221 lines
9.9 KiB
Python
221 lines
9.9 KiB
Python
import shutil
|
|
import os
|
|
|
|
import pytest
|
|
import numpy as np
|
|
|
|
import damask
|
|
from damask import Result
|
|
from damask import mechanics
|
|
|
|
@pytest.fixture
|
|
def default(tmp_path,reference_dir):
|
|
"""Small Result file in temp location for modification."""
|
|
fname = '12grains6x7x8_tensionY.hdf5'
|
|
shutil.copy(os.path.join(reference_dir,fname),tmp_path)
|
|
f = Result(os.path.join(tmp_path,fname))
|
|
f.pick('times',20.0)
|
|
return f
|
|
|
|
@pytest.fixture
|
|
def reference_dir(reference_dir_base):
|
|
"""Directory containing reference results."""
|
|
return os.path.join(reference_dir_base,'Result')
|
|
|
|
|
|
class TestResult:
|
|
|
|
def test_self_report(self,default):
|
|
print(default)
|
|
|
|
|
|
def test_time_increments(self,default):
|
|
shape = default.read_dataset(default.get_dataset_location('F'),0).shape
|
|
default.set_by_time(0.0,20.0)
|
|
for i in default.iterate('increments'):
|
|
assert shape == default.read_dataset(default.get_dataset_location('F'),0).shape
|
|
|
|
|
|
def test_add_absolute(self,default):
|
|
default.add_absolute('Fe')
|
|
loc = {'Fe': default.get_dataset_location('Fe'),
|
|
'|Fe|': default.get_dataset_location('|Fe|')}
|
|
in_memory = np.abs(default.read_dataset(loc['Fe'],0))
|
|
in_file = default.read_dataset(loc['|Fe|'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_calculation(self,default):
|
|
default.add_calculation('x','2.0*np.abs(#F#)-1.0','-','my notes')
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'x': default.get_dataset_location('x')}
|
|
in_memory = 2.0*np.abs(default.read_dataset(loc['F'],0))-1.0
|
|
in_file = default.read_dataset(loc['x'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_Cauchy(self,default):
|
|
default.add_Cauchy('P','F')
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'P': default.get_dataset_location('P'),
|
|
'sigma':default.get_dataset_location('sigma')}
|
|
in_memory = mechanics.Cauchy(default.read_dataset(loc['P'],0),
|
|
default.read_dataset(loc['F'],0))
|
|
in_file = default.read_dataset(loc['sigma'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_determinant(self,default):
|
|
default.add_determinant('P')
|
|
loc = {'P': default.get_dataset_location('P'),
|
|
'det(P)':default.get_dataset_location('det(P)')}
|
|
in_memory = np.linalg.det(default.read_dataset(loc['P'],0)).reshape(-1,1)
|
|
in_file = default.read_dataset(loc['det(P)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_deviator(self,default):
|
|
default.add_deviator('P')
|
|
loc = {'P' :default.get_dataset_location('P'),
|
|
's_P':default.get_dataset_location('s_P')}
|
|
in_memory = mechanics.deviatoric_part(default.read_dataset(loc['P'],0))
|
|
in_file = default.read_dataset(loc['s_P'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_eigenvalues(self,default):
|
|
default.add_Cauchy('P','F')
|
|
default.add_eigenvalues('sigma')
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
'lambda(sigma)':default.get_dataset_location('lambda(sigma)')}
|
|
in_memory = mechanics.eigenvalues(default.read_dataset(loc['sigma'],0))
|
|
in_file = default.read_dataset(loc['lambda(sigma)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_eigenvectors(self,default):
|
|
default.add_Cauchy('P','F')
|
|
default.add_eigenvectors('sigma')
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
'v(sigma)':default.get_dataset_location('v(sigma)')}
|
|
in_memory = mechanics.eigenvectors(default.read_dataset(loc['sigma'],0))
|
|
in_file = default.read_dataset(loc['v(sigma)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('d',[[1,0,0],[0,1,0],[0,0,1]])
|
|
def test_add_IPFcolor(self,default,d):
|
|
default.add_IPFcolor('orientation',d)
|
|
loc = {'orientation': default.get_dataset_location('orientation'),
|
|
'color': default.get_dataset_location('IPFcolor_[{} {} {}]'.format(*d))}
|
|
qu = default.read_dataset(loc['orientation']).view(np.double).reshape(-1,4)
|
|
crystal_structure = default.get_crystal_structure()
|
|
in_memory = np.empty((qu.shape[0],3),np.uint8)
|
|
for i,q in enumerate(qu):
|
|
o = damask.Orientation(q,crystal_structure).reduced()
|
|
in_memory[i] = np.uint8(o.IPFcolor(np.array(d))*255)
|
|
in_file = default.read_dataset(loc['color'])
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_maximum_shear(self,default):
|
|
default.add_Cauchy('P','F')
|
|
default.add_maximum_shear('sigma')
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
'max_shear(sigma)':default.get_dataset_location('max_shear(sigma)')}
|
|
in_memory = mechanics.maximum_shear(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
|
in_file = default.read_dataset(loc['max_shear(sigma)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_Mises_strain(self,default):
|
|
t = ['V','U'][np.random.randint(0,2)]
|
|
m = np.random.random()*2.0 - 1.0
|
|
default.add_strain_tensor('F',t,m)
|
|
label = 'epsilon_{}^{}(F)'.format(t,m)
|
|
default.add_Mises(label)
|
|
loc = {label :default.get_dataset_location(label),
|
|
label+'_vM':default.get_dataset_location(label+'_vM')}
|
|
in_memory = mechanics.Mises_strain(default.read_dataset(loc[label],0)).reshape(-1,1)
|
|
in_file = default.read_dataset(loc[label+'_vM'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_Mises_stress(self,default):
|
|
default.add_Cauchy('P','F')
|
|
default.add_Mises('sigma')
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
'sigma_vM':default.get_dataset_location('sigma_vM')}
|
|
in_memory = mechanics.Mises_stress(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
|
in_file = default.read_dataset(loc['sigma_vM'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_norm(self,default):
|
|
default.add_norm('F',1)
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'|F|_1':default.get_dataset_location('|F|_1')}
|
|
in_memory = np.linalg.norm(default.read_dataset(loc['F'],0),ord=1,axis=(1,2),keepdims=True)
|
|
in_file = default.read_dataset(loc['|F|_1'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_PK2(self,default):
|
|
default.add_PK2('P','F')
|
|
loc = {'F':default.get_dataset_location('F'),
|
|
'P':default.get_dataset_location('P'),
|
|
'S':default.get_dataset_location('S')}
|
|
in_memory = mechanics.PK2(default.read_dataset(loc['P'],0),
|
|
default.read_dataset(loc['F'],0))
|
|
in_file = default.read_dataset(loc['S'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('polar',[True,False])
|
|
def test_add_pole(self,default,polar):
|
|
pole = np.array([1.,0.,0.])
|
|
default.add_pole('orientation',pole,polar)
|
|
loc = {'orientation': default.get_dataset_location('orientation'),
|
|
'pole': default.get_dataset_location('p^{}_[1 0 0)'.format(u'rφ' if polar else 'xy'))}
|
|
rot = damask.Rotation(default.read_dataset(loc['orientation']).view(np.double))
|
|
rotated_pole = rot * np.broadcast_to(pole,rot.shape+(3,))
|
|
xy = rotated_pole[:,0:2]/(1.+abs(pole[2]))
|
|
in_memory = xy if not polar else \
|
|
np.block([np.sqrt(xy[:,0:1]*xy[:,0:1]+xy[:,1:2]*xy[:,1:2]),np.arctan2(xy[:,1:2],xy[:,0:1])])
|
|
in_file = default.read_dataset(loc['pole'])
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_rotational_part(self,default):
|
|
default.add_rotational_part('F')
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'R(F)': default.get_dataset_location('R(F)')}
|
|
in_memory = mechanics.rotational_part(default.read_dataset(loc['F'],0))
|
|
in_file = default.read_dataset(loc['R(F)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_spherical(self,default):
|
|
default.add_spherical('P')
|
|
loc = {'P': default.get_dataset_location('P'),
|
|
'p_P': default.get_dataset_location('p_P')}
|
|
in_memory = mechanics.spherical_part(default.read_dataset(loc['P'],0)).reshape(-1,1)
|
|
in_file = default.read_dataset(loc['p_P'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_strain(self,default):
|
|
t = ['V','U'][np.random.randint(0,2)]
|
|
m = np.random.random()*2.0 - 1.0
|
|
default.add_strain_tensor('F',t,m)
|
|
label = 'epsilon_{}^{}(F)'.format(t,m)
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
label: default.get_dataset_location(label)}
|
|
in_memory = mechanics.strain_tensor(default.read_dataset(loc['F'],0),t,m)
|
|
in_file = default.read_dataset(loc[label],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_stretch_right(self,default):
|
|
default.add_stretch_tensor('F','U')
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'U(F)': default.get_dataset_location('U(F)')}
|
|
in_memory = mechanics.right_stretch(default.read_dataset(loc['F'],0))
|
|
in_file = default.read_dataset(loc['U(F)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_stretch_left(self,default):
|
|
default.add_stretch_tensor('F','V')
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'V(F)': default.get_dataset_location('V(F)')}
|
|
in_memory = mechanics.left_stretch(default.read_dataset(loc['F'],0))
|
|
in_file = default.read_dataset(loc['V(F)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('output',['F',[],['F','P']])
|
|
def test_vtk(self,default,output):
|
|
default.to_vtk(output)
|