DAMASK_EICMD/src/thermal_conduction.f90

259 lines
9.9 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for temperature evolution from heat conduction
!--------------------------------------------------------------------------------------------------
module thermal_conduction
use prec
use material
use config
use lattice
use results
use crystallite
use source_thermal_dissipation
use source_thermal_externalheat
implicit none
private
type :: tParameters
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
type(tparameters), dimension(:), allocatable :: &
param
public :: &
thermal_conduction_init, &
thermal_conduction_getSourceAndItsTangent, &
thermal_conduction_getConductivity, &
thermal_conduction_getSpecificHeat, &
thermal_conduction_getMassDensity, &
thermal_conduction_putTemperatureAndItsRate, &
thermal_conduction_results
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_init
integer :: Ninstance,NofMyHomog,h
write(6,'(/,a)') ' <<<+- thermal_'//THERMAL_CONDUCTION_label//' init -+>>>'; flush(6)
Ninstance = count(thermal_type == THERMAL_conduction_ID)
allocate(param(Ninstance))
do h = 1, size(config_homogenization)
if (thermal_type(h) /= THERMAL_conduction_ID) cycle
associate(prm => param(thermal_typeInstance(h)),config => config_homogenization(h))
prm%output = config%getStrings('(output)',defaultVal=emptyStringArray)
NofMyHomog=count(material_homogenizationAt==h)
thermalState(h)%sizeState = 0
allocate(thermalState(h)%state0 (0,NofMyHomog))
allocate(thermalState(h)%subState0(0,NofMyHomog))
allocate(thermalState(h)%state (0,NofMyHomog))
thermalMapping(h)%p => material_homogenizationMemberAt
deallocate(temperature (h)%p)
allocate (temperature (h)%p(NofMyHomog), source=thermal_initialT(h))
deallocate(temperatureRate(h)%p)
allocate (temperatureRate(h)%p(NofMyHomog), source=0.0_pReal)
end associate
enddo
end subroutine thermal_conduction_init
!--------------------------------------------------------------------------------------------------
!> @brief returns heat generation rate
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T
real(pReal), intent(out) :: &
Tdot, dTdot_dT
real(pReal) :: &
my_Tdot, my_dTdot_dT
integer :: &
phase, &
homog, &
offset, &
instance, &
grain, &
source, &
constituent
homog = material_homogenizationAt(el)
offset = material_homogenizationMemberAt(ip,el)
instance = thermal_typeInstance(homog)
Tdot = 0.0_pReal
dTdot_dT = 0.0_pReal
do grain = 1, homogenization_Ngrains(homog)
phase = material_phaseAt(grain,el)
constituent = material_phasememberAt(grain,ip,el)
do source = 1, phase_Nsources(phase)
select case(phase_source(source,phase))
case (SOURCE_thermal_dissipation_ID)
call source_thermal_dissipation_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
crystallite_S(1:3,1:3,grain,ip,el), &
crystallite_Lp(1:3,1:3,grain,ip,el), &
phase)
case (SOURCE_thermal_externalheat_ID)
call source_thermal_externalheat_getRateAndItsTangent(my_Tdot, my_dTdot_dT, &
phase, constituent)
case default
my_Tdot = 0.0_pReal
my_dTdot_dT = 0.0_pReal
end select
Tdot = Tdot + my_Tdot
dTdot_dT = dTdot_dT + my_dTdot_dT
enddo
enddo
Tdot = Tdot/real(homogenization_Ngrains(homog),pReal)
dTdot_dT = dTdot_dT/real(homogenization_Ngrains(homog),pReal)
end subroutine thermal_conduction_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized thermal conductivity in reference configuration
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getConductivity(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3) :: &
thermal_conduction_getConductivity
integer :: &
grain
thermal_conduction_getConductivity = 0.0_pReal
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_conduction_getConductivity = thermal_conduction_getConductivity + &
crystallite_push33ToRef(grain,ip,el,lattice_thermalConductivity(:,:,material_phaseAt(grain,el)))
enddo
thermal_conduction_getConductivity = thermal_conduction_getConductivity &
/ real(homogenization_Ngrains(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getConductivity
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getSpecificHeat(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getSpecificHeat
integer :: &
grain
thermal_conduction_getSpecificHeat = 0.0_pReal
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat &
+ lattice_specificHeat(material_phaseAt(grain,el))
enddo
thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat &
/ real(homogenization_Ngrains(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
function thermal_conduction_getMassDensity(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_conduction_getMassDensity
integer :: &
grain
thermal_conduction_getMassDensity = 0.0_pReal
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity &
+ lattice_massDensity(material_phaseAt(grain,el))
enddo
thermal_conduction_getMassDensity = thermal_conduction_getMassDensity &
/ real(homogenization_Ngrains(material_homogenizationAt(el)),pReal)
end function thermal_conduction_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief updates thermal state with solution from heat conduction PDE
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_putTemperatureAndItsRate(T,Tdot,ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T, &
Tdot
integer :: &
homog, &
offset
homog = material_homogenizationAt(el)
offset = thermalMapping(homog)%p(ip,el)
temperature (homog)%p(offset) = T
temperatureRate(homog)%p(offset) = Tdot
end subroutine thermal_conduction_putTemperatureAndItsRate
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine thermal_conduction_results(homog,group)
integer, intent(in) :: homog
character(len=*), intent(in) :: group
integer :: o
associate(prm => param(damage_typeInstance(homog)))
outputsLoop: do o = 1,size(prm%output)
select case(trim(prm%output(o)))
case('temperature') ! ToDo: should be 'T'
call results_writeDataset(group,temperature(homog)%p,'T',&
'temperature','K')
end select
enddo outputsLoop
end associate
end subroutine thermal_conduction_results
end module thermal_conduction