167 lines
6.6 KiB
Python
167 lines
6.6 KiB
Python
####################################################################################################
|
|
# Code below available according to the following conditions on
|
|
# https://github.com/MarDiehl/3Drotations
|
|
####################################################################################################
|
|
# Copyright (c) 2017-2019, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
|
|
# Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
|
|
# All rights reserved.
|
|
#
|
|
# Redistribution and use in source and binary forms, with or without modification, are
|
|
# permitted provided that the following conditions are met:
|
|
#
|
|
# - Redistributions of source code must retain the above copyright notice, this list
|
|
# of conditions and the following disclaimer.
|
|
# - Redistributions in binary form must reproduce the above copyright notice, this
|
|
# list of conditions and the following disclaimer in the documentation and/or
|
|
# other materials provided with the distribution.
|
|
# - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
|
|
# of its contributors may be used to endorse or promote products derived from
|
|
# this software without specific prior written permission.
|
|
#
|
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
|
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
|
|
# USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
####################################################################################################
|
|
|
|
import numpy as np
|
|
|
|
sc = np.pi**(1./6.)/6.**(1./6.)
|
|
beta = np.pi**(5./6.)/6.**(1./6.)/2.
|
|
R1 = (3.*np.pi/4.)**(1./3.)
|
|
|
|
def cube_to_ball(cube):
|
|
"""
|
|
Map a point in a uniform refinable cubical grid to a point on a uniform refinable grid on a ball.
|
|
|
|
Parameters
|
|
----------
|
|
cube : numpy.ndarray
|
|
coordinates of a point in a uniform refinable cubical grid.
|
|
|
|
References
|
|
----------
|
|
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
|
https://doi.org/10.1088/0965-0393/22/7/075013
|
|
|
|
"""
|
|
if np.abs(np.max(cube))>np.pi**(2./3.) * 0.5:
|
|
raise ValueError
|
|
|
|
# transform to the sphere grid via the curved square, and intercept the zero point
|
|
if np.allclose(cube,0.0,rtol=0.0,atol=1.0e-300):
|
|
ball = np.zeros(3)
|
|
else:
|
|
# get pyramide and scale by grid parameter ratio
|
|
p = get_order(cube)
|
|
XYZ = cube[p] * sc
|
|
|
|
# intercept all the points along the z-axis
|
|
if np.allclose(XYZ[0:2],0.0,rtol=0.0,atol=1.0e-300):
|
|
ball = np.array([0.0, 0.0, np.sqrt(6.0/np.pi) * XYZ[2]])
|
|
else:
|
|
order = [1,0] if np.abs(XYZ[1]) <= np.abs(XYZ[0]) else [0,1]
|
|
q = np.pi/12.0 * XYZ[order[0]]/XYZ[order[1]]
|
|
c = np.cos(q)
|
|
s = np.sin(q)
|
|
q = R1*2.0**0.25/beta * XYZ[order[1]] / np.sqrt(np.sqrt(2.0)-c)
|
|
T = np.array([ (np.sqrt(2.0)*c - 1.0), np.sqrt(2.0) * s]) * q
|
|
|
|
# transform to sphere grid (inverse Lambert)
|
|
# note that there is no need to worry about dividing by zero, since XYZ[2] can not become zero
|
|
c = np.sum(T**2)
|
|
s = c * np.pi/24.0 /XYZ[2]**2
|
|
c = c * np.sqrt(np.pi/24.0)/XYZ[2]
|
|
q = np.sqrt( 1.0 - s )
|
|
ball = np.array([ T[order[1]] * q, T[order[0]] * q, np.sqrt(6.0/np.pi) * XYZ[2] - c ])
|
|
|
|
# reverse the coordinates back to the regular order according to the original pyramid number
|
|
ball = ball[p]
|
|
|
|
return ball
|
|
|
|
|
|
def ball_to_cube(ball):
|
|
"""
|
|
Map a point on a uniform refinable grid on a ball to a point in a uniform refinable cubical grid.
|
|
|
|
Parameters
|
|
----------
|
|
ball : numpy.ndarray
|
|
coordinates of a point on a uniform refinable grid on a ball.
|
|
|
|
References
|
|
----------
|
|
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
|
https://doi.org/10.1088/0965-0393/22/7/075013
|
|
|
|
"""
|
|
rs = np.linalg.norm(ball)
|
|
if rs > R1:
|
|
raise ValueError
|
|
|
|
if np.allclose(ball,0.0,rtol=0.0,atol=1.0e-300):
|
|
cube = np.zeros(3)
|
|
else:
|
|
p = get_order(ball)
|
|
xyz3 = ball[p]
|
|
|
|
# inverse M_3
|
|
xyz2 = xyz3[0:2] * np.sqrt( 2.0*rs/(rs+np.abs(xyz3[2])) )
|
|
|
|
# inverse M_2
|
|
qxy = np.sum(xyz2**2)
|
|
|
|
if np.isclose(qxy,0.0,rtol=0.0,atol=1.0e-300):
|
|
Tinv = np.zeros(2)
|
|
else:
|
|
q2 = qxy + np.max(np.abs(xyz2))**2
|
|
sq2 = np.sqrt(q2)
|
|
q = (beta/np.sqrt(2.0)/R1) * np.sqrt(q2*qxy/(q2-np.max(np.abs(xyz2))*sq2))
|
|
tt = np.clip((np.min(np.abs(xyz2))**2+np.max(np.abs(xyz2))*sq2)/np.sqrt(2.0)/qxy,-1.0,1.0)
|
|
Tinv = np.array([1.0,np.arccos(tt)/np.pi*12.0]) if np.abs(xyz2[1]) <= np.abs(xyz2[0]) else \
|
|
np.array([np.arccos(tt)/np.pi*12.0,1.0])
|
|
Tinv = q * np.where(xyz2<0.0,-Tinv,Tinv)
|
|
|
|
# inverse M_1
|
|
cube = np.array([ Tinv[0], Tinv[1], (-1.0 if xyz3[2] < 0.0 else 1.0) * rs / np.sqrt(6.0/np.pi) ]) /sc
|
|
# reverse the coordinates back to the regular order according to the original pyramid number
|
|
cube = cube[p]
|
|
|
|
return cube
|
|
|
|
|
|
def get_order(xyz):
|
|
"""
|
|
Get order of the coordinates.
|
|
|
|
Depending on the pyramid in which the point is located, the order need to be adjusted.
|
|
|
|
Parameters
|
|
----------
|
|
xyz : numpy.ndarray
|
|
coordinates of a point on a uniform refinable grid on a ball or
|
|
in a uniform refinable cubical grid.
|
|
|
|
References
|
|
----------
|
|
D. Roşca et al., Modelling and Simulation in Materials Science and Engineering 22:075013, 2014
|
|
https://doi.org/10.1088/0965-0393/22/7/075013
|
|
|
|
"""
|
|
if (abs(xyz[0])<= xyz[2]) and (abs(xyz[1])<= xyz[2]) or \
|
|
(abs(xyz[0])<=-xyz[2]) and (abs(xyz[1])<=-xyz[2]):
|
|
return [0,1,2]
|
|
elif (abs(xyz[2])<= xyz[0]) and (abs(xyz[1])<= xyz[0]) or \
|
|
(abs(xyz[2])<=-xyz[0]) and (abs(xyz[1])<=-xyz[0]):
|
|
return [1,2,0]
|
|
elif (abs(xyz[0])<= xyz[1]) and (abs(xyz[2])<= xyz[1]) or \
|
|
(abs(xyz[0])<=-xyz[1]) and (abs(xyz[2])<=-xyz[1]):
|
|
return [2,0,1]
|