DAMASK_EICMD/src/thermal_adiabatic.f90

230 lines
8.6 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for adiabatic temperature evolution
!--------------------------------------------------------------------------------------------------
module thermal_adiabatic
use prec
use config
use material
use results
use constitutive
use YAML_types
use crystallite
use lattice
implicit none
private
type :: tParameters
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
type(tparameters), dimension(:), allocatable :: &
param
public :: &
thermal_adiabatic_init, &
thermal_adiabatic_updateState, &
thermal_adiabatic_getSourceAndItsTangent, &
thermal_adiabatic_getSpecificHeat, &
thermal_adiabatic_getMassDensity, &
thermal_adiabatic_results
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_init
integer :: maxNinstance,h,NofMyHomog
class(tNode), pointer :: &
material_homogenization, &
homog, &
homogThermal
write(6,'(/,a)') ' <<<+- thermal_adiabatic init -+>>>'; flush(6)
maxNinstance = count(thermal_type == THERMAL_adiabatic_ID)
if (maxNinstance == 0) return
allocate(param(maxNinstance))
material_homogenization => material_root%get('homogenization')
do h = 1, material_Nhomogenization
if (thermal_type(h) /= THERMAL_adiabatic_ID) cycle
homog => material_homogenization%get(h)
homogThermal => homog%get('thermal')
associate(prm => param(thermal_typeInstance(h)))
#if defined (__GFORTRAN__)
prm%output = output_asStrings(homogThermal)
#else
prm%output = homogThermal%get_asStrings('output',defaultVal=emptyStringArray)
#endif
NofMyHomog=count(material_homogenizationAt==h)
thermalState(h)%sizeState = 1
allocate(thermalState(h)%state0 (1,NofMyHomog), source=thermal_initialT(h))
allocate(thermalState(h)%subState0(1,NofMyHomog), source=thermal_initialT(h))
allocate(thermalState(h)%state (1,NofMyHomog), source=thermal_initialT(h))
thermalMapping(h)%p => material_homogenizationMemberAt
deallocate(temperature(h)%p)
temperature(h)%p => thermalState(h)%state(1,:)
deallocate(temperatureRate(h)%p)
allocate (temperatureRate(h)%p(NofMyHomog), source=0.0_pReal)
end associate
enddo
end subroutine thermal_adiabatic_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates adiabatic change in temperature based on local heat generation model
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_updateState(subdt, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
subdt
logical, dimension(2) :: &
thermal_adiabatic_updateState
integer :: &
homog, &
offset
real(pReal) :: &
T, Tdot, dTdot_dT
homog = material_homogenizationAt(el)
offset = material_homogenizationMemberAt(ip,el)
T = thermalState(homog)%subState0(1,offset)
call thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
T = T + subdt*Tdot/(thermal_adiabatic_getSpecificHeat(ip,el)*thermal_adiabatic_getMassDensity(ip,el))
thermal_adiabatic_updateState = [ abs(T - thermalState(homog)%state(1,offset)) &
<= 1.0e-2_pReal &
.or. abs(T - thermalState(homog)%state(1,offset)) &
<= 1.0e-6_pReal*abs(thermalState(homog)%state(1,offset)), &
.true.]
temperature (homog)%p(thermalMapping(homog)%p(ip,el)) = T
temperatureRate(homog)%p(thermalMapping(homog)%p(ip,el)) = &
(thermalState(homog)%state(1,offset) - thermalState(homog)%subState0(1,offset))/(subdt+tiny(0.0_pReal))
end function thermal_adiabatic_updateState
!--------------------------------------------------------------------------------------------------
!> @brief returns heat generation rate
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
T
real(pReal), intent(out) :: &
Tdot, dTdot_dT
integer :: &
homog
Tdot = 0.0_pReal
dTdot_dT = 0.0_pReal
homog = material_homogenizationAt(el)
call constitutive_thermal_getRateAndItsTangents(TDot, dTDot_dT, T, crystallite_S, crystallite_Lp, ip, el)
Tdot = Tdot/real(homogenization_Ngrains(homog),pReal)
dTdot_dT = dTdot_dT/real(homogenization_Ngrains(homog),pReal)
end subroutine thermal_adiabatic_getSourceAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_getSpecificHeat(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_adiabatic_getSpecificHeat
integer :: &
grain
thermal_adiabatic_getSpecificHeat = 0.0_pReal
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_adiabatic_getSpecificHeat = thermal_adiabatic_getSpecificHeat &
+ lattice_specificHeat(material_phaseAt(grain,el))
enddo
thermal_adiabatic_getSpecificHeat = thermal_adiabatic_getSpecificHeat &
/ real(homogenization_Ngrains(material_homogenizationAt(el)),pReal)
end function thermal_adiabatic_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_getMassDensity(ip,el)
integer, intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_adiabatic_getMassDensity
integer :: &
grain
thermal_adiabatic_getMassDensity = 0.0_pReal
do grain = 1, homogenization_Ngrains(material_homogenizationAt(el))
thermal_adiabatic_getMassDensity = thermal_adiabatic_getMassDensity &
+ lattice_massDensity(material_phaseAt(grain,el))
enddo
thermal_adiabatic_getMassDensity = thermal_adiabatic_getMassDensity &
/ real(homogenization_Ngrains(material_homogenizationAt(el)),pReal)
end function thermal_adiabatic_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_results(homog,group)
integer, intent(in) :: homog
character(len=*), intent(in) :: group
integer :: o
associate(prm => param(damage_typeInstance(homog)))
outputsLoop: do o = 1,size(prm%output)
select case(trim(prm%output(o)))
case('T')
call results_writeDataset(group,temperature(homog)%p,'T',&
'temperature','K')
end select
enddo outputsLoop
end associate
end subroutine thermal_adiabatic_results
end module thermal_adiabatic