 5]],
|
|
[[ 17, 7, 17],[ 5, 12, 17]],
|
|
[[ 17, 17, 7],[ 17, 5, 12]],
|
|
[[ -7,-17, 17],[-12,-17, 5]],
|
|
[[-17, -7, 17],[ -5,-12, 17]],
|
|
[[-17,-17, 7],[-17, -5, 12]],
|
|
[[ 7,-17,-17],[ 12,-17, -5]],
|
|
[[ 17, -7,-17],[ 5, -12,-17]],
|
|
[[ 17,-17, 7],[ 17, -5,-12]],
|
|
[[ -7, 17,-17],[-12, 17, -5]],
|
|
[[-17, 7,-17],[ -5, 12,-17]],
|
|
[[-17, 17, -7],[-17, 5,-12]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ 0, 1, -1],[ 1, 1, -1]],
|
|
[[ -1, 0, 1],[ -1, 1, 1]],
|
|
[[ 1, -1, 0],[ 1, -1, 1]],
|
|
[[ 0, -1, -1],[ -1, -1, -1]],
|
|
[[ 1, 0, 1],[ 1, -1, 1]],
|
|
[[ 1, -1, 0],[ 1, -1, -1]],
|
|
[[ 0, 1, -1],[ -1, 1, -1]],
|
|
[[ 1, 0, 1],[ 1, 1, 1]],
|
|
[[ -1, -1, 0],[ -1, -1, 1]],
|
|
[[ 0, -1, -1],[ 1, -1, -1]],
|
|
[[ -1, 0, 1],[ -1, -1, 1]],
|
|
[[ -1, -1, 0],[ -1, -1, -1]],
|
|
[[ 0, -1, 1],[ 1, -1, 1]],
|
|
[[ 1, 0, -1],[ 1, 1, -1]],
|
|
[[ -1, 1, 0],[ -1, 1, 1]],
|
|
[[ 0, 1, 1],[ -1, 1, 1]],
|
|
[[ -1, 0, -1],[ -1, -1, -1]],
|
|
[[ -1, 1, 0],[ -1, 1, -1]],
|
|
[[ 0, -1, 1],[ -1, -1, 1]],
|
|
[[ -1, 0, -1],[ -1, 1, -1]],
|
|
[[ 1, 1, 0],[ 1, 1, 1]],
|
|
[[ 0, 1, 1],[ 1, 1, 1]],
|
|
[[ 1, 0, -1],[ 1, -1, -1]],
|
|
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
|
|
|
|
# Nishiyama--Wassermann orientation relationship for fcc <-> bcc transformation
|
|
# from H. Kitahara et al. Materials Characterization 54 (2005) 378-386
|
|
NW = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ -1, 1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ 1, -1, 1],[ 0, 1, 1]],
|
|
[[ -1, -1, 1],[ 0, 1, 1]],
|
|
[[ -1, -1, 1],[ 0, 1, 1]],
|
|
[[ -1, -1, 1],[ 0, 1, 1]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ 2, -1, -1],[ 0, -1, 1]],
|
|
[[ -1, 2, -1],[ 0, -1, 1]],
|
|
[[ -1, -1, 2],[ 0, -1, 1]],
|
|
[[ -2, -1, -1],[ 0, -1, 1]],
|
|
[[ 1, 2, -1],[ 0, -1, 1]],
|
|
[[ 1, -1, 2],[ 0, -1, 1]],
|
|
[[ 2, 1, -1],[ 0, -1, 1]],
|
|
[[ -1, -2, -1],[ 0, -1, 1]],
|
|
[[ -1, 1, 2],[ 0, -1, 1]],
|
|
[[ -1, 2, 1],[ 0, -1, 1]],
|
|
[[ -1, 2, 1],[ 0, -1, 1]],
|
|
[[ -1, -1, -2],[ 0, -1, 1]]],dtype='float')}
|
|
|
|
# Pitsch orientation relationship for fcc <-> bcc transformation
|
|
# from Y. He et al. Acta Materialia 53 (2005) 1179-1190
|
|
Pitsch = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 0, 1, 0],[ -1, 0, 1]],
|
|
[[ 0, 0, 1],[ 1, -1, 0]],
|
|
[[ 1, 0, 0],[ 0, 1, -1]],
|
|
[[ 1, 0, 0],[ 0, -1, -1]],
|
|
[[ 0, 1, 0],[ -1, 0, -1]],
|
|
[[ 0, 0, 1],[ -1, -1, 0]],
|
|
[[ 0, 1, 0],[ -1, 0, -1]],
|
|
[[ 0, 0, 1],[ -1, -1, 0]],
|
|
[[ 1, 0, 0],[ 0, -1, -1]],
|
|
[[ 1, 0, 0],[ 0, -1, 1]],
|
|
[[ 0, 1, 0],[ 1, 0, -1]],
|
|
[[ 0, 0, 1],[ -1, 1, 0]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ 1, 0, 1],[ 1, -1, 1]],
|
|
[[ 1, 1, 0],[ 1, 1, -1]],
|
|
[[ 0, 1, 1],[ -1, 1, 1]],
|
|
[[ 0, 1, -1],[ -1, 1, -1]],
|
|
[[ -1, 0, 1],[ -1, -1, 1]],
|
|
[[ 1, -1, 0],[ 1, -1, -1]],
|
|
[[ 1, 0, -1],[ 1, -1, -1]],
|
|
[[ -1, 1, 0],[ -1, 1, -1]],
|
|
[[ 0, -1, 1],[ -1, -1, 1]],
|
|
[[ 0, 1, 1],[ -1, 1, 1]],
|
|
[[ 1, 0, 1],[ 1, -1, 1]],
|
|
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
|
|
|
|
# Bain orientation relationship for fcc <-> bcc transformation
|
|
# from Y. He et al. Journal of Applied Crystallography 39 (2006) 72-81
|
|
Bain = {'mapping':{'fcc':0,'bcc':1},
|
|
'planes': np.array([
|
|
[[ 1, 0, 0],[ 1, 0, 0]],
|
|
[[ 0, 1, 0],[ 0, 1, 0]],
|
|
[[ 0, 0, 1],[ 0, 0, 1]]],dtype='float'),
|
|
'directions': np.array([
|
|
[[ 0, 1, 0],[ 0, 1, 1]],
|
|
[[ 0, 0, 1],[ 1, 0, 1]],
|
|
[[ 1, 0, 0],[ 1, 1, 0]]],dtype='float')}
|
|
|
|
def relationOperations(self,model):
|
|
|
|
models={'KS':self.KS, 'GT':self.GT, "GT'":self.GTdash,
|
|
'NW':self.NW, 'Pitsch': self.Pitsch, 'Bain':self.Bain}
|
|
try:
|
|
relationship = models[model]
|
|
except:
|
|
raise KeyError('Orientation relationship "{}" is unknown'.format(model))
|
|
|
|
if self.lattice not in relationship['mapping']:
|
|
raise ValueError('Relationship "{}" not supported for lattice "{}"'.format(model,self.lattice))
|
|
|
|
r = {'lattice':Lattice((set(relationship['mapping'])-{self.lattice}).pop()), # target lattice
|
|
'rotations':[] }
|
|
|
|
myPlane_id = relationship['mapping'][self.lattice]
|
|
otherPlane_id = (myPlane_id+1)%2
|
|
myDir_id = myPlane_id +2
|
|
otherDir_id = otherPlane_id +2
|
|
|
|
for miller in np.hstack((relationship['planes'],relationship['directions'])):
|
|
myPlane = miller[myPlane_id]/ np.linalg.norm(miller[myPlane_id])
|
|
myDir = miller[myDir_id]/ np.linalg.norm(miller[myDir_id])
|
|
myMatrix = np.array([myDir,np.cross(myPlane,myDir),myPlane]).T
|
|
|
|
otherPlane = miller[otherPlane_id]/ np.linalg.norm(miller[otherPlane_id])
|
|
otherDir = miller[otherDir_id]/ np.linalg.norm(miller[otherDir_id])
|
|
otherMatrix = np.array([otherDir,np.cross(otherPlane,otherDir),otherPlane]).T
|
|
|
|
r['rotations'].append(Rotation.fromMatrix(np.dot(otherMatrix,myMatrix.T)))
|
|
|
|
return r
|
|
|
|
|
|
|
|
class Orientation:
|
|
"""
|
|
Crystallographic orientation
|
|
|
|
A crystallographic orientation contains a rotation and a lattice
|
|
"""
|
|
|
|
__slots__ = ['rotation','lattice']
|
|
|
|
def __repr__(self):
|
|
"""Report lattice type and orientation"""
|
|
return self.lattice.__repr__()+'\n'+self.rotation.__repr__()
|
|
|
|
def __init__(self, rotation, lattice):
|
|
|
|
if isinstance(lattice, Lattice):
|
|
self.lattice = lattice
|
|
else:
|
|
self.lattice = Lattice(lattice) # assume string
|
|
|
|
if isinstance(rotation, Rotation):
|
|
self.rotation = rotation
|
|
else:
|
|
self.rotation = Rotation(rotation) # assume quaternion
|
|
|
|
def disorientation(self,
|
|
other,
|
|
SST = True):
|
|
"""
|
|
Disorientation between myself and given other orientation.
|
|
|
|
Rotation axis falls into SST if SST == True.
|
|
(Currently requires same symmetry for both orientations.
|
|
Look into A. Heinz and P. Neumann 1991 for cases with differing sym.)
|
|
"""
|
|
#if self.lattice.symmetry != other.lattice.symmetry:
|
|
# raise NotImplementedError('disorientation between different symmetry classes not supported yet.')
|
|
|
|
mis = other.rotation*self.rotation.inversed()
|
|
mySymEqs = self.equivalentOrientations() if SST else self.equivalentOrientations()[:1] # take all or only first sym operation
|
|
otherSymEqs = other.equivalentOrientations()
|
|
|
|
for i,sA in enumerate(mySymEqs):
|
|
for j,sB in enumerate(otherSymEqs):
|
|
r = sB.rotation*mis*sA.rotation.inversed()
|
|
for k in range(2):
|
|
r.inversed()
|
|
breaker = self.lattice.symmetry.inFZ(r.asRodrigues()) \
|
|
and (not SST or other.lattice.symmetry.inDisorientationSST(r.asRodrigues()))
|
|
if breaker: break
|
|
if breaker: break
|
|
if breaker: break
|
|
|
|
return r
|
|
|
|
def inFZ(self):
|
|
return self.lattice.symmetry.inFZ(self.rotation.asRodrigues())
|
|
|
|
def equivalentOrientations(self):
|
|
"""List of orientations which are symmetrically equivalent"""
|
|
return [self.__class__(q*self.rotation,self.lattice) \
|
|
for q in self.lattice.symmetry.symmetryOperations()]
|
|
|
|
def relatedOrientations(self,model):
|
|
"""List of orientations related by the given orientation relationship"""
|
|
r = self.lattice.relationOperations(model)
|
|
return [self.__class__(self.rotation*o,r['lattice']) for o in r['rotations']]
|
|
|
|
def reduced(self):
|
|
"""Transform orientation to fall into fundamental zone according to symmetry"""
|
|
for me in self.equivalentOrientations():
|
|
if self.lattice.symmetry.inFZ(me.rotation.asRodrigues()): break
|
|
|
|
return self.__class__(me.rotation,self.lattice)
|
|
|
|
def inversePole(self,
|
|
axis,
|
|
proper = False,
|
|
SST = True):
|
|
"""Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)"""
|
|
if SST: # pole requested to be within SST
|
|
for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions
|
|
pole = o.rotation*axis # align crystal direction to axis
|
|
if self.lattice.symmetry.inSST(pole,proper): break # found SST version
|
|
else:
|
|
pole = self.rotation*axis # align crystal direction to axis
|
|
|
|
return (pole,i if SST else 0)
|
|
|
|
|
|
def IPFcolor(self,axis):
|
|
"""TSL color of inverse pole figure for given axis"""
|
|
color = np.zeros(3,'d')
|
|
|
|
for o in self.equivalentOrientations():
|
|
pole = o.rotation*axis # align crystal direction to axis
|
|
inSST,color = self.lattice.symmetry.inSST(pole,color=True)
|
|
if inSST: break
|
|
|
|
return color
|
|
|
|
|
|
# @classmethod
|
|
# def average(cls,
|
|
# orientations,
|
|
# multiplicity = []):
|
|
# """
|
|
# Average orientation
|
|
|
|
# ref: F. Landis Markley, Yang Cheng, John Lucas Crassidis, and Yaakov Oshman.
|
|
# Averaging Quaternions,
|
|
# Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4 (2007), pp. 1193-1197.
|
|
# doi: 10.2514/1.28949
|
|
# usage:
|
|
# a = Orientation(Eulers=np.radians([10, 10, 0]), symmetry='hexagonal')
|
|
# b = Orientation(Eulers=np.radians([20, 0, 0]), symmetry='hexagonal')
|
|
# avg = Orientation.average([a,b])
|
|
# """
|
|
# if not all(isinstance(item, Orientation) for item in orientations):
|
|
# raise TypeError("Only instances of Orientation can be averaged.")
|
|
|
|
# N = len(orientations)
|
|
# if multiplicity == [] or not multiplicity:
|
|
# multiplicity = np.ones(N,dtype='i')
|
|
|
|
# reference = orientations[0] # take first as reference
|
|
# for i,(o,n) in enumerate(zip(orientations,multiplicity)):
|
|
# closest = o.equivalentOrientations(reference.disorientation(o,SST = False)[2])[0] # select sym orientation with lowest misorientation
|
|
# M = closest.quaternion.asM() * n if i == 0 else M + closest.quaternion.asM() * n # noqa add (multiples) of this orientation to average noqa
|
|
# eig, vec = np.linalg.eig(M/N)
|
|
|
|
# return Orientation(quaternion = Quaternion(quat = np.real(vec.T[eig.argmax()])),
|
|
# symmetry = reference.symmetry.lattice)
|
|
|
|
|
|
####################################################################################################
|
|
# Code below available according to the following conditions on https://github.com/MarDiehl/3Drotations
|
|
####################################################################################################
|
|
# Copyright (c) 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
|
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without modification, are
|
|
# permitted provided that the following conditions are met:
|
|
#
|
|
# - Redistributions of source code must retain the above copyright notice, this list
|
|
# of conditions and the following disclaimer.
|
|
# - Redistributions in binary form must reproduce the above copyright notice, this
|
|
# list of conditions and the following disclaimer in the documentation and/or
|
|
# other materials provided with the distribution.
|
|
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
|
# of its contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
####################################################################################################
|
|
|
|
def isone(a):
|
|
return np.isclose(a,1.0,atol=1.0e-7,rtol=0.0)
|
|
|
|
def iszero(a):
|
|
return np.isclose(a,0.0,atol=1.0e-12,rtol=0.0)
|
|
|
|
|
|
def eu2om(eu):
|
|
"""Euler angles to orientation matrix"""
|
|
c = np.cos(eu)
|
|
s = np.sin(eu)
|
|
|
|
om = np.array([[+c[0]*c[2]-s[0]*s[2]*c[1], +s[0]*c[2]+c[0]*s[2]*c[1], +s[2]*s[1]],
|
|
[-c[0]*s[2]-s[0]*c[2]*c[1], -s[0]*s[2]+c[0]*c[2]*c[1], +c[2]*s[1]],
|
|
[+s[0]*s[1], -c[0]*s[1], +c[1] ]])
|
|
|
|
om[np.where(iszero(om))] = 0.0
|
|
return om
|
|
|
|
|
|
def eu2ax(eu):
|
|
"""Euler angles to axis angle"""
|
|
t = np.tan(eu[1]*0.5)
|
|
sigma = 0.5*(eu[0]+eu[2])
|
|
delta = 0.5*(eu[0]-eu[2])
|
|
tau = np.linalg.norm([t,np.sin(sigma)])
|
|
alpha = np.pi if iszero(np.cos(sigma)) else \
|
|
2.0*np.arctan(tau/np.cos(sigma))
|
|
|
|
if iszero(alpha):
|
|
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
|
else:
|
|
ax = -P/tau * np.array([ t*np.cos(delta), t*np.sin(delta), np.sin(sigma) ]) # passive axis-angle pair so a minus sign in front
|
|
ax = np.append(ax,alpha)
|
|
if alpha < 0.0: ax *= -1.0 # ensure alpha is positive
|
|
|
|
return ax
|
|
|
|
|
|
def eu2ro(eu):
|
|
"""Euler angles to Rodrigues vector"""
|
|
ro = eu2ax(eu) # convert to axis angle representation
|
|
if ro[3] >= np.pi: # Differs from original implementation. check convention 5
|
|
ro[3] = np.inf
|
|
elif iszero(ro[3]):
|
|
ro = np.array([ 0.0, 0.0, P, 0.0 ])
|
|
else:
|
|
ro[3] = np.tan(ro[3]*0.5)
|
|
|
|
return ro
|
|
|
|
|
|
def eu2qu(eu):
|
|
"""Euler angles to quaternion"""
|
|
ee = 0.5*eu
|
|
cPhi = np.cos(ee[1])
|
|
sPhi = np.sin(ee[1])
|
|
qu = np.array([ cPhi*np.cos(ee[0]+ee[2]),
|
|
-P*sPhi*np.cos(ee[0]-ee[2]),
|
|
-P*sPhi*np.sin(ee[0]-ee[2]),
|
|
-P*cPhi*np.sin(ee[0]+ee[2]) ])
|
|
#if qu[0] < 0.0: qu.homomorph() !ToDo: Check with original
|
|
return qu
|
|
|
|
|
|
def om2eu(om):
|
|
"""Euler angles to orientation matrix"""
|
|
if isone(om[2,2]**2):
|
|
eu = np.array([np.arctan2( om[0,1],om[0,0]), np.pi*0.5*(1-om[2,2]),0.0]) # following the paper, not the reference implementation
|
|
else:
|
|
zeta = 1.0/np.sqrt(1.0-om[2,2]**2)
|
|
eu = np.array([np.arctan2(om[2,0]*zeta,-om[2,1]*zeta),
|
|
np.arccos(om[2,2]),
|
|
np.arctan2(om[0,2]*zeta, om[1,2]*zeta)])
|
|
|
|
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
|
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
|
return eu
|
|
|
|
|
|
def ax2om(ax):
|
|
"""Axis angle to orientation matrix"""
|
|
c = np.cos(ax[3])
|
|
s = np.sin(ax[3])
|
|
omc = 1.0-c
|
|
om=np.diag(ax[0:3]**2*omc + c)
|
|
|
|
for idx in [[0,1,2],[1,2,0],[2,0,1]]:
|
|
q = omc*ax[idx[0]] * ax[idx[1]]
|
|
om[idx[0],idx[1]] = q + s*ax[idx[2]]
|
|
om[idx[1],idx[0]] = q - s*ax[idx[2]]
|
|
|
|
return om if P < 0.0 else om.T
|
|
|
|
|
|
def qu2eu(qu):
|
|
"""Quaternion to Euler angles"""
|
|
q03 = qu[0]**2+qu[3]**2
|
|
q12 = qu[1]**2+qu[2]**2
|
|
chi = np.sqrt(q03*q12)
|
|
|
|
if iszero(chi):
|
|
eu = np.array([np.arctan2(-P*2.0*qu[0]*qu[3],qu[0]**2-qu[3]**2), 0.0, 0.0]) if iszero(q12) else \
|
|
np.array([np.arctan2(2.0*qu[1]*qu[2],qu[1]**2-qu[2]**2), np.pi, 0.0])
|
|
else:
|
|
eu = np.array([np.arctan2((-P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]-qu[2]*qu[3])*chi ),
|
|
np.arctan2( 2.0*chi, q03-q12 ),
|
|
np.arctan2(( P*qu[0]*qu[2]+qu[1]*qu[3])*chi, (-P*qu[0]*qu[1]+qu[2]*qu[3])*chi )])
|
|
|
|
# reduce Euler angles to definition range, i.e a lower limit of 0.0
|
|
eu = np.where(eu<0, (eu+2.0*np.pi)%np.array([2.0*np.pi,np.pi,2.0*np.pi]),eu)
|
|
return eu
|
|
|
|
|
|
def ax2ho(ax):
|
|
"""Axis angle to homochoric"""
|
|
f = (0.75 * ( ax[3] - np.sin(ax[3]) ))**(1.0/3.0)
|
|
ho = ax[0:3] * f
|
|
return ho
|
|
|
|
|
|
def ho2ax(ho):
|
|
"""Homochoric to axis angle"""
|
|
tfit = np.array([+1.0000000000018852, -0.5000000002194847,
|
|
-0.024999992127593126, -0.003928701544781374,
|
|
-0.0008152701535450438, -0.0002009500426119712,
|
|
-0.00002397986776071756, -0.00008202868926605841,
|
|
+0.00012448715042090092, -0.0001749114214822577,
|
|
+0.0001703481934140054, -0.00012062065004116828,
|
|
+0.000059719705868660826, -0.00001980756723965647,
|
|
+0.000003953714684212874, -0.00000036555001439719544])
|
|
# normalize h and store the magnitude
|
|
hmag_squared = np.sum(ho**2.)
|
|
if iszero(hmag_squared):
|
|
ax = np.array([ 0.0, 0.0, 1.0, 0.0 ])
|
|
else:
|
|
hm = hmag_squared
|
|
|
|
# convert the magnitude to the rotation angle
|
|
s = tfit[0] + tfit[1] * hmag_squared
|
|
for i in range(2,16):
|
|
hm *= hmag_squared
|
|
s += tfit[i] * hm
|
|
ax = np.append(ho/np.sqrt(hmag_squared),2.0*np.arccos(np.clip(s,-1.0,1.0)))
|
|
return ax
|
|
|
|
|
|
def om2ax(om):
|
|
"""Orientation matrix to axis angle"""
|
|
ax=np.empty(4)
|
|
|
|
# first get the rotation angle
|
|
t = 0.5*(om.trace() -1.0)
|
|
ax[3] = np.arccos(np.clip(t,-1.0,1.0))
|
|
|
|
if iszero(ax[3]):
|
|
ax = [ 0.0, 0.0, 1.0, 0.0]
|
|
else:
|
|
w,vr = np.linalg.eig(om)
|
|
# next, find the eigenvalue (1,0j)
|
|
i = np.where(np.isclose(w,1.0+0.0j))[0][0]
|
|
ax[0:3] = np.real(vr[0:3,i])
|
|
diagDelta = np.array([om[1,2]-om[2,1],om[2,0]-om[0,2],om[0,1]-om[1,0]])
|
|
ax[0:3] = np.where(iszero(diagDelta), ax[0:3],np.abs(ax[0:3])*np.sign(-P*diagDelta))
|
|
|
|
return np.array(ax)
|
|
|
|
|
|
def ro2ax(ro):
|
|
"""Rodrigues vector to axis angle"""
|
|
ta = ro[3]
|
|
|
|
if iszero(ta):
|
|
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
|
elif not np.isfinite(ta):
|
|
ax = [ ro[0], ro[1], ro[2], np.pi ]
|
|
else:
|
|
angle = 2.0*np.arctan(ta)
|
|
ta = 1.0/np.linalg.norm(ro[0:3])
|
|
ax = [ ro[0]/ta, ro[1]/ta, ro[2]/ta, angle ]
|
|
|
|
return np.array(ax)
|
|
|
|
|
|
def ax2ro(ax):
|
|
"""Axis angle to Rodrigues vector"""
|
|
if iszero(ax[3]):
|
|
ro = [ 0.0, 0.0, P, 0.0 ]
|
|
else:
|
|
ro = [ax[0], ax[1], ax[2]]
|
|
# 180 degree case
|
|
ro += [np.inf] if np.isclose(ax[3],np.pi,atol=1.0e-15,rtol=0.0) else \
|
|
[np.tan(ax[3]*0.5)]
|
|
|
|
return np.array(ro)
|
|
|
|
|
|
def ax2qu(ax):
|
|
"""Axis angle to quaternion"""
|
|
if iszero(ax[3]):
|
|
qu = np.array([ 1.0, 0.0, 0.0, 0.0 ])
|
|
else:
|
|
c = np.cos(ax[3]*0.5)
|
|
s = np.sin(ax[3]*0.5)
|
|
qu = np.array([ c, ax[0]*s, ax[1]*s, ax[2]*s ])
|
|
|
|
return qu
|
|
|
|
|
|
def ro2ho(ro):
|
|
"""Rodrigues vector to homochoric"""
|
|
if iszero(np.sum(ro[0:3]**2.0)):
|
|
ho = [ 0.0, 0.0, 0.0 ]
|
|
else:
|
|
f = 2.0*np.arctan(ro[3]) -np.sin(2.0*np.arctan(ro[3])) if np.isfinite(ro[3]) else np.pi
|
|
ho = ro[0:3] * (0.75*f)**(1.0/3.0)
|
|
|
|
return np.array(ho)
|
|
|
|
|
|
def qu2om(qu):
|
|
"""Quaternion to orientation matrix"""
|
|
qq = qu[0]**2-(qu[1]**2 + qu[2]**2 + qu[3]**2)
|
|
om = np.diag(qq + 2.0*np.array([qu[1],qu[2],qu[3]])**2)
|
|
|
|
om[1,0] = 2.0*(qu[2]*qu[1]+qu[0]*qu[3])
|
|
om[0,1] = 2.0*(qu[1]*qu[2]-qu[0]*qu[3])
|
|
om[2,1] = 2.0*(qu[3]*qu[2]+qu[0]*qu[1])
|
|
om[1,2] = 2.0*(qu[2]*qu[3]-qu[0]*qu[1])
|
|
om[0,2] = 2.0*(qu[1]*qu[3]+qu[0]*qu[2])
|
|
om[2,0] = 2.0*(qu[3]*qu[1]-qu[0]*qu[2])
|
|
return om if P > 0.0 else om.T
|
|
|
|
|
|
def qu2ax(qu):
|
|
"""
|
|
Quaternion to axis angle
|
|
|
|
Modified version of the original formulation, should be numerically more stable
|
|
"""
|
|
if isone(abs(qu[0])): # set axis to [001] if the angle is 0/360
|
|
ax = [ 0.0, 0.0, 1.0, 0.0 ]
|
|
elif not iszero(qu[0]):
|
|
omega = 2.0 * np.arccos(qu[0])
|
|
s = np.sign(qu[0])/np.sqrt(qu[1]**2+qu[2]**2+qu[3]**2)
|
|
ax = [ qu[1]*s, qu[2]*s, qu[3]*s, omega ]
|
|
else:
|
|
ax = [ qu[1], qu[2], qu[3], np.pi]
|
|
|
|
return np.array(ax)
|
|
|
|
|
|
def qu2ro(qu):
|
|
"""Quaternion to Rodrigues vector"""
|
|
if iszero(qu[0]):
|
|
ro = [qu[1], qu[2], qu[3], np.inf]
|
|
else:
|
|
s = np.linalg.norm([qu[1],qu[2],qu[3]])
|
|
ro = [0.0,0.0,P,0.0] if iszero(s) else \
|
|
[ qu[1]/s, qu[2]/s, qu[3]/s, np.tan(np.arccos(np.clip(qu[0],-1.0,1.0)))] # avoid numerical difficulties
|
|
|
|
return np.array(ro)
|
|
|
|
|
|
def qu2ho(qu):
|
|
"""Quaternion to homochoric"""
|
|
omega = 2.0 * np.arccos(np.clip(qu[0],-1.0,1.0)) # avoid numerical difficulties
|
|
|
|
if iszero(omega):
|
|
ho = np.array([ 0.0, 0.0, 0.0 ])
|
|
else:
|
|
ho = np.array([qu[1], qu[2], qu[3]])
|
|
f = 0.75 * ( omega - np.sin(omega) )
|
|
ho = ho/np.linalg.norm(ho) * f**(1./3.)
|
|
|
|
return ho
|
|
|
|
|
|
def ho2cu(ho):
|
|
"""Homochoric to cubochoric"""
|
|
return Lambert.BallToCube(ho)
|
|
|
|
|
|
def cu2ho(cu):
|
|
"""Cubochoric to homochoric"""
|
|
return Lambert.CubeToBall(cu)
|
|
|
|
|
|
def ro2eu(ro):
|
|
"""Rodrigues vector to orientation matrix"""
|
|
return om2eu(ro2om(ro))
|
|
|
|
|
|
def eu2ho(eu):
|
|
"""Euler angles to homochoric"""
|
|
return ax2ho(eu2ax(eu))
|
|
|
|
|
|
def om2ro(om):
|
|
"""Orientation matrix to Rodriques vector"""
|
|
return eu2ro(om2eu(om))
|
|
|
|
|
|
def om2ho(om):
|
|
"""Orientation matrix to homochoric"""
|
|
return ax2ho(om2ax(om))
|
|
|
|
|
|
def ax2eu(ax):
|
|
"""Orientation matrix to Euler angles"""
|
|
return om2eu(ax2om(ax))
|
|
|
|
|
|
def ro2om(ro):
|
|
"""Rodgrigues vector to orientation matrix"""
|
|
return ax2om(ro2ax(ro))
|
|
|
|
|
|
def ro2qu(ro):
|
|
"""Rodrigues vector to quaternion"""
|
|
return ax2qu(ro2ax(ro))
|
|
|
|
|
|
def ho2eu(ho):
|
|
"""Homochoric to Euler angles"""
|
|
return ax2eu(ho2ax(ho))
|
|
|
|
|
|
def ho2om(ho):
|
|
"""Homochoric to orientation matrix"""
|
|
return ax2om(ho2ax(ho))
|
|
|
|
|
|
def ho2ro(ho):
|
|
"""Axis angle to Rodriques vector"""
|
|
return ax2ro(ho2ax(ho))
|
|
|
|
|
|
def ho2qu(ho):
|
|
"""Homochoric to quaternion"""
|
|
return ax2qu(ho2ax(ho))
|
|
|
|
|
|
def eu2cu(eu):
|
|
"""Euler angles to cubochoric"""
|
|
return ho2cu(eu2ho(eu))
|
|
|
|
|
|
def om2cu(om):
|
|
"""Orientation matrix to cubochoric"""
|
|
return ho2cu(om2ho(om))
|
|
|
|
|
|
def om2qu(om):
|
|
"""
|
|
Orientation matrix to quaternion
|
|
|
|
The original formulation (direct conversion) had numerical issues
|
|
"""
|
|
return ax2qu(om2ax(om))
|
|
|
|
|
|
def ax2cu(ax):
|
|
"""Axis angle to cubochoric"""
|
|
return ho2cu(ax2ho(ax))
|
|
|
|
|
|
def ro2cu(ro):
|
|
"""Rodrigues vector to cubochoric"""
|
|
return ho2cu(ro2ho(ro))
|
|
|
|
|
|
def qu2cu(qu):
|
|
"""Quaternion to cubochoric"""
|
|
return ho2cu(qu2ho(qu))
|
|
|
|
|
|
def cu2eu(cu):
|
|
"""Cubochoric to Euler angles"""
|
|
return ho2eu(cu2ho(cu))
|
|
|
|
|
|
def cu2om(cu):
|
|
"""Cubochoric to orientation matrix"""
|
|
return ho2om(cu2ho(cu))
|
|
|
|
|
|
def cu2ax(cu):
|
|
"""Cubochoric to axis angle"""
|
|
return ho2ax(cu2ho(cu))
|
|
|
|
|
|
def cu2ro(cu):
|
|
"""Cubochoric to Rodrigues vector"""
|
|
return ho2ro(cu2ho(cu))
|
|
|
|
|
|
def cu2qu(cu):
|
|
"""Cubochoric to quaternion"""
|
|
return ho2qu(cu2ho(cu))
|