526 lines
19 KiB
Fortran
526 lines
19 KiB
Fortran
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
!all function below are taken from math.f90
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
|
|
module math
|
|
|
|
real*8, parameter :: pi = 3.14159265358979323846264338327950288419716939937510
|
|
|
|
! *** 3x3 Identity ***
|
|
real*8, dimension(3,3), parameter :: math_I3 = &
|
|
reshape( (/ &
|
|
1.0,0.0,0.0, &
|
|
0.0,1.0,0.0, &
|
|
0.0,0.0,1.0 /),(/3,3/))
|
|
|
|
contains
|
|
!**************************************************************************
|
|
! matrix multiplication 33x33 = 3x3
|
|
!**************************************************************************
|
|
pure function math_mul33x33(A,B)
|
|
|
|
implicit none
|
|
|
|
integer i,j
|
|
real*8, dimension(3,3), intent(in) :: A,B
|
|
real*8, dimension(3,3) :: math_mul33x33
|
|
|
|
forall (i=1:3,j=1:3) math_mul33x33(i,j) = &
|
|
A(i,1)*B(1,j) + A(i,2)*B(2,j) + A(i,3)*B(3,j)
|
|
return
|
|
|
|
end function math_mul33x33
|
|
|
|
!**************************************************************************
|
|
! Cramer inversion of 3x3 matrix (subroutine)
|
|
!**************************************************************************
|
|
PURE SUBROUTINE math_invert3x3(A, InvA, DetA, error)
|
|
|
|
! Bestimmung der Determinanten und Inversen einer 3x3-Matrix
|
|
! A = Matrix A
|
|
! InvA = Inverse of A
|
|
! DetA = Determinant of A
|
|
! error = logical
|
|
|
|
implicit none
|
|
|
|
logical, intent(out) :: error
|
|
|
|
real*8,dimension(3,3),intent(in) :: A
|
|
real*8,dimension(3,3),intent(out) :: InvA
|
|
real*8, intent(out) :: DetA
|
|
|
|
DetA = A(1,1) * ( A(2,2) * A(3,3) - A(2,3) * A(3,2) )&
|
|
- A(1,2) * ( A(2,1) * A(3,3) - A(2,3) * A(3,1) )&
|
|
+ A(1,3) * ( A(2,1) * A(3,2) - A(2,2) * A(3,1) )
|
|
|
|
if (DetA <= tiny(DetA)) then
|
|
error = .true.
|
|
else
|
|
InvA(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2) ) / DetA
|
|
InvA(2,1) = ( -A(2,1) * A(3,3) + A(2,3) * A(3,1) ) / DetA
|
|
InvA(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1) ) / DetA
|
|
|
|
InvA(1,2) = ( -A(1,2) * A(3,3) + A(1,3) * A(3,2) ) / DetA
|
|
InvA(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1) ) / DetA
|
|
InvA(3,2) = ( -A(1,1) * A(3,2) + A(1,2) * A(3,1) ) / DetA
|
|
|
|
InvA(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2) ) / DetA
|
|
InvA(2,3) = ( -A(1,1) * A(2,3) + A(1,3) * A(2,1) ) / DetA
|
|
InvA(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1) ) / DetA
|
|
|
|
error = .false.
|
|
endif
|
|
return
|
|
|
|
END SUBROUTINE math_invert3x3
|
|
|
|
!********************************************************************
|
|
! determinant of a 3x3 matrix
|
|
!********************************************************************
|
|
pure function math_det3x3(m)
|
|
|
|
implicit none
|
|
|
|
real*8, dimension(3,3), intent(in) :: m
|
|
real*8 math_det3x3
|
|
|
|
math_det3x3 = m(1,1)*(m(2,2)*m(3,3)-m(2,3)*m(3,2)) &
|
|
-m(1,2)*(m(2,1)*m(3,3)-m(2,3)*m(3,1)) &
|
|
+m(1,3)*(m(2,1)*m(3,2)-m(2,2)*m(3,1))
|
|
return
|
|
|
|
end function math_det3x3
|
|
|
|
!****************************************************************
|
|
pure subroutine math_pDecomposition(FE,U,R,error)
|
|
!-----FE = R.U
|
|
!****************************************************************
|
|
implicit none
|
|
|
|
real*8, intent(in) :: FE(3,3)
|
|
real*8, intent(out) :: R(3,3), U(3,3)
|
|
logical, intent(out) :: error
|
|
real*8 CE(3,3),EW1,EW2,EW3,EB1(3,3),EB2(3,3),EB3(3,3),UI(3,3),det
|
|
|
|
error = .false.
|
|
ce = math_mul33x33(transpose(FE),FE)
|
|
|
|
CALL math_spectral1(CE,EW1,EW2,EW3,EB1,EB2,EB3)
|
|
U=DSQRT(EW1)*EB1+DSQRT(EW2)*EB2+DSQRT(EW3)*EB3
|
|
call math_invert3x3(U,UI,det,error)
|
|
if (.not. error) R = math_mul33x33(FE,UI)
|
|
|
|
return
|
|
|
|
end subroutine math_pDecomposition
|
|
|
|
!**************************************************************************
|
|
! Cramer inversion of 3x3 matrix (function)
|
|
!**************************************************************************
|
|
pure function math_inv3x3(A)
|
|
|
|
! direct Cramer inversion of matrix A.
|
|
! returns all zeroes if not possible, i.e. if det close to zero
|
|
|
|
implicit none
|
|
|
|
real*8,dimension(3,3),intent(in) :: A
|
|
real*8 DetA
|
|
|
|
real*8,dimension(3,3) :: math_inv3x3
|
|
|
|
math_inv3x3 = 0.0
|
|
|
|
DetA = A(1,1) * ( A(2,2) * A(3,3) - A(2,3) * A(3,2) )&
|
|
- A(1,2) * ( A(2,1) * A(3,3) - A(2,3) * A(3,1) )&
|
|
+ A(1,3) * ( A(2,1) * A(3,2) - A(2,2) * A(3,1) )
|
|
|
|
if (DetA > tiny(DetA)) then
|
|
math_inv3x3(1,1) = ( A(2,2) * A(3,3) - A(2,3) * A(3,2) ) / DetA
|
|
math_inv3x3(2,1) = ( -A(2,1) * A(3,3) + A(2,3) * A(3,1) ) / DetA
|
|
math_inv3x3(3,1) = ( A(2,1) * A(3,2) - A(2,2) * A(3,1) ) / DetA
|
|
|
|
math_inv3x3(1,2) = ( -A(1,2) * A(3,3) + A(1,3) * A(3,2) ) / DetA
|
|
math_inv3x3(2,2) = ( A(1,1) * A(3,3) - A(1,3) * A(3,1) ) / DetA
|
|
math_inv3x3(3,2) = ( -A(1,1) * A(3,2) + A(1,2) * A(3,1) ) / DetA
|
|
|
|
math_inv3x3(1,3) = ( A(1,2) * A(2,3) - A(1,3) * A(2,2) ) / DetA
|
|
math_inv3x3(2,3) = ( -A(1,1) * A(2,3) + A(1,3) * A(2,1) ) / DetA
|
|
math_inv3x3(3,3) = ( A(1,1) * A(2,2) - A(1,2) * A(2,1) ) / DetA
|
|
endif
|
|
return
|
|
|
|
end function math_inv3x3
|
|
|
|
!**********************************************************************
|
|
! HAUPTINVARIANTEN HI1M, HI2M, HI3M DER 3X3 MATRIX M
|
|
!**********************************************************************
|
|
|
|
PURE SUBROUTINE math_hi(M,HI1M,HI2M,HI3M)
|
|
implicit none
|
|
|
|
real*8, intent(in) :: M(3,3)
|
|
real*8, intent(out) :: HI1M, HI2M, HI3M
|
|
|
|
HI1M=M(1,1)+M(2,2)+M(3,3)
|
|
HI2M=HI1M**2/2.0-(M(1,1)**2+M(2,2)**2+M(3,3)**2)/2.0-M(1,2)*M(2,1)-M(1,3)*M(3,1)-M(2,3)*M(3,2)
|
|
HI3M=math_det3x3(M)
|
|
! QUESTION: is 3rd equiv det(M) ?? if yes, use function math_det !agreed on YES
|
|
return
|
|
|
|
END SUBROUTINE math_hi
|
|
|
|
!**********************************************************************
|
|
pure subroutine math_spectral1(M,EW1,EW2,EW3,EB1,EB2,EB3)
|
|
!**** EIGENWERTE UND EIGENWERTBASIS DER SYMMETRISCHEN 3X3 MATRIX M
|
|
|
|
implicit none
|
|
|
|
real*8, intent(in) :: M(3,3)
|
|
real*8, intent(out) :: EB1(3,3),EB2(3,3),EB3(3,3),EW1,EW2,EW3
|
|
real*8 HI1M,HI2M,HI3M,TOL,R,S,T,P,Q,RHO,PHI,Y1,Y2,Y3,D1,D2,D3
|
|
real*8 C1,C2,C3,M1(3,3),M2(3,3),M3(3,3),arg
|
|
TOL=1.e-14
|
|
CALL math_hi(M,HI1M,HI2M,HI3M)
|
|
R=-HI1M
|
|
S= HI2M
|
|
T=-HI3M
|
|
P=S-R**2.0/3.0
|
|
Q=2.0/27.0*R**3.0-R*S/3.0+T
|
|
EB1=0.0
|
|
EB2=0.0
|
|
EB3=0.0
|
|
IF((ABS(P).LT.TOL).AND.(ABS(Q).LT.TOL))THEN
|
|
! DREI GLEICHE EIGENWERTE
|
|
EW1=HI1M/3.0
|
|
EW2=EW1
|
|
EW3=EW1
|
|
! this is not really correct, but this way U is calculated
|
|
! correctly in PDECOMPOSITION (correct is EB?=I)
|
|
EB1(1,1)=1.0
|
|
EB2(2,2)=1.0
|
|
EB3(3,3)=1.0
|
|
ELSE
|
|
RHO=DSQRT(-3.0*P**3.0)/9.0
|
|
arg=-Q/RHO/2.0
|
|
if(arg.GT.1) arg=1
|
|
if(arg.LT.-1) arg=-1
|
|
PHI=DACOS(arg)
|
|
Y1=2*RHO**(1.0/3.0)*DCOS(PHI/3.0)
|
|
Y2=2*RHO**(1.0/3.0)*DCOS(PHI/3.0+2.0/3.0*PI)
|
|
Y3=2*RHO**(1.0/3.0)*DCOS(PHI/3.0+4.0/3.0*PI)
|
|
EW1=Y1-R/3.0
|
|
EW2=Y2-R/3.0
|
|
EW3=Y3-R/3.0
|
|
C1=ABS(EW1-EW2)
|
|
C2=ABS(EW2-EW3)
|
|
C3=ABS(EW3-EW1)
|
|
|
|
IF(C1.LT.TOL) THEN
|
|
! EW1 is equal to EW2
|
|
D3=1.0/(EW3-EW1)/(EW3-EW2)
|
|
M1=M-EW1*math_I3
|
|
M2=M-EW2*math_I3
|
|
EB3=math_mul33x33(M1,M2)*D3
|
|
|
|
EB1=math_I3-EB3
|
|
! both EB2 and EW2 are set to zero so that they do not
|
|
! contribute to U in PDECOMPOSITION
|
|
EW2=0.0
|
|
ELSE IF(C2.LT.TOL) THEN
|
|
! EW2 is equal to EW3
|
|
D1=1.0/(EW1-EW2)/(EW1-EW3)
|
|
M2=M-math_I3*EW2
|
|
M3=M-math_I3*EW3
|
|
EB1=math_mul33x33(M2,M3)*D1
|
|
EB2=math_I3-EB1
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
! contribute to U in PDECOMPOSITION
|
|
EW3=0.0
|
|
ELSE IF(C3.LT.TOL) THEN
|
|
! EW1 is equal to EW3
|
|
D2=1.0/(EW2-EW1)/(EW2-EW3)
|
|
M1=M-math_I3*EW1
|
|
M3=M-math_I3*EW3
|
|
EB2=math_mul33x33(M1,M3)*D2
|
|
EB1=math_I3-EB2
|
|
! both EB3 and EW3 are set to zero so that they do not
|
|
! contribute to U in PDECOMPOSITION
|
|
EW3=0.0
|
|
ELSE
|
|
! all three eigenvectors are different
|
|
D1=1.0/(EW1-EW2)/(EW1-EW3)
|
|
D2=1.0/(EW2-EW1)/(EW2-EW3)
|
|
D3=1.0/(EW3-EW1)/(EW3-EW2)
|
|
M1=M-EW1*math_I3
|
|
M2=M-EW2*math_I3
|
|
M3=M-EW3*math_I3
|
|
EB1=math_mul33x33(M2,M3)*D1
|
|
EB2=math_mul33x33(M1,M3)*D2
|
|
EB3=math_mul33x33(M1,M2)*D3
|
|
|
|
END IF
|
|
END IF
|
|
RETURN
|
|
END SUBROUTINE math_spectral1
|
|
|
|
end module math
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine mesh(res_x,res_y,res_z,geomdim,defgrad_av,centroids,nodes)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
implicit none
|
|
real*8 geomdim(3)
|
|
integer res_x, res_y, res_z
|
|
real*8 wrappedCentroids(res_x+2,res_y+2,res_z+2,3)
|
|
real*8 nodes(res_x+1,res_y+1,res_z+1,3)
|
|
real*8 centroids(res_x ,res_y ,res_z ,3)
|
|
|
|
integer, dimension(3,8) :: neighbor = reshape((/ &
|
|
0, 0, 0,&
|
|
1, 0, 0,&
|
|
1, 1, 0,&
|
|
0, 1, 0,&
|
|
0, 0, 1,&
|
|
1, 0, 1,&
|
|
1, 1, 1,&
|
|
0, 1, 1 &
|
|
/), &
|
|
(/3,8/))
|
|
|
|
integer i,j,k,n
|
|
real*8, dimension(3,3) :: defgrad_av
|
|
integer, dimension(3) :: diag, shift, lookup, me, res
|
|
|
|
diag = 1
|
|
shift = 0
|
|
lookup = 0
|
|
|
|
res = (/res_x,res_y,res_z/)
|
|
|
|
wrappedCentroids=0.0
|
|
wrappedCentroids(2:res_x+1,2:res_y+1,2:res_z+1,:) = centroids
|
|
|
|
do k=0, res_z+1
|
|
do j=0, res_y+1
|
|
do i=0, res_x+1
|
|
if (k==0 .or. k==res_z+1 .or. &
|
|
j==0 .or. j==res_y+1 .or. &
|
|
i==0 .or. i==res_x+1 ) then
|
|
me = (/i,j,k/)
|
|
shift = sign(abs(res+diag-2*me)/(res+diag),res+diag-2*me)
|
|
lookup = me-diag+shift*res
|
|
wrappedCentroids(i+1,j+1,k+1,:) = centroids(lookup(1)+1,lookup(2)+1,lookup(3)+1,:)- &
|
|
matmul(defgrad_av, shift*geomdim)
|
|
endif
|
|
enddo; enddo; enddo
|
|
do k=0, res_z
|
|
do j=0, res_y
|
|
do i=0, res_x
|
|
do n=1,8
|
|
nodes(i+1,j+1,k+1,:) = nodes(i+1,j+1,k+1,:) + wrappedCentroids(i+1+neighbor(n,1),j+1+neighbor(n,2),k+1+neighbor(n,3),:)
|
|
enddo; enddo; enddo; enddo
|
|
nodes = nodes/8.0
|
|
|
|
end subroutine mesh
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine deformed(res_x,res_y,res_z,geomdim,defgrad,defgrad_av,coord_avgCorner)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
implicit none
|
|
real*8 geomdim(3)
|
|
integer res_x, res_y, res_z
|
|
real*8 coord(8,6,res_x,res_y,res_z,3)
|
|
real*8 coord_avgOrder(8,res_x,res_y,res_z,3)
|
|
real*8 coord_avgCorner(res_x,res_y,res_z,3)
|
|
real*8 defgrad(res_x,res_y,res_z,3,3)
|
|
integer, dimension(3,8) :: corner = reshape((/ &
|
|
0, 0, 0,&
|
|
1, 0, 0,&
|
|
1, 1, 0,&
|
|
0, 1, 0,&
|
|
1, 1, 1,&
|
|
0, 1, 1,&
|
|
0, 0, 1,&
|
|
1, 0, 1 &
|
|
/), &
|
|
(/3,8/))
|
|
integer, dimension(3,8) :: step = reshape((/ &
|
|
1, 1, 1,&
|
|
-1, 1, 1,&
|
|
-1,-1, 1,&
|
|
1,-1, 1,&
|
|
-1,-1,-1,&
|
|
1,-1,-1,&
|
|
1, 1,-1,&
|
|
-1, 1,-1 &
|
|
/), &
|
|
(/3,8/))
|
|
integer, dimension(3,6) :: order = reshape((/ &
|
|
1, 2, 3,&
|
|
1, 3, 2,&
|
|
2, 1, 3,&
|
|
2, 3, 1,&
|
|
3, 1, 2,&
|
|
3, 2, 1 &
|
|
/), &
|
|
(/3,6/))
|
|
|
|
real*8 myStep(3), fones(3), parameter_coords(3)
|
|
real*8 defgrad_av(3,3)
|
|
real*8 negative(3), positive(3)
|
|
integer rear(3), init(3), ones(3), oppo(3), me(3), res(3)
|
|
integer i, j, k, s, o
|
|
|
|
ones = 1
|
|
fones = 1.0
|
|
coord_avgOrder=0.0
|
|
|
|
res = (/res_x,res_y,res_z/)
|
|
|
|
do s = 0, 7 ! corners (from 0 to 7)
|
|
init = corner(:,s+1)*(res-ones) +ones
|
|
oppo = corner(:,mod((s+4),8)+1)*(res-ones) +ones
|
|
do o=1,6 ! orders ! from 1 to 6)
|
|
do k = init(order(3,o)), oppo(order(3,o)), step(order(3,o),s+1)
|
|
rear(order(2,o)) = init(order(2,o))
|
|
do j = init(order(2,o)), oppo(order(2,o)), step(order(2,o),s+1)
|
|
rear(order(1,o)) = init(order(1,o))
|
|
do i = init(order(1,o)), oppo(order(1,o)), step(order(1,o),s+1)
|
|
me(order(1,o)) = i
|
|
me(order(2,o)) = j
|
|
me(order(3,o)) = k
|
|
if ( (me(1)==init(1)).and.(me(2)==init(2)).and. (me(3)==init(3)) ) then
|
|
coord(s+1,o,me(1),me(2),me(3),:) = geomdim * (matmul(defgrad_av,corner(:,s+1)) + &
|
|
matmul(defgrad(me(1),me(2),me(3),:,:),0.5*step(:,s+1)/res))
|
|
|
|
else
|
|
myStep = (me-rear)*geomdim/res
|
|
coord(s+1,o,me(1),me(2),me(3),:) = coord(s+1,o,rear(1),rear(2),rear(3),:) + &
|
|
0.5*matmul(defgrad(me(1),me(2),me(3),:,:) + &
|
|
defgrad(rear(1),rear(2),rear(3),:,:),myStep)
|
|
endif
|
|
rear = me
|
|
enddo; enddo; enddo; enddo
|
|
do i=1,6
|
|
coord_avgOrder(s+1,:,:,:,:) = coord_avgOrder(s+1,:,:,:,:) + coord(s+1,i,:,:,:,:)/6.0
|
|
enddo
|
|
enddo
|
|
|
|
do k=0, res_z-1
|
|
do j=0, res_y-1
|
|
do i=0, res_x-1
|
|
parameter_coords = (2.0*(/i+0.0,j+0.0,k+0.0/)-real(res)+fones)/(real(res)-fones)
|
|
positive = fones + parameter_coords
|
|
negative = fones - parameter_coords
|
|
coord_avgCorner(i+1,j+1,k+1,:) = ( coord_avgOrder(1,i+1,j+1,k+1,:) *negative(1)*negative(2)*negative(3)&
|
|
+ coord_avgOrder(2,i+1,j+1,k+1,:) *positive(1)*negative(2)*negative(3)&
|
|
+ coord_avgOrder(3,i+1,j+1,k+1,:) *positive(1)*positive(2)*negative(3)&
|
|
+ coord_avgOrder(4,i+1,j+1,k+1,:) *negative(1)*positive(2)*negative(3)&
|
|
+ coord_avgOrder(5,i+1,j+1,k+1,:) *positive(1)*positive(2)*positive(3)&
|
|
+ coord_avgOrder(6,i+1,j+1,k+1,:) *negative(1)*positive(2)*positive(3)&
|
|
+ coord_avgOrder(7,i+1,j+1,k+1,:) *negative(1)*negative(2)*positive(3)&
|
|
+ coord_avgOrder(8,i+1,j+1,k+1,:) *positive(1)*negative(2)*positive(3))*0.125
|
|
enddo; enddo; enddo
|
|
end subroutine deformed
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine logstrain_spat(res_x,res_y,res_z,defgrad,logstrain_field)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
use math
|
|
implicit none
|
|
integer res_x, res_y, res_z
|
|
integer i, j, k
|
|
real*8 defgrad(res_x,res_y,res_z,3,3)
|
|
real*8 logstrain_field(res_x,res_y,res_z,3,3)
|
|
real*8 temp33_Real(3,3), temp33_Real2(3,3)
|
|
real*8 eigenvectorbasis(3,3,3)
|
|
real*8 eigenvalue(3)
|
|
logical errmatinv
|
|
|
|
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
|
call math_pDecomposition(defgrad(i,j,k,:,:),temp33_Real2,temp33_Real,errmatinv) !store R in temp33_Real
|
|
temp33_Real2 = math_inv3x3(temp33_Real)
|
|
temp33_Real = math_mul33x33(defgrad(i,j,k,:,:),temp33_Real2) ! v = F o inv(R), store in temp33_Real2
|
|
call math_spectral1(temp33_Real, eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
|
eigenvectorbasis(1,:,:), eigenvectorbasis(2,:,:), eigenvectorbasis(3,:,:))
|
|
eigenvalue = log(sqrt(eigenvalue))
|
|
logstrain_field(i,j,k,:,:) = eigenvalue(1)*eigenvectorbasis(1,:,:)+&
|
|
eigenvalue(2)*eigenvectorbasis(2,:,:)+&
|
|
eigenvalue(3)*eigenvectorbasis(3,:,:)
|
|
enddo; enddo; enddo
|
|
end subroutine logstrain_spat
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine logstrain_mat(res_x,res_y,res_z,defgrad,logstrain_field)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
use math
|
|
implicit none
|
|
integer res_x, res_y, res_z
|
|
integer i, j, k
|
|
real*8 defgrad(res_x,res_y,res_z,3,3)
|
|
real*8 logstrain_field(res_x,res_y,res_z,3,3)
|
|
real*8 temp33_Real(3,3), temp33_Real2(3,3)
|
|
real*8 eigenvectorbasis(3,3,3)
|
|
real*8 eigenvalue(3)
|
|
logical errmatinv
|
|
|
|
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
|
call math_pDecomposition(defgrad(i,j,k,:,:),temp33_Real,temp33_Real2,errmatinv) !store U in temp33_Real
|
|
call math_spectral1(temp33_Real, eigenvalue(1), eigenvalue(2), eigenvalue(3),&
|
|
eigenvectorbasis(1,:,:), eigenvectorbasis(2,:,:), eigenvectorbasis(3,:,:))
|
|
eigenvalue = log(sqrt(eigenvalue))
|
|
logstrain_field(i,j,k,:,:) = eigenvalue(1)*eigenvectorbasis(1,:,:)+&
|
|
eigenvalue(2)*eigenvectorbasis(2,:,:)+&
|
|
eigenvalue(3)*eigenvectorbasis(3,:,:)
|
|
enddo; enddo; enddo
|
|
end subroutine logstrain_mat
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine calculate_cauchy(res_x,res_y,res_z,defgrad,p_stress,c_stress)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
use math
|
|
implicit none
|
|
integer res_x, res_y, res_z
|
|
integer i, j, k
|
|
real*8 defgrad(res_x,res_y,res_z,3,3)
|
|
real*8 p_stress(res_x,res_y,res_z,3,3)
|
|
real*8 c_stress(res_x,res_y,res_z,3,3)
|
|
real*8 jacobi
|
|
c_stress = 0.0
|
|
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
|
jacobi = math_det3x3(defgrad(i,j,k,:,:))
|
|
c_stress(i,j,k,:,:) = matmul(p_stress(i,j,k,:,:),transpose(defgrad(i,j,k,:,:)))/jacobi
|
|
enddo; enddo; enddo
|
|
end subroutine calculate_cauchy
|
|
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
subroutine calculate_mises(res_x,res_y,res_z,tensor,vm)
|
|
!+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
implicit none
|
|
integer res_x, res_y, res_z
|
|
integer i, j, k
|
|
real*8 tensor(res_x,res_y,res_z,3,3)
|
|
real*8 vm(res_x,res_y,res_z,1)
|
|
real*8 deviator(3,3)
|
|
real*8 delta(3,3)
|
|
real*8 J_2
|
|
|
|
delta =0.0
|
|
delta(1,1) = 1.0
|
|
delta(2,2) = 1.0
|
|
delta(3,3) = 1.0
|
|
do k = 1, res_z; do j = 1, res_y; do i = 1, res_x
|
|
deviator = tensor(i,j,k,:,:) - 1.0/3.0*tensor(i,j,k,1,1)*tensor(i,j,k,2,2)*tensor(i,j,k,3,3)*delta
|
|
J_2 = deviator(1,1)*deviator(2,2)&
|
|
+ deviator(2,2)*deviator(3,3)&
|
|
+ deviator(1,1)*deviator(3,3)&
|
|
- (deviator(1,2))**2&
|
|
- (deviator(2,3))**2&
|
|
- (deviator(1,3))**2
|
|
vm(i,j,k,:) = sqrt(3*J_2)
|
|
enddo; enddo; enddo
|
|
end subroutine calculate_mises
|