DAMASK_EICMD/src/crystallite.f90

3977 lines
211 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Chen Zhang, Michigan State University
!> @brief crystallite state integration functions and reporting of results
!--------------------------------------------------------------------------------------------------
module crystallite
use prec, only: &
pReal, &
pInt
implicit none
private
character(len=64), dimension(:,:), allocatable, private :: &
crystallite_output !< name of each post result output
integer(pInt), public, protected :: &
crystallite_maxSizePostResults !< description not available
integer(pInt), dimension(:), allocatable, public, protected :: &
crystallite_sizePostResults !< description not available
integer(pInt), dimension(:,:), allocatable, private :: &
crystallite_sizePostResult !< description not available
real(pReal), dimension(:,:,:), allocatable, public :: &
crystallite_dt !< requested time increment of each grain
real(pReal), dimension(:,:,:), allocatable, private :: &
crystallite_subdt, & !< substepped time increment of each grain
crystallite_subFrac, & !< already calculated fraction of increment
crystallite_subStep !< size of next integration step
real(pReal), dimension(:,:,:,:), allocatable, public :: &
crystallite_Tstar_v, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step)
crystallite_Tstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
crystallite_partionedTstar0_v !< 2nd Piola-Kirchhoff stress vector at start of homog inc
real(pReal), dimension(:,:,:,:), allocatable, private :: &
crystallite_subTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of crystallite inc
crystallite_orientation, & !< orientation as quaternion
crystallite_orientation0, & !< initial orientation as quaternion
crystallite_rotation !< grain rotation away from initial orientation as axis-angle (in degrees) in crystal reference frame
real(pReal), dimension(:,:,:,:,:), allocatable, public :: &
crystallite_Fp, & !< current plastic def grad (end of converged time step)
crystallite_Fp0, & !< plastic def grad at start of FE inc
crystallite_partionedFp0,& !< plastic def grad at start of homog inc
crystallite_Fi, & !< current intermediate def grad (end of converged time step)
crystallite_Fi0, & !< intermediate def grad at start of FE inc
crystallite_partionedFi0,& !< intermediate def grad at start of homog inc
crystallite_F0, & !< def grad at start of FE inc
crystallite_partionedF, & !< def grad to be reached at end of homog inc
crystallite_partionedF0, & !< def grad at start of homog inc
crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step)
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
crystallite_partionedLp0,& !< plastic velocity grad at start of homog inc
crystallite_Li, & !< current intermediate velocitiy grad (end of converged time step)
crystallite_Li0, & !< intermediate velocitiy grad at start of FE inc
crystallite_partionedLi0,& !< intermediate velocity grad at start of homog inc
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
crystallite_P !< 1st Piola-Kirchhoff stress per grain
real(pReal), dimension(:,:,:,:,:), allocatable, private :: &
crystallite_subFe0,& !< "elastic" def grad at start of crystallite inc
crystallite_invFp, & !< inverse of current plastic def grad (end of converged time step)
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
crystallite_invFi, & !< inverse of current intermediate def grad (end of converged time step)
crystallite_subFi0,& !< intermediate def grad at start of crystallite inc
crystallite_subF, & !< def grad to be reached at end of crystallite inc
crystallite_subF0, & !< def grad at start of crystallite inc
crystallite_subLp0,& !< plastic velocity grad at start of crystallite inc
crystallite_subLi0,& !< intermediate velocity grad at start of crystallite inc
crystallite_disorientation !< disorientation between two neighboring ips (only calculated for single grain IPs)
real(pReal), dimension(:,:,:,:,:,:,:), allocatable, public :: &
crystallite_dPdF, & !< current individual dPdF per grain (end of converged time step)
crystallite_dPdF0, & !< individual dPdF per grain at start of FE inc
crystallite_partioneddPdF0 !< individual dPdF per grain at start of homog inc
real(pReal), dimension(:,:,:,:,:,:,:), allocatable, private :: &
crystallite_fallbackdPdF !< dPdF fallback for non-converged grains (elastic prediction)
logical, dimension(:,:,:), allocatable, public :: &
crystallite_requested !< flag to request crystallite calculation
logical, dimension(:,:,:), allocatable, public, protected :: &
crystallite_converged, & !< convergence flag
crystallite_localPlasticity !< indicates this grain to have purely local constitutive law
logical, dimension(:,:,:), allocatable, private :: &
crystallite_todo !< flag to indicate need for further computation
logical, dimension(:,:), allocatable, private :: &
crystallite_clearToWindForward, & !< description not available
crystallite_clearToCutback, & !< description not available
crystallite_syncSubFrac, & !< description not available
crystallite_syncSubFracCompleted, & !< description not available
crystallite_neighborEnforcedCutback !< description not available
enum, bind(c)
enumerator :: undefined_ID, &
phase_ID, &
texture_ID, &
volume_ID, &
grainrotationx_ID, &
grainrotationy_ID, &
grainrotationz_ID, &
orientation_ID, &
grainrotation_ID, &
eulerangles_ID, &
defgrad_ID, &
fe_ID, &
fp_ID, &
fi_ID, &
lp_ID, &
li_ID, &
e_ID, &
ee_ID, &
p_ID, &
s_ID, &
elasmatrix_ID, &
neighboringip_ID, &
neighboringelement_ID
end enum
integer(kind(undefined_ID)),dimension(:,:), allocatable, private :: &
crystallite_outputID !< ID of each post result output
public :: &
crystallite_init, &
crystallite_stressAndItsTangent, &
crystallite_orientations, &
crystallite_push33ToRef, &
crystallite_postResults
private :: &
crystallite_integrateStateFPI, &
crystallite_integrateStateEuler, &
crystallite_integrateStateAdaptiveEuler, &
crystallite_integrateStateRK4, &
crystallite_integrateStateRKCK45, &
crystallite_integrateStress, &
crystallite_stateJump
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates and initialize per grain variables
!--------------------------------------------------------------------------------------------------
subroutine crystallite_init
#if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800
use, intrinsic :: iso_fortran_env, only: &
compiler_version, &
compiler_options
#endif
use debug, only: &
debug_info, &
debug_reset, &
debug_level, &
debug_crystallite, &
debug_levelBasic
use numerics, only: &
worldrank, &
usePingPong
use math, only: &
math_I3, &
math_EulerToR, &
math_inv33, &
math_mul33xx33, &
math_mul33x33
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use mesh, only: &
mesh_element, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_maxNipNeighbors
use IO, only: &
IO_timeStamp, &
IO_stringValue, &
IO_write_jobFile, &
IO_error
use material
use config
use constitutive, only: &
constitutive_initialFi, &
constitutive_microstructure ! derived (shortcut) quantities of given state
implicit none
integer(pInt), parameter :: FILEUNIT=434_pInt
integer(pInt) :: &
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
o = 0_pInt, & !< counter in output loop
r, & !< counter in crystallite loop
cMax, & !< maximum number of integration point components
iMax, & !< maximum number of integration points
eMax, & !< maximum number of elements
nMax, & !< maximum number of ip neighbors
myNcomponents, & !< number of components at current IP
mySize
character(len=64), dimension(:), allocatable :: str
character(len=65536) :: &
tag = ''
write(6,'(/,a)') ' <<<+- crystallite init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
cMax = homogenization_maxNgrains
iMax = mesh_maxNips
eMax = mesh_NcpElems
nMax = mesh_maxNipNeighbors
allocate(crystallite_Tstar0_v(6,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedTstar0_v(6,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subTstar0_v(6,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Tstar_v(6,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_P(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_F0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedF0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedF(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subF0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subF(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedFp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subFp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fp(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_invFp(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedFi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subFi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fi(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_invFi(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Fe(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subFe0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Lp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedLp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subLp0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Lp(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Li0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partionedLi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subLi0(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_Li(3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_dPdF(3,3,3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_dPdF0(3,3,3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_partioneddPdF0(3,3,3,3,cMax,iMax,eMax),source=0.0_pReal)
allocate(crystallite_fallbackdPdF(3,3,3,3,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_dt(cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subdt(cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subFrac(cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_subStep(cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_orientation(4,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_orientation0(4,cMax,iMax,eMax), source=0.0_pReal)
allocate(crystallite_rotation(4,cMax,iMax,eMax), source=0.0_pReal)
if (any(plasticState%nonLocal)) &
allocate(crystallite_disorientation(4,nMax,cMax,iMax,eMax),source=0.0_pReal)
allocate(crystallite_localPlasticity(cMax,iMax,eMax), source=.true.)
allocate(crystallite_requested(cMax,iMax,eMax), source=.false.)
allocate(crystallite_todo(cMax,iMax,eMax), source=.false.)
allocate(crystallite_converged(cMax,iMax,eMax), source=.true.)
allocate(crystallite_clearToWindForward(iMax,eMax), source=.true.)
allocate(crystallite_syncSubFrac(iMax,eMax), source=.false.)
allocate(crystallite_syncSubFracCompleted(iMax,eMax), source=.false.)
allocate(crystallite_clearToCutback(iMax,eMax), source=.true.)
allocate(crystallite_neighborEnforcedCutback(iMax,eMax), source=.false.)
allocate(crystallite_output(maxval(crystallite_Noutput), &
material_Ncrystallite)) ; crystallite_output = ''
allocate(crystallite_outputID(maxval(crystallite_Noutput), &
material_Ncrystallite), source=undefined_ID)
allocate(crystallite_sizePostResults(material_Ncrystallite),source=0_pInt)
allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), &
material_Ncrystallite), source=0_pInt)
do c = 1_pInt, material_Ncrystallite
str = crystalliteConfig(c)%getStrings('(output)')!,defaultVal=[])
do o = 1_pInt, size(str)
crystallite_output(o,c) = str(o)
outputName: select case(str(o))
case ('phase') outputName
crystallite_outputID(o,c) = phase_ID
case ('texture') outputName
crystallite_outputID(o,c) = texture_ID
case ('volume') outputName
crystallite_outputID(o,c) = volume_ID
case ('grainrotationx') outputName
crystallite_outputID(o,c) = grainrotationx_ID
case ('grainrotationy') outputName
crystallite_outputID(o,c) = grainrotationy_ID
case ('grainrotationz') outputName
crystallite_outputID(o,c) = grainrotationx_ID
case ('orientation') outputName
crystallite_outputID(o,c) = orientation_ID
case ('grainrotation') outputName
crystallite_outputID(o,c) = grainrotation_ID
case ('eulerangles') outputName
crystallite_outputID(o,c) = eulerangles_ID
case ('defgrad','f') outputName
crystallite_outputID(o,c) = defgrad_ID
case ('fe') outputName
crystallite_outputID(o,c) = fe_ID
case ('fp') outputName
crystallite_outputID(o,c) = fp_ID
case ('fi') outputName
crystallite_outputID(o,c) = fi_ID
case ('lp') outputName
crystallite_outputID(o,c) = lp_ID
case ('li') outputName
crystallite_outputID(o,c) = li_ID
case ('e') outputName
crystallite_outputID(o,c) = e_ID
case ('ee') outputName
crystallite_outputID(o,c) = ee_ID
case ('p','firstpiola','1stpiola') outputName
crystallite_outputID(o,c) = p_ID
case ('s','tstar','secondpiola','2ndpiola') outputName
crystallite_outputID(o,c) = s_ID
case ('elasmatrix') outputName
crystallite_outputID(o,c) = elasmatrix_ID
case ('neighboringip') outputName
crystallite_outputID(o,c) = neighboringip_ID
case ('neighboringelement') outputName
crystallite_outputID(o,c) = neighboringelement_ID
case default outputName
call IO_error(105_pInt,ext_msg=tag//' (Crystallite)')
end select outputName
enddo
enddo
do r = 1_pInt,material_Ncrystallite
do o = 1_pInt,crystallite_Noutput(r)
select case(crystallite_outputID(o,r))
case(phase_ID,texture_ID,volume_ID,grainrotationx_ID,grainrotationy_ID,grainrotationz_ID)
mySize = 1_pInt
case(orientation_ID,grainrotation_ID)
mySize = 4_pInt
case(eulerangles_ID)
mySize = 3_pInt
case(defgrad_ID,fe_ID,fp_ID,fi_ID,lp_ID,li_ID,e_ID,ee_ID,p_ID,s_ID)
mySize = 9_pInt
case(elasmatrix_ID)
mySize = 36_pInt
case(neighboringip_ID,neighboringelement_ID)
mySize = mesh_maxNipNeighbors
case default
mySize = 0_pInt
end select
crystallite_sizePostResult(o,r) = mySize
crystallite_sizePostResults(r) = crystallite_sizePostResults(r) + mySize
enddo
enddo
crystallite_maxSizePostResults = &
maxval(crystallite_sizePostResults(microstructure_crystallite),microstructure_active)
!--------------------------------------------------------------------------------------------------
! write description file for crystallite output
if (worldrank == 0_pInt) then
call IO_write_jobFile(FILEUNIT,'outputCrystallite')
do r = 1_pInt,material_Ncrystallite
if (any(microstructure_crystallite(mesh_element(4,:)) == r)) then
write(FILEUNIT,'(/,a,/)') '['//trim(crystallite_name(r))//']'
do o = 1_pInt,crystallite_Noutput(r)
write(FILEUNIT,'(a,i4)') trim(crystallite_output(o,r))//char(9),crystallite_sizePostResult(o,r)
enddo
endif
enddo
close(FILEUNIT)
endif
!--------------------------------------------------------------------------------------------------
! initialize
!$OMP PARALLEL DO PRIVATE(myNcomponents)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNcomponents = homogenization_Ngrains(mesh_element(3,e))
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), c = 1_pInt:myNcomponents)
crystallite_Fp0(1:3,1:3,c,i,e) = math_EulerToR(material_EulerAngles(1:3,c,i,e)) ! plastic def gradient reflects init orientation
crystallite_Fi0(1:3,1:3,c,i,e) = constitutive_initialFi(c,i,e)
crystallite_F0(1:3,1:3,c,i,e) = math_I3
crystallite_localPlasticity(c,i,e) = phase_localPlasticity(material_phase(c,i,e))
crystallite_Fe(1:3,1:3,c,i,e) = math_inv33(math_mul33x33(crystallite_Fi0(1:3,1:3,c,i,e), &
crystallite_Fp0(1:3,1:3,c,i,e))) ! assuming that euler angles are given in internal strain free configuration
crystallite_Fp(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e)
crystallite_Fi(1:3,1:3,c,i,e) = crystallite_Fi0(1:3,1:3,c,i,e)
crystallite_requested(c,i,e) = .true.
endforall
enddo
!$OMP END PARALLEL DO
if(any(.not. crystallite_localPlasticity) .and. .not. usePingPong) call IO_error(601_pInt) ! exit if nonlocal but no ping-pong
crystallite_partionedFp0 = crystallite_Fp0
crystallite_partionedFi0 = crystallite_Fi0
crystallite_partionedF0 = crystallite_F0
crystallite_partionedF = crystallite_F0
call crystallite_orientations()
crystallite_orientation0 = crystallite_orientation ! store initial orientations for calculation of grain rotations
!$OMP PARALLEL DO PRIVATE(myNcomponents)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNcomponents = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do c = 1_pInt,myNcomponents
call constitutive_microstructure(crystallite_orientation, & ! pass orientation to constitutive module
crystallite_Fe(1:3,1:3,c,i,e), &
crystallite_Fp(1:3,1:3,c,i,e), &
c,i,e) ! update dependent state variables to be consistent with basic states
enddo
enddo
enddo
!$OMP END PARALLEL DO
call crystallite_stressAndItsTangent(.true.) ! request elastic answers
crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback
!--------------------------------------------------------------------------------------------------
! debug output
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fe: ', shape(crystallite_Fe)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp: ', shape(crystallite_Fp)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fi: ', shape(crystallite_Fi)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp: ', shape(crystallite_Lp)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Li: ', shape(crystallite_Li)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_F0: ', shape(crystallite_F0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp0: ', shape(crystallite_Fp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fi0: ', shape(crystallite_Fi0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp0: ', shape(crystallite_Lp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Li0: ', shape(crystallite_Li0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF: ', shape(crystallite_partionedF)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedFi0: ', shape(crystallite_partionedFi0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedLi0: ', shape(crystallite_partionedLi0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF: ', shape(crystallite_subF)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF0: ', shape(crystallite_subF0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFe0: ', shape(crystallite_subFe0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFi0: ', shape(crystallite_subFi0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subLi0: ', shape(crystallite_subLi0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_P: ', shape(crystallite_P)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF: ', shape(crystallite_dPdF)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF0: ', shape(crystallite_dPdF0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partioneddPdF0: ', shape(crystallite_partioneddPdF0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation: ', shape(crystallite_orientation)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation0: ', shape(crystallite_orientation0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_rotation: ', shape(crystallite_rotation)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_disorientation: ', shape(crystallite_disorientation)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dt: ', shape(crystallite_dt)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subdt: ', shape(crystallite_subdt)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFrac: ', shape(crystallite_subFrac)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subStep: ', shape(crystallite_subStep)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_localPlasticity: ', shape(crystallite_localPlasticity)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_requested: ', shape(crystallite_requested)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_todo: ', shape(crystallite_todo)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_converged: ', shape(crystallite_converged)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult)
write(6,'(/,a35,1x,i10)') 'Number of nonlocal grains: ',count(.not. crystallite_localPlasticity)
flush(6)
endif
call debug_info
call debug_reset
end subroutine crystallite_init
!--------------------------------------------------------------------------------------------------
!> @brief calculate stress (P) and tangent (dPdF) for crystallites
!--------------------------------------------------------------------------------------------------
subroutine crystallite_stressAndItsTangent(updateJaco)
use prec, only: &
tol_math_check, &
dNeq0
use numerics, only: &
subStepMinCryst, &
subStepSizeCryst, &
stepIncreaseCryst, &
nCryst, &
numerics_integrator, &
numerics_integrationMode, &
numerics_timeSyncing
use debug, only: &
debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g, &
debug_CrystalliteLoopDistribution
use IO, only: &
IO_warning, &
IO_error
use math, only: &
math_inv33, &
math_identity2nd, &
math_mul33x33, &
math_mul66x6, &
math_Mandel6to33, &
math_Mandel33to6, &
math_Plain3333to99, &
math_Plain99to3333, &
math_I3, &
math_mul3333xx3333, &
math_mul33xx33, &
math_invert, &
math_det33
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use mesh, only: &
mesh_element, &
mesh_maxNips, &
mesh_ipNeighborhood, &
FE_NipNeighbors, &
FE_geomtype, &
FE_cellType
use material, only: &
homogenization_Ngrains, &
plasticState, &
sourceState, &
phase_Nsources, &
phaseAt, phasememberAt
use constitutive, only: &
constitutive_TandItsTangent, &
constitutive_LpAndItsTangent, &
constitutive_LiAndItsTangent
implicit none
logical, intent(in) :: &
updateJaco !< whether to update the Jacobian (stiffness) or not
real(pReal) :: &
formerSubStep, &
subFracIntermediate
real(pReal), dimension(3,3) :: &
invFp, & ! inverse of the plastic deformation gradient
Fe_guess, & ! guess for elastic deformation gradient
Tstar ! 2nd Piola-Kirchhoff stress tensor
integer(pInt) :: &
NiterationCrystallite, & ! number of iterations in crystallite loop
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
n, startIP, endIP, &
neighboring_e, &
neighboring_i, &
o, &
p, &
myNcomponents, &
mySource
! local variables used for calculating analytic Jacobian
real(pReal), dimension(3,3) :: temp_33
real(pReal), dimension(3,3,3,3) :: dSdFe, &
dSdF, &
dSdFi, &
dLidS, &
dLidFi, &
dLpdS, &
dLpdFi, &
dFidS, &
dFpinvdF, &
rhs_3333, &
lhs_3333, &
temp_3333
real(pReal), dimension(9,9):: temp_99
logical :: error
if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt &
.and. FEsolving_execElem(1) <= debug_e &
.and. debug_e <= FEsolving_execElem(2)) then
write(6,'(/,a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> boundary values at el ip ipc ', &
debug_e,'(',mesh_element(1,debug_e), ')',debug_i, debug_g
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> F ', &
transpose(crystallite_partionedF(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> F0 ', &
transpose(crystallite_partionedF0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp0', &
transpose(crystallite_partionedFp0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fi0', &
transpose(crystallite_partionedFi0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Lp0', &
transpose(crystallite_partionedLp0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Li0', &
transpose(crystallite_partionedLi0(1:3,1:3,debug_g,debug_i,debug_e))
endif
!--------------------------------------------------------------------------------------------------
! initialize to starting condition
crystallite_subStep = 0.0_pReal
!$OMP PARALLEL DO PRIVATE(myNcomponents)
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNcomponents = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do c = 1_pInt,myNcomponents
if (crystallite_requested(c,i,e)) then
plasticState (phaseAt(c,i,e))%subState0( :,phasememberAt(c,i,e)) = &
plasticState (phaseAt(c,i,e))%partionedState0(:,phasememberAt(c,i,e))
do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e))
sourceState(phaseAt(c,i,e))%p(mySource)%subState0( :,phasememberAt(c,i,e)) = &
sourceState(phaseAt(c,i,e))%p(mySource)%partionedState0(:,phasememberAt(c,i,e))
enddo
crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_partionedFp0(1:3,1:3,c,i,e) ! ...plastic def grad
crystallite_subLp0(1:3,1:3,c,i,e) = crystallite_partionedLp0(1:3,1:3,c,i,e) ! ...plastic velocity grad
crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_partionedFi0(1:3,1:3,c,i,e) ! ...intermediate def grad
crystallite_subLi0(1:3,1:3,c,i,e) = crystallite_partionedLi0(1:3,1:3,c,i,e) ! ...intermediate velocity grad
crystallite_dPdF0(1:3,1:3,1:3,1:3,c,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,c,i,e) ! ...stiffness
crystallite_subF0(1:3,1:3,c,i,e) = crystallite_partionedF0(1:3,1:3,c,i,e) ! ...def grad
crystallite_subTstar0_v(1:6,c,i,e) = crystallite_partionedTstar0_v(1:6,c,i,e) !...2nd PK stress
crystallite_subFe0(1:3,1:3,c,i,e) = math_mul33x33(math_mul33x33(crystallite_subF0(1:3,1:3,c,i,e), &
math_inv33(crystallite_subFp0(1:3,1:3,c,i,e))), &
math_inv33(crystallite_subFi0(1:3,1:3,c,i,e)))! only needed later on for stiffness calculation
crystallite_subFrac(c,i,e) = 0.0_pReal
crystallite_subStep(c,i,e) = 1.0_pReal/subStepSizeCryst
crystallite_todo(c,i,e) = .true.
crystallite_converged(c,i,e) = .false. ! pretend failed step of twice the required size
endif
enddo; enddo
enddo elementLooping1
!$OMP END PARALLEL DO
singleRun: if (FEsolving_execELem(1) == FEsolving_execElem(2) .and. &
FEsolving_execIP(1,FEsolving_execELem(1))==FEsolving_execIP(2,FEsolving_execELem(1))) then
startIP = FEsolving_execIP(1,FEsolving_execELem(1))
endIP = startIP
else singleRun
startIP = 1_pInt
endIP = mesh_maxNips
endif singleRun
NiterationCrystallite = 0_pInt
numerics_integrationMode = 1_pInt
cutbackLooping: do while (any(crystallite_todo(:,startIP:endIP,FEsolving_execELem(1):FEsolving_execElem(2))))
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i6)') '<< CRYST >> crystallite iteration ',NiterationCrystallite
timeSyncing1: if (any(.not. crystallite_localPlasticity) .and. numerics_timeSyncing) then
! Time synchronization can only be used for nonlocal calculations, and only there it makes sense.
! The idea is that in nonlocal calculations often the vast majority of the ips
! converges in one iteration whereas a small fraction of ips has to do a lot of cutbacks.
! Hence, we try to minimize the computational effort by just doing a lot of cutbacks
! in the vicinity of the "bad" ips and leave the easily converged volume more or less as it is.
! However, some synchronization of the time step has to be done at the border between "bad" ips
! and the ones that immediately converged.
if (any(crystallite_syncSubFrac)) then
! Just did a time synchronization.
! If all synchronizers converged, then do nothing else than winding them forward.
! If any of the synchronizers did not converge, something went completely wrong
! and its not clear how to fix this, so all nonlocals become terminally ill.
if (any(crystallite_syncSubFrac .and. .not. crystallite_converged(1,:,:))) then
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (crystallite_syncSubFrac(i,e) .and. .not. crystallite_converged(1,i,e)) &
write(6,'(a,i8,1x,i2)') '<< CRYST >> time synchronization: failed at el,ip ',e,i
enddo
enddo
endif
crystallite_syncSubFrac = .false.
where(.not. crystallite_localPlasticity)
crystallite_substep = 0.0_pReal
crystallite_todo = .false.
endwhere
else
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_syncSubFrac(i,e)
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e)
enddo
enddo
!$OMP END PARALLEL DO
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i6)') '<< CRYST >> time synchronization: wind forward'
endif
elseif (any(crystallite_syncSubFracCompleted)) then
! Just completed a time synchronization.
! Make sure that the ips that synchronized their time step start non-converged
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (crystallite_syncSubFracCompleted(i,e)) crystallite_converged(1,i,e) = .false.
crystallite_syncSubFracCompleted(i,e) = .false.
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e)
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) .or. .not. crystallite_converged(1,i,e)
enddo
enddo
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i6)') '<< CRYST >> time synchronization: done, proceed with cutback'
else
! Normal calculation.
! If all converged and are at the end of the time increment, then just do a final wind forward.
! If all converged, but not all reached the end of the time increment, then we only wind
! those forward that are still on their way, all others have to wait.
! If some did not converge and all are still at the start of the time increment,
! then all non-convergers force their converged neighbors to also do a cutback.
! In case that some ips have already wound forward to an intermediate time (subfrac),
! then all those ips that converged in the first iteration, but now have a non-converged neighbor
! have to synchronize their time step to the same intermediate time. If such a synchronization
! takes place, all other ips have to wait and only the synchronizers do a cutback. In the next
! iteration those will do a wind forward while all others still wait.
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e)
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e)
enddo
enddo
!$OMP END PARALLEL DO
if (all(crystallite_localPlasticity .or. crystallite_converged)) then
if (all(crystallite_localPlasticity .or. crystallite_subStep + crystallite_subFrac >= 1.0_pReal)) then
crystallite_clearToWindForward = .true. ! final wind forward
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i6)') '<< CRYST >> final wind forward'
else
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_subStep(1,i,e) < 1.0_pReal
enddo
enddo
!$OMP END PARALLEL DO
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i6)') '<< CRYST >> wind forward'
endif
else
subFracIntermediate = maxval(crystallite_subFrac, mask=.not.crystallite_localPlasticity)
if (dNeq0(subFracIntermediate)) then
crystallite_neighborEnforcedCutback = .false. ! look for ips that require a cutback because of a nonconverged neighbor
!$OMP PARALLEL
!$OMP DO PRIVATE(neighboring_e,neighboring_i)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (.not. crystallite_localPlasticity(1,i,e) .and. crystallite_converged(1,i,e)) then
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e))))
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then
if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) &
.and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then
crystallite_neighborEnforcedCutback(i,e) = .true.
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ', neighboring_e,neighboring_i, &
' enforced cutback at ',e,i
#endif
exit
endif
endif
enddo
endif
enddo
enddo
!$OMP END DO
!$OMP DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if(crystallite_neighborEnforcedCutback(i,e)) crystallite_converged(1,i,e) = .false.
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
else
crystallite_syncSubFrac = .false. ! look for ips that have to do a time synchronization because of a nonconverged neighbor
!$OMP PARALLEL
!$OMP DO PRIVATE(neighboring_e,neighboring_i)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (.not. crystallite_localPlasticity(1,i,e) .and. dNeq0(crystallite_subFrac(1,i,e))) then
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e))))
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then
if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) &
.and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then
crystallite_syncSubFrac(i,e) = .true.
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ',neighboring_e,neighboring_i, &
' enforced time synchronization at ',e,i
#endif
exit
endif
endif
enddo
endif
enddo
enddo
!$OMP END DO
!$OMP DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if(crystallite_syncSubFrac(i,e)) crystallite_converged(1,i,e) = .false.
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
where(.not. crystallite_localPlasticity .and. crystallite_subStep < 1.0_pReal) &
crystallite_converged = .false.
if (any(crystallite_syncSubFrac)) then ! have to do syncing now, so all wait except for the synchronizers which do a cutback
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e)
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_syncSubFrac(i,e)
enddo
enddo
!$OMP END PARALLEL DO
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i6)') '<< CRYST >> time synchronization: cutback'
else
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if(.not. crystallite_converged(1,i,e)) crystallite_clearToCutback(i,e) = .true.
enddo
enddo
!$OMP END PARALLEL DO
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i6)') '<< CRYST >> cutback'
endif
endif
endif
! Make sure that all cutbackers start with the same substep
where(.not. crystallite_localPlasticity .and. .not. crystallite_converged) &
crystallite_subStep = minval(crystallite_subStep, mask=.not. crystallite_localPlasticity &
.and. .not. crystallite_converged)
! Those that do neither wind forward nor cutback are not to do
!$OMP PARALLEL DO
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if(.not. crystallite_clearToWindForward(i,e) .and. .not. crystallite_clearToCutback(i,e)) &
crystallite_todo(1,i,e) = .false.
enddo
enddo elementLooping2
!$OMP END PARALLEL DO
endif timeSyncing1
!$OMP PARALLEL DO PRIVATE(myNcomponents,formerSubStep)
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNcomponents = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do c = 1,myNcomponents
! --- wind forward ---
if (crystallite_converged(c,i,e) .and. crystallite_clearToWindForward(i,e)) then
formerSubStep = crystallite_subStep(c,i,e)
crystallite_subFrac(c,i,e) = crystallite_subFrac(c,i,e) + crystallite_subStep(c,i,e)
!$OMP FLUSH(crystallite_subFrac)
crystallite_subStep(c,i,e) = min(1.0_pReal - crystallite_subFrac(c,i,e), &
stepIncreaseCryst * crystallite_subStep(c,i,e))
!$OMP FLUSH(crystallite_subStep)
if (crystallite_subStep(c,i,e) > 0.0_pReal) then
crystallite_subF0(1:3,1:3,c,i,e) = crystallite_subF(1:3,1:3,c,i,e) ! ...def grad
!$OMP FLUSH(crystallite_subF0)
crystallite_subLp0(1:3,1:3,c,i,e) = crystallite_Lp(1:3,1:3,c,i,e) ! ...plastic velocity gradient
crystallite_subLi0(1:3,1:3,c,i,e) = crystallite_Li(1:3,1:3,c,i,e) ! ...intermediate velocity gradient
crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_Fp(1:3,1:3,c,i,e) ! ...plastic def grad
crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_Fi(1:3,1:3,c,i,e) ! ...intermediate def grad
crystallite_subFe0(1:3,1:3,c,i,e) = math_mul33x33(math_mul33x33(crystallite_subF (1:3,1:3,c,i,e), &
crystallite_invFp(1:3,1:3,c,i,e)), &
crystallite_invFi(1:3,1:3,c,i,e)) ! only needed later on for stiffness calculation
!if abbrevation, make c and p private in omp
plasticState (phaseAt(c,i,e))%subState0(:,phasememberAt(c,i,e)) = &
plasticState (phaseAt(c,i,e))%state( :,phasememberAt(c,i,e))
do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e))
sourceState(phaseAt(c,i,e))%p(mySource)%subState0(:,phasememberAt(c,i,e)) = &
sourceState(phaseAt(c,i,e))%p(mySource)%state( :,phasememberAt(c,i,e))
enddo
crystallite_subTstar0_v(1:6,c,i,e) = crystallite_Tstar_v(1:6,c,i,e) ! ...2nd PK stress
if (crystallite_syncSubFrac(i,e)) then ! if we just did a synchronization of states, then we wind forward without any further time integration
crystallite_syncSubFracCompleted(i,e) = .true.
crystallite_syncSubFrac(i,e) = .false.
crystallite_todo(c,i,e) = .false.
else
crystallite_todo(c,i,e) = .true.
endif
!$OMP FLUSH(crystallite_todo)
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. c == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) &
write(6,'(a,f12.8,a,f12.8,a,i8,1x,i2,1x,i3,/)') '<< CRYST >> winding forward from ', &
crystallite_subFrac(c,i,e)-formerSubStep,' to current crystallite_subfrac ', &
crystallite_subFrac(c,i,e),' in crystallite_stressAndItsTangent at el ip ipc ',e,i,c
#endif
else ! this crystallite just converged for the entire timestep
crystallite_todo(c,i,e) = .false. ! so done here
!$OMP FLUSH(crystallite_todo)
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt &
.and. formerSubStep > 0.0_pReal) then
!$OMP CRITICAL (distributionCrystallite)
debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) = &
debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) + 1_pInt
!$OMP END CRITICAL (distributionCrystallite)
endif
endif
! --- cutback ---
elseif (.not. crystallite_converged(c,i,e) .and. crystallite_clearToCutback(i,e)) then
if (crystallite_syncSubFrac(i,e)) then ! synchronize time
crystallite_subStep(c,i,e) = subFracIntermediate
else
crystallite_subStep(c,i,e) = subStepSizeCryst * crystallite_subStep(c,i,e) ! cut step in half and restore...
endif
!$OMP FLUSH(crystallite_subStep)
crystallite_Fp(1:3,1:3,c,i,e) = crystallite_subFp0(1:3,1:3,c,i,e) ! ...plastic def grad
!$OMP FLUSH(crystallite_Fp)
crystallite_invFp(1:3,1:3,c,i,e) = math_inv33(crystallite_Fp(1:3,1:3,c,i,e))
!$OMP FLUSH(crystallite_invFp)
crystallite_Fi(1:3,1:3,c,i,e) = crystallite_subFi0(1:3,1:3,c,i,e) ! ...intermediate def grad
!$OMP FLUSH(crystallite_Fi)
crystallite_invFi(1:3,1:3,c,i,e) = math_inv33(crystallite_Fi(1:3,1:3,c,i,e))
!$OMP FLUSH(crystallite_invFi)
crystallite_Lp(1:3,1:3,c,i,e) = crystallite_subLp0(1:3,1:3,c,i,e) ! ...plastic velocity grad
crystallite_Li(1:3,1:3,c,i,e) = crystallite_subLi0(1:3,1:3,c,i,e) ! ...intermediate velocity grad
plasticState (phaseAt(c,i,e))%state( :,phasememberAt(c,i,e)) = &
plasticState (phaseAt(c,i,e))%subState0(:,phasememberAt(c,i,e))
do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e))
sourceState(phaseAt(c,i,e))%p(mySource)%state( :,phasememberAt(c,i,e)) = &
sourceState(phaseAt(c,i,e))%p(mySource)%subState0(:,phasememberAt(c,i,e))
enddo
crystallite_Tstar_v(1:6,c,i,e) = crystallite_subTstar0_v(1:6,c,i,e) ! ...2nd PK stress
! cant restore dotState here, since not yet calculated in first cutback after initialization
crystallite_todo(c,i,e) = crystallite_subStep(c,i,e) > subStepMinCryst ! still on track or already done (beyond repair)
!$OMP FLUSH(crystallite_todo)
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. c == debug_g) &
.or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt)) then
if (crystallite_todo(c,i,e)) then
write(6,'(a,f12.8,a,i8,1x,i2,1x,i3,/)') '<< CRYST >> cutback step in crystallite_stressAndItsTangent &
&with new crystallite_subStep: ',&
crystallite_subStep(c,i,e),' at el ip ipc ',e,i,c
else
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> reached minimum step size &
&in crystallite_stressAndItsTangent at el ip ipc ',e,i,c
endif
endif
#endif
endif
! --- prepare for integration ---
if (crystallite_todo(c,i,e) .and. (crystallite_clearToWindForward(i,e) .or. crystallite_clearToCutback(i,e))) then
crystallite_subF(1:3,1:3,c,i,e) = crystallite_subF0(1:3,1:3,c,i,e) &
+ crystallite_subStep(c,i,e) &
* (crystallite_partionedF(1:3,1:3,c,i,e) &
- crystallite_partionedF0(1:3,1:3,c,i,e))
!$OMP FLUSH(crystallite_subF)
crystallite_Fe(1:3,1:3,c,i,e) = math_mul33x33(math_mul33x33(crystallite_subF (1:3,1:3,c,i,e), &
crystallite_invFp(1:3,1:3,c,i,e)), &
crystallite_invFi(1:3,1:3,c,i,e))
crystallite_subdt(c,i,e) = crystallite_subStep(c,i,e) * crystallite_dt(c,i,e)
crystallite_converged(c,i,e) = .false. ! start out non-converged
endif
enddo ! grains
enddo ! IPs
enddo elementLooping3
!$OMP END PARALLEL DO
timeSyncing2: if(numerics_timeSyncing) then
if (any(.not. crystallite_localPlasticity .and. .not. crystallite_todo .and. .not. crystallite_converged &
.and. crystallite_subStep <= subStepMinCryst)) then ! no way of rescuing a nonlocal ip that violated the lower time step limit, ...
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNcomponents = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do c = 1,myNcomponents
if (.not. crystallite_localPlasticity(c,i,e) .and. .not. crystallite_todo(c,i,e) &
.and. .not. crystallite_converged(c,i,e) .and. crystallite_subStep(c,i,e) <= subStepMinCryst) &
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> nonlocal violated minimum subStep at el ip ipc ',e,i,c
enddo
enddo
enddo elementLooping4
endif
where(.not. crystallite_localPlasticity)
crystallite_todo = .false. ! ... so let all nonlocal ips die peacefully
crystallite_subStep = 0.0_pReal
endwhere
endif
endif timeSyncing2
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
write(6,'(/,a,f8.5)') '<< CRYST >> min(subStep) ',minval(crystallite_subStep)
write(6,'(a,f8.5)') '<< CRYST >> max(subStep) ',maxval(crystallite_subStep)
write(6,'(a,f8.5)') '<< CRYST >> min(subFrac) ',minval(crystallite_subFrac)
write(6,'(a,f8.5,/)') '<< CRYST >> max(subFrac) ',maxval(crystallite_subFrac)
flush(6)
if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt) then
write(6,'(/,a,f8.5,1x,a,1x,f8.5,1x,a)') '<< CRYST >> subFrac + subStep = ',&
crystallite_subFrac(debug_g,debug_i,debug_e),'+',crystallite_subStep(debug_g,debug_i,debug_e),'@selective'
flush(6)
endif
endif
! --- integrate --- requires fully defined state array (basic + dependent state)
if (any(crystallite_todo)) then
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
write(6,'(/,a,i3)') '<< CRYST >> using state integrator ',numerics_integrator(numerics_integrationMode)
flush(6)
endif
select case(numerics_integrator(numerics_integrationMode))
case(1_pInt)
call crystallite_integrateStateFPI()
case(2_pInt)
call crystallite_integrateStateEuler()
case(3_pInt)
call crystallite_integrateStateAdaptiveEuler()
case(4_pInt)
call crystallite_integrateStateRK4()
case(5_pInt)
call crystallite_integrateStateRKCK45()
end select
endif
where(.not. crystallite_converged .and. crystallite_subStep > subStepMinCryst) & ! do not try non-converged & fully cutbacked any further
crystallite_todo = .true.
NiterationCrystallite = NiterationCrystallite + 1_pInt
enddo cutbackLooping
! --+>> CHECK FOR NON-CONVERGED CRYSTALLITES <<+--
elementLooping5: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNcomponents = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do c = 1,myNcomponents
if (.not. crystallite_converged(c,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway)
if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,/)') '<< CRYST >> no convergence: respond fully elastic at el (elFE) ip ipc ', &
e,'(',mesh_element(1,e),')',i,c
invFp = math_inv33(crystallite_partionedFp0(1:3,1:3,c,i,e))
Fe_guess = math_mul33x33(math_mul33x33(crystallite_partionedF(1:3,1:3,c,i,e), invFp), &
math_inv33(crystallite_partionedFi0(1:3,1:3,c,i,e)))
call constitutive_TandItsTangent(Tstar,dSdFe,dSdFi,Fe_guess,crystallite_partionedFi0(1:3,1:3,c,i,e),c,i,e)
crystallite_P(1:3,1:3,c,i,e) = math_mul33x33(math_mul33x33(crystallite_partionedF(1:3,1:3,c,i,e), invFp), &
math_mul33x33(Tstar,transpose(invFp)))
endif
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. c == debug_g) &
.or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> central solution of cryst_StressAndTangent at el ip ipc ',e,i,c
write(6,'(/,a,/,3(12x,3(f12.4,1x)/))') '<< CRYST >> P / MPa', &
transpose(crystallite_P(1:3,1:3,c,i,e))*1.0e-6_pReal
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp', &
transpose(crystallite_Fp(1:3,1:3,c,i,e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fi', &
transpose(crystallite_Fi(1:3,1:3,c,i,e))
write(6,'(a,/,3(12x,3(f14.9,1x)/),/)') '<< CRYST >> Lp', &
transpose(crystallite_Lp(1:3,1:3,c,i,e))
write(6,'(a,/,3(12x,3(f14.9,1x)/),/)') '<< CRYST >> Li', &
transpose(crystallite_Li(1:3,1:3,c,i,e))
flush(6)
endif
enddo
enddo
enddo elementLooping5
! --+>> STIFFNESS CALCULATION <<+--
computeJacobian: if(updateJaco) then
!$OMP PARALLEL DO PRIVATE(dSdF,dSdFe,dSdFi,dLpdS,dLpdFi,dFpinvdF,dLidS,dLidFi,dFidS,&
!$OMP rhs_3333,lhs_3333,temp_99,temp_33,temp_3333,myNcomponents,error)
elementLooping6: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNcomponents = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do c = 1_pInt,myNcomponents
call constitutive_TandItsTangent(temp_33,dSdFe,dSdFi,crystallite_Fe(1:3,1:3,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e),c,i,e) ! call constitutive law to calculate elastic stress tangent
call constitutive_LiAndItsTangent(temp_33,dLidS,dLidFi,crystallite_Tstar_v(1:6,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e), &
c,i,e) ! call constitutive law to calculate Li tangent in lattice configuration
if (sum(abs(dLidS)) < tol_math_check) then
dFidS = 0.0_pReal
else
temp_33 = math_inv33(crystallite_subFi0(1:3,1:3,c,i,e))
lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) + &
crystallite_subdt(c,i,e)*math_mul33x33(temp_33,dLidFi(1:3,1:3,o,p))
lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) + &
crystallite_invFi(1:3,1:3,c,i,e)*crystallite_invFi(p,o,c,i,e)
rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) - &
crystallite_subdt(c,i,e)*math_mul33x33(temp_33,dLidS(1:3,1:3,o,p))
enddo; enddo
call math_invert(9_pInt,math_Plain3333to99(lhs_3333),temp_99,error)
if (error) then
call IO_warning(warning_ID=600_pInt,el=e,ip=i,g=c, &
ext_msg='inversion error in analytic tangent calculation')
dFidS = 0.0_pReal
else
dFidS = math_mul3333xx3333(math_Plain99to3333(temp_99),rhs_3333)
endif
dLidS = math_mul3333xx3333(dLidFi,dFidS) + dLidS
endif
call constitutive_LpAndItsTangent(temp_33,dLpdS,dLpdFi,crystallite_Tstar_v(1:6,c,i,e), &
crystallite_Fi(1:3,1:3,c,i,e),c,i,e) ! call constitutive law to calculate Lp tangent in lattice configuration
dLpdS = math_mul3333xx3333(dLpdFi,dFidS) + dLpdS
temp_33 = transpose(math_mul33x33(crystallite_invFp(1:3,1:3,c,i,e), &
crystallite_invFi(1:3,1:3,c,i,e)))
rhs_3333 = 0.0_pReal
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
rhs_3333(p,o,1:3,1:3) = math_mul33x33(dSdFe(p,o,1:3,1:3),temp_33)
temp_3333 = 0.0_pReal
temp_33 = math_mul33x33(crystallite_subF(1:3,1:3,c,i,e), &
math_inv33(crystallite_subFp0(1:3,1:3,c,i,e)))
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
temp_3333(1:3,1:3,p,o) = math_mul33x33(math_mul33x33(temp_33,dLpdS(1:3,1:3,p,o)), &
crystallite_invFi(1:3,1:3,c,i,e))
temp_33 = math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,c,i,e), &
crystallite_invFp(1:3,1:3,c,i,e)), &
math_inv33(crystallite_subFi0(1:3,1:3,c,i,e)))
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
temp_3333(1:3,1:3,p,o) = temp_3333(1:3,1:3,p,o) + math_mul33x33(temp_33,dLidS(1:3,1:3,p,o))
lhs_3333 = crystallite_subdt(c,i,e)*math_mul3333xx3333(dSdFe,temp_3333) + &
math_mul3333xx3333(dSdFi,dFidS)
call math_invert(9_pInt,math_identity2nd(9_pInt)+math_Plain3333to99(lhs_3333),temp_99,error)
if (error) then
call IO_warning(warning_ID=600_pInt,el=e,ip=i,g=c, &
ext_msg='inversion error in analytic tangent calculation')
dSdF = rhs_3333
else
dSdF = math_mul3333xx3333(math_Plain99to3333(temp_99),rhs_3333)
endif
dFpinvdF = 0.0_pReal
temp_3333 = math_mul3333xx3333(dLpdS,dSdF)
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
dFpinvdF(1:3,1:3,p,o) = -crystallite_subdt(c,i,e)* &
math_mul33x33(math_inv33(crystallite_subFp0(1:3,1:3,c,i,e)), &
math_mul33x33(temp_3333(1:3,1:3,p,o), &
crystallite_invFi(1:3,1:3,c,i,e)))
crystallite_dPdF(1:3,1:3,1:3,1:3,c,i,e) = 0.0_pReal
temp_33 = math_mul33x33(crystallite_invFp(1:3,1:3,c,i,e), &
math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,c,i,e)), &
transpose(crystallite_invFp(1:3,1:3,c,i,e))))
forall(p=1_pInt:3_pInt) &
crystallite_dPdF(p,1:3,p,1:3,c,i,e) = transpose(temp_33)
temp_33 = math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,c,i,e)), &
transpose(crystallite_invFp(1:3,1:3,c,i,e)))
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
crystallite_dPdF(1:3,1:3,p,o,c,i,e) = crystallite_dPdF(1:3,1:3,p,o,c,i,e) + &
math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,c,i,e),dFpinvdF(1:3,1:3,p,o)),temp_33)
temp_33 = math_mul33x33(crystallite_subF(1:3,1:3,c,i,e), &
crystallite_invFp(1:3,1:3,c,i,e))
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
crystallite_dPdF(1:3,1:3,p,o,c,i,e) = crystallite_dPdF(1:3,1:3,p,o,c,i,e) + &
math_mul33x33(math_mul33x33(temp_33,dSdF(1:3,1:3,p,o)), &
transpose(crystallite_invFp(1:3,1:3,c,i,e)))
temp_33 = math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,c,i,e), &
crystallite_invFp(1:3,1:3,c,i,e)), &
math_Mandel6to33(crystallite_Tstar_v(1:6,c,i,e)))
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
crystallite_dPdF(1:3,1:3,p,o,c,i,e) = crystallite_dPdF(1:3,1:3,p,o,c,i,e) + &
math_mul33x33(temp_33,transpose(dFpinvdF(1:3,1:3,p,o)))
enddo; enddo
enddo elementLooping6
!$OMP END PARALLEL DO
endif computeJacobian
!why not OMP?
end subroutine crystallite_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 4th order explicit Runge Kutta method
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateRK4()
use, intrinsic :: &
IEEE_arithmetic
use numerics, only: &
numerics_integrationMode
use debug, only: &
#ifdef DEBUG
debug_e, &
debug_i, &
debug_g, &
#endif
debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_StateLoopDistribution
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use mesh, only: &
mesh_element, &
mesh_NcpElems
use material, only: &
homogenization_Ngrains, &
plasticState, &
sourceState, &
phase_Nsources, &
phaseAt, phasememberAt
use config, only: &
material_Nphase
use constitutive, only: &
constitutive_collectDotState, &
constitutive_microstructure
implicit none
real(pReal), dimension(4), parameter :: &
TIMESTEPFRACTION = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration
real(pReal), dimension(4), parameter :: &
WEIGHT = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal/6.0_pReal] ! weight of slope used for Runge Kutta integration (final weight divided by 6)
integer(pInt) :: e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
p, & ! phase loop
c, &
n, &
mySource, &
mySizePlasticDotState, &
mySizeSourceDotState
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
logical :: NaN, &
singleRun ! flag indicating computation for single (g,i,e) triple
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
!--------------------------------------------------------------------------------------------------
! initialize dotState
if (.not. singleRun) then
do p = 1_pInt, material_Nphase
plasticState(p)%RK4dotState = 0.0_pReal
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%RK4dotState = 0.0_pReal
enddo
enddo
else
e = eIter(1)
i = iIter(1,e)
do g = gIter(1,e), gIter(2,e)
plasticState(phaseAt(g,i,e))%RK4dotState(:,phasememberAt(g,i,e)) = 0.0_pReal
do mySource = 1_pInt, phase_Nsources(phaseAt(g,i,e))
sourceState(phaseAt(g,i,e))%p(mySource)%RK4dotState(:,phasememberAt(g,i,e)) = 0.0_pReal
enddo
enddo
endif
!--------------------------------------------------------------------------------------------------
! first Runge-Kutta step
!$OMP PARALLEL
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Fp, &
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,c,NaN)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
c = phasememberAt(g,i,e)
p = phaseAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do mySource = 1_pInt, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%dotState(:,c)))
enddo
if (NaN) then ! NaN occured in any dotState
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
!--------------------------------------------------------------------------------------------------
! --- SECOND TO FOURTH RUNGE KUTTA STEP PLUS FINAL INTEGRATION ---
do n = 1_pInt,4_pInt
! --- state update ---
!$OMP PARALLEL
!$OMP DO PRIVATE(p,c)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
plasticState(p)%RK4dotState(:,c) = plasticState(p)%RK4dotState(:,c) &
+ weight(n)*plasticState(p)%dotState(:,c)
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%RK4dotState(:,c) = sourceState(p)%p(mySource)%RK4dotState(:,c) &
+ weight(n)*sourceState(p)%p(mySource)%dotState(:,c)
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,c)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticState(p)%state (1:mySizePlasticDotState,c) = &
plasticState(p)%subState0(1:mySizePlasticDotState,c) &
+ plasticState(p)%dotState (1:mySizePlasticDotState,c) &
* crystallite_subdt(g,i,e) * timeStepFraction(n)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,c) = &
sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,c) &
+ sourceState(p)%p(mySource)%dotState (1:mySizeSourceDotState,c) &
* crystallite_subdt(g,i,e) * timeStepFraction(n)
enddo
#ifdef DEBUG
if (n == 4 &
.and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then ! final integration step
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> updateState at el ip g ',e,i,g
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', plasticState(p)%dotState(1:mySizePlasticDotState,c)
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state(1:mySizePlasticDotState,c)
endif
#endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- state jump ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- update dependent states ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_microstructure(crystallite_orientation, &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
! --- stress integration ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,timeStepFraction(n)) ! fraction of original times step
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- dot state and RK dot state---
first3steps: if (n < 4) then
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Fp, &
timeStepFraction(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
crystallite_subFrac, g,i,e)
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,c,NaN)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do mySource = 1_pInt, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%dotState(:,c)))
enddo
if (NaN) then ! NaN occured in any dotState
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
endif first3steps
!$OMP END PARALLEL
enddo
! --- SET CONVERGENCE FLAG ---
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(4,numerics_integrationMode) = &
debug_StateLoopDistribution(4,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
! --- CHECK NONLOCAL CONVERGENCE ---
if (.not. singleRun) then ! if not requesting Integration of just a single IP
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
endif
endif
end subroutine crystallite_integrateStateRK4
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 5th order Runge-Kutta Cash-Karp method with
!> adaptive step size (use 5th order solution to advance = "local extrapolation")
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateRKCK45()
use, intrinsic :: &
IEEE_arithmetic
use debug, only: &
#ifdef DEBUG
debug_e, &
debug_i, &
debug_g, &
#endif
debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_StateLoopDistribution
use numerics, only: &
rTol_crystalliteState, &
numerics_integrationMode
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use mesh, only: &
mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_Ngrains, &
plasticState, &
sourceState, &
phase_Nsources, &
phaseAt, phasememberAt, &
homogenization_maxNgrains
use constitutive, only: &
constitutive_collectDotState, &
constitutive_plasticity_maxSizeDotState, &
constitutive_source_maxSizeDotState, &
constitutive_microstructure
implicit none
real(pReal), dimension(5,5), parameter :: &
A = reshape([&
.2_pReal, .075_pReal, .3_pReal, -11.0_pReal/54.0_pReal, 1631.0_pReal/55296.0_pReal, &
.0_pReal, .225_pReal, -.9_pReal, 2.5_pReal, 175.0_pReal/512.0_pReal, &
.0_pReal, .0_pReal, 1.2_pReal, -70.0_pReal/27.0_pReal, 575.0_pReal/13824.0_pReal, &
.0_pReal, .0_pReal, .0_pReal, 35.0_pReal/27.0_pReal, 44275.0_pReal/110592.0_pReal, &
.0_pReal, .0_pReal, .0_pReal, .0_pReal, 253.0_pReal/4096.0_pReal], &
[5,5], order=[2,1]) !< coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6)
real(pReal), dimension(6), parameter :: &
B = &
[37.0_pReal/378.0_pReal, .0_pReal, 250.0_pReal/621.0_pReal, &
125.0_pReal/594.0_pReal, .0_pReal, 512.0_pReal/1771.0_pReal], & !< coefficients in Butcher tableau (used for final integration and error estimate)
DB = B - &
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 0.25_pReal] !< coefficients in Butcher tableau (used for final integration and error estimate)
real(pReal), dimension(5), parameter :: &
C = [0.2_pReal, 0.3_pReal, 0.6_pReal, 1.0_pReal, 0.875_pReal] !< coefficients in Butcher tableau (fractions of original time step in stages 2 to 6)
integer(pInt) :: &
e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
stage, & ! stage index in integration stage loop
s, & ! state index
n, &
p, &
cc, &
mySource, &
mySizePlasticDotState, & ! size of dot States
mySizeSourceDotState
integer(pInt), dimension(2) :: &
eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: &
iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal), dimension(constitutive_plasticity_maxSizeDotState, &
homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
plasticStateResiduum, & ! residuum from evolution in microstructure
relPlasticStateResiduum ! relative residuum from evolution in microstructure
real(pReal), dimension(constitutive_source_maxSizeDotState, &
maxval(phase_Nsources), &
homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
sourceStateResiduum, & ! residuum from evolution in microstructure
relSourceStateResiduum ! relative residuum from evolution in microstructure
logical :: &
NaN, &
singleRun ! flag indicating computation for single (g,i,e) triple
eIter = FEsolving_execElem(1:2)
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,1x,i1)') '<< CRYST >> Runge--Kutta step',1
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
! --- FIRST RUNGE KUTTA STEP ---
!$OMP PARALLEL
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Fp, &
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,cc,NaN)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
cc = phasememberAt(g,i,e)
p = phaseAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,cc)))
do mySource = 1_pInt, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%dotState(:,cc)))
enddo
if (NaN) then ! NaN occured in any dotState
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
! --- SECOND TO SIXTH RUNGE KUTTA STEP ---
do stage = 1_pInt,5_pInt
! --- state update ---
!$OMP PARALLEL
!$OMP DO PRIVATE(p,cc)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
plasticState(p)%RKCK45dotState(stage,:,cc) = plasticState(p)%dotState(:,cc) ! store Runge-Kutta dotState
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%RKCK45dotState(stage,:,cc) = sourceState(p)%p(mySource)%dotState(:,cc)
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,cc,n)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
plasticState(p)%dotState(:,cc) = A(1,stage) * plasticState(p)%RKCK45dotState(1,:,cc)
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%dotState(:,cc) = A(1,stage) * sourceState(p)%p(mySource)%RKCK45dotState(1,:,cc)
enddo
do n = 2_pInt, stage
plasticState(p)%dotState(:,cc) = &
plasticState(p)%dotState(:,cc) + A(n,stage) * plasticState(p)%RKCK45dotState(n,:,cc)
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%dotState(:,cc) = &
sourceState(p)%p(mySource)%dotState(:,cc) + A(n,stage) * sourceState(p)%p(mySource)%RKCK45dotState(n,:,cc)
enddo
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticState (p)%state (1:mySizePlasticDotState, cc) = &
plasticState (p)%subState0(1:mySizePlasticDotState, cc) &
+ plasticState (p)%dotState (1:mySizePlasticDotState, cc) &
* crystallite_subdt(g,i,e)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,cc) = &
sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,cc) &
+ sourceState(p)%p(mySource)%dotState (1:mySizeSourceDotState,cc) &
* crystallite_subdt(g,i,e)
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- state jump ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- update dependent states ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_microstructure(crystallite_orientation, &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
! --- stress integration ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,C(stage)) ! fraction of original time step
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- dot state and RK dot state---
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,1x,i1)') '<< CRYST >> Runge--Kutta step',stage+1_pInt
#endif
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Fp, &
C(stage)*crystallite_subdt(g,i,e), & ! fraction of original timestep
crystallite_subFrac, g,i,e)
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,cc,NaN)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,cc)))
do mySource = 1_pInt, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%dotState(:,cc)))
enddo
if (NaN) then ! NaN occured in any dotState
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
enddo
!--------------------------------------------------------------------------------------------------
! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE ---
relPlasticStateResiduum = 0.0_pReal
relSourceStateResiduum = 0.0_pReal
!$OMP PARALLEL
!$OMP DO PRIVATE(p,cc)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
plasticState(p)%RKCK45dotState(6,:,cc) = plasticState (p)%dotState(:,cc) ! store Runge-Kutta dotState
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%RKCK45dotState(6,:,cc) = sourceState(p)%p(mySource)%dotState(:,cc) ! store Runge-Kutta dotState
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
! --- absolute residuum in state ---
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) = &
matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:mySizePlasticDotState,cc)),DB) &
* crystallite_subdt(g,i,e)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) = &
matmul(transpose(sourceState(p)%p(mySource)%RKCK45dotState(1:6,1:mySizeSourceDotState,cc)),DB) &
* crystallite_subdt(g,i,e)
enddo
! --- dot state ---
plasticState(p)%dotState(:,cc) = &
matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:mySizePlasticDotState,cc)), B)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceState(p)%p(mySource)%dotState(:,cc) = &
matmul(transpose(sourceState(p)%p(mySource)%RKCK45dotState(1:6,1:mySizeSourceDotState,cc)),B)
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- state and update ---
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticState(p)%state (1:mySizePlasticDotState,cc) = &
plasticState(p)%subState0(1:mySizePlasticDotState,cc) &
+ plasticState(p)%dotState (1:mySizePlasticDotState,cc) &
* crystallite_subdt(g,i,e)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,cc) = &
sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,cc) &
+ sourceState(p)%p(mySource)%dotState (1:mySizeSourceDotState,cc)&
* crystallite_subdt(g,i,e)
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- relative residui and state convergence ---
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc,s)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
cc = phasememberAt(g,i,e)
mySizePlasticDotState = plasticState(p)%sizeDotState
forall (s = 1_pInt:mySizePlasticDotState, abs(plasticState(p)%state(s,cc)) > 0.0_pReal) &
relPlasticStateResiduum(s,g,i,e) = &
plasticStateResiduum(s,g,i,e) / plasticState(p)%state(s,cc)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
forall (s = 1_pInt:mySizeSourceDotState,abs(sourceState(p)%p(mySource)%state(s,cc)) > 0.0_pReal) &
relSourceStateResiduum(s,mySource,g,i,e) = &
sourceStateResiduum(s,mySource,g,i,e) / sourceState(p)%p(mySource)%state(s,cc)
enddo
!$OMP FLUSH(relPlasticStateResiduum)
!$OMP FLUSH(relSourceStateResiduum)
! @Martin: do we need flushing? why..?
crystallite_todo(g,i,e) = all(abs(relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
rTol_crystalliteState .or. &
abs(plasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
plasticState(p)%aTolState(1:mySizePlasticDotState))
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. &
all(abs(relSourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < &
rTol_crystalliteState .or. &
abs(sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < &
sourceState(p)%p(mySource)%aTolState(1:mySizeSourceDotState))
enddo
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt&
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i3,1x,i3,/)') '<< CRYST >> updateState at el ip ipc ',e,i,g
write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> absolute residuum tolerance', &
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) / plasticState(p)%aTolState(1:mySizePlasticDotState)
write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> relative residuum tolerance', &
relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e) / rTol_crystalliteState
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', &
plasticState(p)%dotState(1:mySizePlasticDotState,cc)
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', &
plasticState(p)%state(1:mySizePlasticDotState,cc)
endif
#endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE JUMP ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!--------------------------------------------------------------------------------------------------
! --- UPDATE DEPENDENT STATES IF RESIDUUM BELOW TOLERANCE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_microstructure(crystallite_orientation, &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
!--------------------------------------------------------------------------------------------------
! --- FINAL STRESS INTEGRATION STEP IF RESIDUUM BELOW TOLERANCE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!--------------------------------------------------------------------------------------------------
! --- SET CONVERGENCE FLAG ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definition
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(6,numerics_integrationMode) = &
debug_StateLoopDistribution(6,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
! --- nonlocal convergence check ---
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged' ! if not requesting Integration of just a single IP
if ((.not. singleRun) .and. any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
end subroutine crystallite_integrateStateRKCK45
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateAdaptiveEuler()
use, intrinsic :: &
IEEE_arithmetic
use debug, only: &
#ifdef DEBUG
debug_e, &
debug_i, &
debug_g, &
#endif
debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_StateLoopDistribution
use numerics, only: &
rTol_crystalliteState, &
numerics_integrationMode
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use mesh, only: &
mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: &
homogenization_Ngrains, &
plasticState, &
sourceState, &
phaseAt, phasememberAt, &
phase_Nsources, &
homogenization_maxNgrains
use constitutive, only: &
constitutive_collectDotState, &
constitutive_microstructure, &
constitutive_plasticity_maxSizeDotState, &
constitutive_source_maxSizeDotState
implicit none
integer(pInt) :: &
e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
s, & ! state index
p, &
c, &
mySource, &
mySizePlasticDotState, & ! size of dot states
mySizeSourceDotState
integer(pInt), dimension(2) :: &
eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: &
iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal), dimension(constitutive_plasticity_maxSizeDotState, &
homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
plasticStateResiduum, & ! residuum from evolution in micrstructure
relPlasticStateResiduum ! relative residuum from evolution in microstructure
real(pReal), dimension(constitutive_source_maxSizeDotState,&
maxval(phase_Nsources), &
homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
sourceStateResiduum, & ! residuum from evolution in micrstructure
relSourceStateResiduum ! relative residuum from evolution in microstructure
logical :: &
converged, &
NaN, &
singleRun ! flag indicating computation for single (g,i,e) triple
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
plasticStateResiduum = 0.0_pReal
relPlasticStateResiduum = 0.0_pReal
sourceStateResiduum = 0.0_pReal
relSourceStateResiduum = 0.0_pReal
integrationMode: if (numerics_integrationMode == 1_pInt) then
!$OMP PARALLEL
! --- DOT STATE (EULER INTEGRATION) ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Fp, &
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,c,NaN)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do mySource = 1_pInt, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%dotState(:,c)))
enddo
if (NaN) then ! NaN occured in any dotState
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE UPDATE (EULER INTEGRATION) ---
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,c)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) = &
- 0.5_pReal &
* plasticState(p)%dotstate(1:mySizePlasticDotState,c) &
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
plasticState(p)%state (1:mySizePlasticDotState,c) = &
plasticState(p)%state (1:mySizePlasticDotState,c) &
+ plasticState(p)%dotstate(1:mySizePlasticDotState,c) &
* crystallite_subdt(g,i,e)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) = &
- 0.5_pReal &
* sourceState(p)%p(mySource)%dotstate(1:mySizeSourceDotState,c) &
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,c) = &
sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,c) &
+ sourceState(p)%p(mySource)%dotstate(1:mySizeSourceDotState,c) &
* crystallite_subdt(g,i,e)
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE JUMP ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_microstructure(crystallite_orientation, &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
endif integrationMode
! --- STRESS INTEGRATION (EULER INTEGRATION) ---
!$OMP PARALLEL DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
if (numerics_integrationMode == 1_pInt) then
!$OMP PARALLEL
! --- DOT STATE (HEUN METHOD) ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Fp, &
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,c,NaN)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do mySource = 1_pInt, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%dotState(:,c)))
enddo
if (NaN) then ! NaN occured in any dotState
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- ERROR ESTIMATE FOR STATE (HEUN METHOD) ---
!$OMP SINGLE
relPlasticStateResiduum = 0.0_pReal
relSourceStateResiduum = 0.0_pReal
!$OMP END SINGLE
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,converged,p,c,s)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
! --- contribution of heun step to absolute residui ---
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) = &
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) &
+ 0.5_pReal * plasticState(p)%dotState(:,c) &
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) = &
sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) &
+ 0.5_pReal * sourceState(p)%p(mySource)%dotState(:,c) &
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
enddo
!$OMP FLUSH(plasticStateResiduum)
!$OMP FLUSH(sourceStateResiduum)
! --- relative residui ---
forall (s = 1_pInt:mySizePlasticDotState, abs(plasticState(p)%dotState(s,c)) > 0.0_pReal) &
relPlasticStateResiduum(s,g,i,e) = &
plasticStateResiduum(s,g,i,e) / plasticState(p)%dotState(s,c)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
forall (s = 1_pInt:mySizeSourceDotState,abs(sourceState(p)%p(mySource)%dotState(s,c)) > 0.0_pReal) &
relSourceStateResiduum(s,mySource,g,i,e) = &
sourceStateResiduum(s,mySource,g,i,e) / sourceState(p)%p(mySource)%dotState(s,c)
enddo
!$OMP FLUSH(relPlasticStateResiduum)
!$OMP FLUSH(relSourceStateResiduum)
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> updateState at el ip g ',e,i,g
write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> absolute residuum tolerance', &
plasticStateResiduum(1:mySizePlasticDotState,g,i,e) / plasticState(p)%aTolState(1:mySizePlasticDotState)
write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> relative residuum tolerance', &
relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e) / rTol_crystalliteState
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', plasticState(p)%dotState(1:mySizePlasticDotState,c) &
- 2.0_pReal * plasticStateResiduum(1:mySizePlasticDotState,g,i,e) / crystallite_subdt(g,i,e) ! calculate former dotstate from higher order solution and state residuum
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state(1:mySizePlasticDotState,c)
endif
#endif
! --- converged ? ---
converged = all(abs(relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
rTol_crystalliteState .or. &
abs(plasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
plasticState(p)%aTolState(1:mySizePlasticDotState))
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
converged = converged .and. &
all(abs(relSourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < &
rTol_crystalliteState .or. &
abs(sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < &
sourceState(p)%p(mySource)%aTolState(1:mySizeSourceDotState))
enddo
if (converged) then
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(2,numerics_integrationMode) = &
debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
elseif (numerics_integrationMode > 1) then ! stiffness calculation
!$OMP PARALLEL DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(2,numerics_integrationMode) = &
debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
!$OMP END PARALLEL DO
endif
! --- NONLOCAL CONVERGENCE CHECK ---
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged'
if ((.not. singleRun) .and. any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
end subroutine crystallite_integrateStateAdaptiveEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, and state with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateEuler()
use, intrinsic :: &
IEEE_arithmetic
use debug, only: &
#ifdef DEBUG
debug_e, &
debug_i, &
debug_g, &
#endif
debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_StateLoopDistribution
use numerics, only: &
numerics_integrationMode, &
numerics_timeSyncing
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use mesh, only: &
mesh_element, &
mesh_NcpElems
use material, only: &
plasticState, &
sourceState, &
phaseAt, phasememberAt, &
phase_Nsources, &
homogenization_Ngrains
use constitutive, only: &
constitutive_collectDotState, &
constitutive_microstructure
implicit none
integer(pInt) :: &
e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
p, & ! phase loop
c, &
mySource, &
mySizePlasticDotState, &
mySizeSourceDotState
integer(pInt), dimension(2) :: &
eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: &
iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
logical :: &
NaN, &
singleRun ! flag indicating computation for single (g,i,e) triple
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
if (numerics_integrationMode == 1_pInt) then
!$OMP PARALLEL
! --- DOT STATE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) &
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Fp, &
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,c,NaN)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
c = phasememberAt(g,i,e)
p = phaseAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do mySource = 1_pInt, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%dotState(:,c)))
enddo
if (NaN) then ! NaN occured in any dotState
if (.not. crystallite_localPlasticity(g,i,e) .and. .not. numerics_timeSyncing) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE STATE ---
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,c)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticState(p)%state( 1:mySizePlasticDotState,c) = &
plasticState(p)%state( 1:mySizePlasticDotState,c) &
+ plasticState(p)%dotState(1:mySizePlasticDotState,c) &
* crystallite_subdt(g,i,e)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceState(p)%p(mySource)%state( 1:mySizeSourceDotState,c) = &
sourceState(p)%p(mySource)%state( 1:mySizeSourceDotState,c) &
+ sourceState(p)%p(mySource)%dotState(1:mySizeSourceDotState,c) &
* crystallite_subdt(g,i,e)
enddo
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> update state at el ip g ',e,i,g
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', plasticState(p)%dotState(1:mySizePlasticDotState,c)
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state (1:mySizePlasticDotState,c)
endif
#endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE JUMP ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local...
.and. .not. numerics_timeSyncing) then
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE DEPENDENT STATES ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) &
call constitutive_microstructure(crystallite_orientation, &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e) ! update dependent state variables to be consistent with basic states
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
endif
!$OMP PARALLEL
! --- STRESS INTEGRATION ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local...
.and. .not. numerics_timeSyncing) then
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- SET CONVERGENCE FLAG ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(1,numerics_integrationMode) = &
debug_StateLoopDistribution(1,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
! --- CHECK NON-LOCAL CONVERGENCE ---
if (.not. singleRun) then ! if not requesting Integration of just a single IP
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity) & ! any non-local not yet converged (or broken)...
.and. .not. numerics_timeSyncing) &
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
endif
end subroutine crystallite_integrateStateEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateFPI()
use, intrinsic :: &
IEEE_arithmetic
use debug, only: &
#ifdef DEBUG
debug_e, &
debug_i, &
debug_g, &
#endif
debug_level,&
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_StateLoopDistribution
use numerics, only: &
nState, &
numerics_integrationMode, &
rTol_crystalliteState
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use mesh, only: &
mesh_element, &
mesh_NcpElems
use material, only: &
plasticState, &
sourceState, &
phaseAt, phasememberAt, &
phase_Nsources, &
homogenization_Ngrains
use constitutive, only: &
constitutive_collectDotState, &
constitutive_microstructure, &
constitutive_plasticity_maxSizeDotState, &
constitutive_source_maxSizeDotState
implicit none
integer(pInt) :: &
NiterationState, & !< number of iterations in state loop
e, & !< element index in element loop
i, & !< integration point index in ip loop
g, & !< grain index in grain loop
p, &
c, &
mySource, &
mySizePlasticDotState, & ! size of dot states
mySizeSourceDotState
integer(pInt), dimension(2) :: &
eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: &
iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal) :: &
dot_prod12, &
dot_prod22, &
plasticStateDamper, & ! damper for integration of state
sourceStateDamper
real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: &
plasticStateResiduum, &
tempPlasticState
real(pReal), dimension(constitutive_source_maxSizeDotState, maxval(phase_Nsources)) :: &
sourceStateResiduum, & ! residuum from evolution in micrstructure
tempSourceState
logical :: &
converged, &
NaN, &
singleRun, & ! flag indicating computation for single (g,i,e) triple
doneWithIntegration
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo at start of state integration'
!--------------------------------------------------------------------------------------------------
! initialize dotState
if (.not. singleRun) then
forall(p = 1_pInt:size(plasticState))
plasticState(p)%previousDotState = 0.0_pReal
plasticState(p)%previousDotState2 = 0.0_pReal
end forall
do p = 1_pInt, size(sourceState); do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%previousDotState = 0.0_pReal
sourceState(p)%p(mySource)%previousDotState2 = 0.0_pReal
enddo; enddo
else
e = eIter(1)
i = iIter(1,e)
do g = gIter(1,e), gIter(2,e)
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
plasticState(p)%previousDotState (:,c) = 0.0_pReal
plasticState(p)%previousDotState2(:,c) = 0.0_pReal
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%previousDotState (:,c) = 0.0_pReal
sourceState(p)%p(mySource)%previousDotState2(:,c) = 0.0_pReal
enddo
enddo
endif
! --+>> PREGUESS FOR STATE <<+--
! --- DOT STATES ---
!$OMP PARALLEL
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) &
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Fp, &
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,c,NaN)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do mySource = 1_pInt, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%dotState(:,c)))
enddo
if (NaN) then ! NaN occured in any dotState
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,*) '<< CRYST >> dotstate ',plasticState(p)%dotState(:,c)
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken is a non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals done (and broken)
!$OMP END CRITICAL (checkTodo)
else ! broken one was local...
crystallite_todo(g,i,e) = .false. ! ... done (and broken)
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE STATE ---
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after preguess of state'
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,c)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticState(p)%state(1:mySizePlasticDotState,c) = &
plasticState(p)%subState0(1:mySizePlasticDotState,c) &
+ plasticState(p)%dotState (1:mySizePlasticDotState,c) &
* crystallite_subdt(g,i,e)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceState(p)%p(mySource)%state(1:mySizeSourceDotState,c) = &
sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,c) &
+ sourceState(p)%p(mySource)%dotState (1:mySizeSourceDotState,c) &
* crystallite_subdt(g,i,e)
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
! --+>> STATE LOOP <<+--
NiterationState = 0_pInt
doneWithIntegration = .false.
crystalliteLooping: do while (.not. doneWithIntegration .and. NiterationState < nState)
NiterationState = NiterationState + 1_pInt
!$OMP PARALLEL
! --- UPDATE DEPENDENT STATES ---
!$OMP DO PRIVATE(p,c)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) &
call constitutive_microstructure(crystallite_orientation, &
crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), &
g, i, e) ! update dependent state variables to be consistent with basic states
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
plasticState(p)%previousDotState2(:,c) = plasticState(p)%previousDotState(:,c)
plasticState(p)%previousDotState (:,c) = plasticState(p)%dotState(:,c)
do mySource = 1_pInt, phase_Nsources(p)
sourceState(p)%p(mySource)%previousDotState2(:,c) = sourceState(p)%p(mySource)%previousDotState(:,c)
sourceState(p)%p(mySource)%previousDotState (:,c) = sourceState(p)%p(mySource)%dotState(:,c)
enddo
enddo; enddo; enddo
!$OMP ENDDO
! --- STRESS INTEGRATION ---
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo before stress integration'
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ... then all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP SINGLE
!$OMP CRITICAL (write2out)
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after stress integration'
!$OMP END CRITICAL (write2out)
!$OMP END SINGLE
! --- DOT STATE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) &
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Fp, &
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO PRIVATE(p,c)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,c)))
do mySource = 1_pInt, phase_Nsources(p)
NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(mySource)%dotState(:,c)))
enddo
if (NaN) then ! NaN occured in any dotState
crystallite_todo(g,i,e) = .false. ! ... skip me next time
if (.not. crystallite_localPlasticity(g,i,e)) then ! if me is non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE STATE ---
!$OMP DO PRIVATE(dot_prod12,dot_prod22, &
!$OMP& mySizePlasticDotState,mySizeSourceDotState, &
!$OMP& plasticStateResiduum,sourceStateResiduum, &
!$OMP& plasticStatedamper,sourceStateDamper, &
!$OMP& tempPlasticState,tempSourceState,converged,p,c)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
p = phaseAt(g,i,e)
c = phasememberAt(g,i,e)
dot_prod12 = dot_product( plasticState(p)%dotState (:,c) &
- plasticState(p)%previousDotState (:,c), &
plasticState(p)%previousDotState (:,c) &
- plasticState(p)%previousDotState2(:,c))
dot_prod22 = dot_product( plasticState(p)%previousDotState (:,c) &
- plasticState(p)%previousDotState2(:,c), &
plasticState(p)%previousDotState (:,c) &
- plasticState(p)%previousDotState2(:,c))
if ( dot_prod22 > 0.0_pReal &
.and. ( dot_prod12 < 0.0_pReal &
.or. dot_product(plasticState(p)%dotState(:,c), &
plasticState(p)%previousDotState(:,c)) < 0.0_pReal) ) then
plasticStateDamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else
plasticStateDamper = 1.0_pReal
endif
! --- get residui ---
mySizePlasticDotState = plasticState(p)%sizeDotState
plasticStateResiduum(1:mySizePlasticDotState) = &
plasticState(p)%state(1:mySizePlasticDotState,c) &
- plasticState(p)%subState0(1:mySizePlasticDotState,c) &
- ( plasticState(p)%dotState(1:mySizePlasticDotState,c) * plasticStateDamper &
+ plasticState(p)%previousDotState(1:mySizePlasticDotState,c) &
* (1.0_pReal - plasticStateDamper)) * crystallite_subdt(g,i,e)
! --- correct state with residuum ---
tempPlasticState(1:mySizePlasticDotState) = &
plasticState(p)%state(1:mySizePlasticDotState,c) &
- plasticStateResiduum(1:mySizePlasticDotState) ! need to copy to local variable, since we cant flush a pointer in openmp
! --- store corrected dotState --- (cannot do this before state update, because not sure how to flush pointers in openmp)
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * plasticStateDamper &
+ plasticState(p)%previousDotState(:,c) &
* (1.0_pReal - plasticStateDamper)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
dot_prod12 = dot_product( sourceState(p)%p(mySource)%dotState (:,c) &
- sourceState(p)%p(mySource)%previousDotState (:,c), &
sourceState(p)%p(mySource)%previousDotState (:,c) &
- sourceState(p)%p(mySource)%previousDotState2(:,c))
dot_prod22 = dot_product( sourceState(p)%p(mySource)%previousDotState (:,c) &
- sourceState(p)%p(mySource)%previousDotState2(:,c), &
sourceState(p)%p(mySource)%previousDotState (:,c) &
- sourceState(p)%p(mySource)%previousDotState2(:,c))
if ( dot_prod22 > 0.0_pReal &
.and. ( dot_prod12 < 0.0_pReal &
.or. dot_product(sourceState(p)%p(mySource)%dotState(:,c), &
sourceState(p)%p(mySource)%previousDotState(:,c)) < 0.0_pReal) ) then
sourceStateDamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else
sourceStateDamper = 1.0_pReal
endif
! --- get residui ---
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceStateResiduum(1:mySizeSourceDotState,mySource) = &
sourceState(p)%p(mySource)%state(1:mySizeSourceDotState,c) &
- sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,c) &
- ( sourceState(p)%p(mySource)%dotState(1:mySizeSourceDotState,c) * sourceStateDamper &
+ sourceState(p)%p(mySource)%previousDotState(1:mySizeSourceDotState,c) &
* (1.0_pReal - sourceStateDamper)) * crystallite_subdt(g,i,e)
! --- correct state with residuum ---
tempSourceState(1:mySizeSourceDotState,mySource) = &
sourceState(p)%p(mySource)%state(1:mySizeSourceDotState,c) &
- sourceStateResiduum(1:mySizeSourceDotState,mySource) ! need to copy to local variable, since we cant flush a pointer in openmp
! --- store corrected dotState --- (cannot do this before state update, because not sure how to flush pointers in openmp)
sourceState(p)%p(mySource)%dotState(:,c) = &
sourceState(p)%p(mySource)%dotState(:,c) * sourceStateDamper &
+ sourceState(p)%p(mySource)%previousDotState(:,c) &
* (1.0_pReal - sourceStateDamper)
enddo
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> update state at el ip g ',e,i,g
write(6,'(a,f6.1,/)') '<< CRYST >> plasticstatedamper ',plasticStatedamper
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> plastic state residuum',&
abs(plasticStateResiduum(1:mySizePlasticDotState))
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> abstol dotstate',plasticState(p)%aTolState(1:mySizePlasticDotState)
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> reltol dotstate',rTol_crystalliteState* &
abs(tempPlasticState(1:mySizePlasticDotState))
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state',tempPlasticState(1:mySizePlasticDotState)
endif
#endif
! --- converged ? ---
converged = all( abs(plasticStateResiduum(1:mySizePlasticDotState)) < &
plasticState(p)%aTolState(1:mySizePlasticDotState) &
.or. abs(plasticStateResiduum(1:mySizePlasticDotState)) < &
rTol_crystalliteState * abs(tempPlasticState(1:mySizePlasticDotState)))
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
converged = converged .and. &
all( abs(sourceStateResiduum(1:mySizeSourceDotState,mySource)) < &
sourceState(p)%p(mySource)%aTolState(1:mySizeSourceDotState) &
.or. abs(sourceStateResiduum(1:mySizeSourceDotState,mySource)) < &
rTol_crystalliteState * abs(tempSourceState(1:mySizeSourceDotState,mySource)))
enddo
if (converged) then
crystallite_converged(g,i,e) = .true. ! ... converged per definition
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(NiterationState,numerics_integrationMode) = &
debug_StateLoopDistribution(NiterationState,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
plasticState(p)%state(1:mySizePlasticDotState,c) = &
tempPlasticState(1:mySizePlasticDotState)
do mySource = 1_pInt, phase_Nsources(p)
mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState
sourceState(p)%p(mySource)%state(1:mySizeSourceDotState,c) = &
tempSourceState(1:mySizeSourceDotState,mySource)
enddo
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE JUMP ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged and still alive...
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken
crystallite_converged(g,i,e) = .false.
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), &
' grains converged after state integration #', NiterationState
! --- NON-LOCAL CONVERGENCE CHECK ---
if (.not. singleRun) then ! if not requesting Integration of just a single IP
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
endif
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), &
' grains converged after non-local check'
write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_todo(:,:,:)), &
' grains todo after state integration #', NiterationState
endif
! --- CHECK IF DONE WITH INTEGRATION ---
doneWithIntegration = .true.
elemLoop: do e = eIter(1),eIter(2)
do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
doneWithIntegration = .false.
exit elemLoop
endif
enddo; enddo
enddo elemLoop
enddo crystalliteLooping
end subroutine crystallite_integrateStateFPI
!--------------------------------------------------------------------------------------------------
!> @brief calculates a jump in the state according to the current state and the current stress
!> returns true, if state jump was successfull or not needed. false indicates NaN in delta state
!--------------------------------------------------------------------------------------------------
logical function crystallite_stateJump(ipc,ip,el)
use, intrinsic :: &
IEEE_arithmetic
use prec, only: &
dNeq0
#ifdef DEBUG
use debug, only: &
debug_e, &
debug_i, &
debug_g, &
debug_level, &
debug_crystallite, &
debug_levelExtensive, &
debug_levelSelective
#endif
use material, only: &
plasticState, &
sourceState, &
phase_Nsources, &
phaseAt, phasememberAt
use constitutive, only: &
constitutive_collectDeltaState
implicit none
integer(pInt), intent(in):: &
el, & ! element index
ip, & ! integration point index
ipc ! grain index
integer(pInt) :: &
c, &
p, &
mySource, &
myOffsetPlasticDeltaState, &
myOffsetSourceDeltaState, &
mySizePlasticDeltaState, &
mySizeSourceDeltaState
c = phasememberAt(ipc,ip,el)
p = phaseAt(ipc,ip,el)
call constitutive_collectDeltaState(crystallite_Tstar_v(1:6,ipc,ip,el), crystallite_Fe(1:3,1:3,ipc,ip,el), ipc,ip,el)
myOffsetPlasticDeltaState = plasticState(p)%offsetDeltaState
mySizePlasticDeltaState = plasticState(p)%sizeDeltaState
if( any(IEEE_is_NaN(plasticState(p)%deltaState(1:mySizePlasticDeltaState,c)))) then ! NaN occured in deltaState
crystallite_stateJump = .false.
return
endif
plasticState(p)%state(myOffsetPlasticDeltaState + 1_pInt : &
myOffsetPlasticDeltaState + mySizePlasticDeltaState,c) = &
plasticState(p)%state(myOffsetPlasticDeltaState + 1_pInt : &
myOffsetPlasticDeltaState + mySizePlasticDeltaState,c) + &
plasticState(p)%deltaState(1:mySizePlasticDeltaState,c)
do mySource = 1_pInt, phase_Nsources(p)
myOffsetSourceDeltaState = sourceState(p)%p(mySource)%offsetDeltaState
mySizeSourceDeltaState = sourceState(p)%p(mySource)%sizeDeltaState
if (any(IEEE_is_NaN(sourceState(p)%p(mySource)%deltaState(1:mySizeSourceDeltaState,c)))) then ! NaN occured in deltaState
crystallite_stateJump = .false.
return
endif
sourceState(p)%p(mySource)%state(myOffsetSourceDeltaState + 1_pInt : &
myOffsetSourceDeltaState + mySizeSourceDeltaState,c) = &
sourceState(p)%p(mySource)%state(myOffsetSourceDeltaState + 1_pInt : &
myOffsetSourceDeltaState + mySizeSourceDeltaState,c) + &
sourceState(p)%p(mySource)%deltaState(1:mySizeSourceDeltaState,c)
enddo
#ifdef DEBUG
if (any(dNeq0(plasticState(p)%deltaState(1:mySizePlasticDeltaState,c))) &
.and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3, /)') '<< CRYST >> update state at el ip ipc ',el,ip,ipc
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> deltaState', plasticState(p)%deltaState(1:mySizePlasticDeltaState,c)
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', &
plasticState(p)%state(myOffsetPlasticDeltaState + 1_pInt : &
myOffsetPlasticDeltaState + mySizePlasticDeltaState,c)
endif
#endif
crystallite_stateJump = .true.
end function crystallite_stateJump
!--------------------------------------------------------------------------------------------------
!> @brief Map 2nd order tensor to reference config
!--------------------------------------------------------------------------------------------------
function crystallite_push33ToRef(ipc,ip,el, tensor33)
use math, only: &
math_mul33x33, &
math_inv33, &
math_EulerToR
use material, only: &
material_EulerAngles
implicit none
real(pReal), dimension(3,3) :: crystallite_push33ToRef
real(pReal), dimension(3,3), intent(in) :: tensor33
real(pReal), dimension(3,3) :: T
integer(pInt), intent(in):: &
el, & ! element index
ip, & ! integration point index
ipc ! grain index
T = math_mul33x33(math_EulerToR(material_EulerAngles(1:3,ipc,ip,el)), &
transpose(math_inv33(crystallite_subF(1:3,1:3,ipc,ip,el))))
crystallite_push33ToRef = math_mul33x33(transpose(T),math_mul33x33(tensor33,T))
end function crystallite_push33ToRef
!--------------------------------------------------------------------------------------------------
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
!> intermediate acceleration of the Newton-Raphson correction
!--------------------------------------------------------------------------------------------------
logical function crystallite_integrateStress(&
ipc,& ! grain number
ip,& ! integration point number
el,& ! element number
timeFraction &
)
use, intrinsic :: &
IEEE_arithmetic
use prec, only: pLongInt, &
tol_math_check, &
dEq0
use numerics, only: nStress, &
aTol_crystalliteStress, &
rTol_crystalliteStress, &
iJacoLpresiduum, &
numerics_integrationMode, &
subStepSizeLp, &
subStepSizeLi
use debug, only: debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
#ifdef DEBUG
debug_e, &
debug_i, &
debug_g, &
#endif
debug_cumLpCalls, &
debug_cumLpTicks, &
debug_StressLoopLpDistribution, &
debug_StressLoopLiDistribution
use constitutive, only: constitutive_LpAndItsTangent, &
constitutive_LiAndItsTangent, &
constitutive_TandItsTangent
use math, only: math_mul33x33, &
math_mul33xx33, &
math_mul3333xx3333, &
math_mul66x6, &
math_mul99x99, &
math_inv33, &
math_invert, &
math_det33, &
math_I3, &
math_identity2nd, &
math_Mandel66to3333, &
math_Mandel6to33, &
math_Mandel33to6, &
math_Plain3333to99, &
math_Plain33to9, &
math_Plain9to33, &
math_Plain99to3333
#ifdef DEBUG
use mesh, only: mesh_element
#endif
implicit none
integer(pInt), intent(in):: el, & ! element index
ip, & ! integration point index
ipc ! grain index
real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep
!*** local variables ***!
real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep
Fp_current, & ! plastic deformation gradient at start of timestep
Fi_current, & ! intermediate deformation gradient at start of timestep
Fp_new, & ! plastic deformation gradient at end of timestep
Fe_new, & ! elastic deformation gradient at end of timestep
invFp_new, & ! inverse of Fp_new
Fi_new, & ! gradient of intermediate deformation stages
invFi_new, &
invFp_current, & ! inverse of Fp_current
invFi_current, & ! inverse of Fp_current
Lpguess, & ! current guess for plastic velocity gradient
Lpguess_old, & ! known last good guess for plastic velocity gradient
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
residuumLp, & ! current residuum of plastic velocity gradient
residuumLp_old, & ! last residuum of plastic velocity gradient
deltaLp, & ! direction of next guess
Liguess, & ! current guess for intermediate velocity gradient
Liguess_old, & ! known last good guess for intermediate velocity gradient
Li_constitutive, & ! intermediate velocity gradient resulting from constitutive law
residuumLi, & ! current residuum of intermediate velocity gradient
residuumLi_old, & ! last residuum of intermediate velocity gradient
deltaLi, & ! direction of next guess
Tstar, & ! 2nd Piola-Kirchhoff Stress in plastic (lattice) configuration
A, &
B, &
Fe, & ! elastic deformation gradient
temp_33
real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation
real(pReal), dimension(9):: work ! needed for matrix inversion by LAPACK
integer(pInt), dimension(9) :: ipiv ! needed for matrix inversion by LAPACK
real(pReal), dimension(9,9) :: dRLp_dLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
dRLp_dLp2, & ! working copy of dRdLp
dRLi_dLi ! partial derivative of residuumI (Jacobian for NEwton-Raphson scheme)
real(pReal), dimension(3,3,3,3):: dT_dFe3333, & ! partial derivative of 2nd Piola-Kirchhoff stress
dT_dFi3333, &
dFe_dLp3333, & ! partial derivative of elastic deformation gradient
dFe_dLi3333, &
dFi_dLi3333, &
dLp_dFi3333, &
dLi_dFi3333, &
dLp_dT3333, &
dLi_dT3333
real(pReal) detInvFi, & ! determinant of InvFi
steplengthLp, &
steplengthLi, &
dt, & ! time increment
aTolLp, &
aTolLi
integer(pInt) NiterationStressLp, & ! number of stress integrations
NiterationStressLi, & ! number of inner stress integrations
ierr, & ! error indicator for LAPACK
o, &
p, &
jacoCounterLp, &
jacoCounterLi ! counters to check for Jacobian update
integer(pLongInt) :: tick = 0_pLongInt, &
tock = 0_pLongInt, &
tickrate, &
maxticks
external :: &
dgesv
!* be pessimistic
crystallite_integrateStress = .false.
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) &
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress at el ip ipc ',el,ip,ipc
#endif
!* only integrate over fraction of timestep?
if (present(timeFraction)) then
dt = crystallite_subdt(ipc,ip,el) * timeFraction
Fg_new = crystallite_subF0(1:3,1:3,ipc,ip,el) &
+ (crystallite_subF(1:3,1:3,ipc,ip,el) - crystallite_subF0(1:3,1:3,ipc,ip,el)) * timeFraction
else
dt = crystallite_subdt(ipc,ip,el)
Fg_new = crystallite_subF(1:3,1:3,ipc,ip,el)
endif
!* feed local variables
Fp_current = crystallite_subFp0(1:3,1:3,ipc,ip,el) ! "Fp_current" is only used as temp var here...
Lpguess = crystallite_Lp (1:3,1:3,ipc,ip,el) ! ... and take it as first guess
Fi_current = crystallite_subFi0(1:3,1:3,ipc,ip,el) ! intermediate configuration, assume decomposition as F = Fe Fi Fp
Liguess = crystallite_Li (1:3,1:3,ipc,ip,el) ! ... and take it as first guess
Liguess_old = Liguess
!* inversion of Fp_current...
invFp_current = math_inv33(Fp_current)
failedInversionFp: if (all(dEq0(invFp_current))) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fp_current at el (elFE) ip ipc ',&
el,'(',mesh_element(1,el),')',ip,ipc
if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0_pInt) &
write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp_current',transpose(Fp_current(1:3,1:3))
endif
#endif
return
endif failedInversionFp
A = math_mul33x33(Fg_new,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
!* inversion of Fi_current...
invFi_current = math_inv33(Fi_current)
failedInversionFi: if (all(dEq0(invFi_current))) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fi_current at el (elFE) ip ipc ',&
el,'(',mesh_element(1,el),')',ip,ipc
if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0_pInt) &
write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp_current',transpose(Fi_current(1:3,1:3))
endif
#endif
return
endif failedInversionFi
!* start LpLoop with normal step length
NiterationStressLi = 0_pInt
jacoCounterLi = 0_pInt
steplengthLi = 1.0_pReal
residuumLi_old = 0.0_pReal
LiLoop: do
NiterationStressLi = NiterationStressLi + 1_pInt
IloopsExeced: if (NiterationStressLi > nStress) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
write(6,'(a,i3,a,i8,1x,a,i8,a,1x,i2,1x,i3,/)') '<< CRYST >> integrateStress reached inelastic loop limit',nStress, &
' at el (elFE) ip ipc ', el,'(',mesh_element(1,el),')',ip,ipc
#endif
return
endif IloopsExeced
invFi_new = math_mul33x33(invFi_current,math_I3 - dt*Liguess)
Fi_new = math_inv33(invFi_new)
detInvFi = math_det33(invFi_new)
NiterationStressLp = 0_pInt
jacoCounterLp = 0_pInt
steplengthLp = 1.0_pReal
residuumLp_old = 0.0_pReal
Lpguess_old = Lpguess
LpLoop: do ! inner stress integration loop for consistency with Fi
NiterationStressLp = NiterationStressLp + 1_pInt
loopsExeced: if (NiterationStressLp > nStress) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
write(6,'(a,i3,a,i8,1x,a,i8,a,1x,i2,1x,i3,/)') '<< CRYST >> integrateStress reached loop limit',nStress, &
' at el (elFE) ip ipc ', el,'(',mesh_element(1,el),')',ip,ipc
#endif
return
endif loopsExeced
!* calculate (elastic) 2nd Piola--Kirchhoff stress tensor and its tangent from constitutive law
B = math_I3 - dt*Lpguess
Fe = math_mul33x33(math_mul33x33(A,B), invFi_new) ! current elastic deformation tensor
call constitutive_TandItsTangent(Tstar, dT_dFe3333, dT_dFi3333, &
Fe, Fi_new, ipc, ip, el) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative in unloaded configuration
Tstar_v = math_Mandel33to6(Tstar)
!* calculate plastic velocity gradient and its tangent from constitutive law
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i3,/)') '<< CRYST >> stress iteration ', NiterationStressLp
write(6,'(a,/,3(12x,3(e20.10,1x)/))') '<< CRYST >> Lpguess', transpose(Lpguess)
write(6,'(a,/,3(12x,3(e20.10,1x)/))') '<< CRYST >> Fi', transpose(Fi_new)
write(6,'(a,/,3(12x,3(e20.10,1x)/))') '<< CRYST >> Fe', transpose(Fe)
write(6,'(a,/,6(e20.10,1x))') '<< CRYST >> Tstar', Tstar_v
endif
#endif
call constitutive_LpAndItsTangent(Lp_constitutive, dLp_dT3333, dLp_dFi3333, &
Tstar_v, Fi_new, ipc, ip, el)
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
!$OMP CRITICAL (debugTimingLpTangent)
debug_cumLpCalls = debug_cumLpCalls + 1_pInt
debug_cumLpTicks = debug_cumLpTicks + tock-tick
!$OMP FLUSH (debug_cumLpTicks)
if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks
!$OMP END CRITICAL (debugTimingLpTangent)
endif
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,/,3(12x,3(e20.10,1x)/))') '<< CRYST >> Lp_constitutive', transpose(Lp_constitutive)
endif
#endif
!* update current residuum and check for convergence of loop
aTolLp = max(rTol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
aTol_crystalliteStress) ! minimum lower cutoff
residuumLp = Lpguess - Lp_constitutive
if (any(IEEE_is_NaN(residuumLp))) then ! NaN in residuum...
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3,a)') '<< CRYST >> integrateStress encountered NaN at el (elFE) ip ipc ', &
el,'(',mesh_element(1,el),')',ip,ipc, &
' ; iteration ', NiterationStressLp,&
' >> returning..!'
#endif
return ! ...me = .false. to inform integrator about problem
elseif (norm2(residuumLp) < aTolLp) then ! converged if below absolute tolerance
exit LpLoop ! ...leave iteration loop
elseif ( NiterationStressLp == 1_pInt &
.or. norm2(residuumLp) < norm2(residuumLp_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLp_old = residuumLp ! ...remember old values and...
Lpguess_old = Lpguess
steplengthLp = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLp = subStepSizeLp * steplengthLp ! ...try with smaller step length in same direction
Lpguess = Lpguess_old + steplengthLp * deltaLp
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,1x,f7.4)') '<< CRYST >> linear search for Lpguess with step', steplengthLp
endif
#endif
cycle LpLoop
endif
!* calculate Jacobian for correction term
if (mod(jacoCounterLp, iJacoLpresiduum) == 0_pInt) then
dFe_dLp3333 = 0.0_pReal
forall(o=1_pInt:3_pInt,p=1_pInt:3_pInt) &
dFe_dLp3333(o,1:3,p,1:3) = A(o,p)*transpose(invFi_new) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
dFe_dLp3333 = - dt * dFe_dLp3333
dRLp_dLp = math_identity2nd(9_pInt) &
- math_Plain3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dT3333,dT_dFe3333),dFe_dLp3333))
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,/,9(12x,9(e12.4,1x)/))') '<< CRYST >> dLp_dT', math_Plain3333to99(dLp_dT3333)
write(6,'(a,1x,e20.10)') '<< CRYST >> dLp_dT norm', norm2(math_Plain3333to99(dLp_dT3333))
write(6,'(a,/,9(12x,9(e12.4,1x)/))') '<< CRYST >> dRLp_dLp', dRLp_dLp - math_identity2nd(9_pInt)
write(6,'(a,1x,e20.10)') '<< CRYST >> dRLp_dLp norm', norm2(dRLp_dLp - math_identity2nd(9_pInt))
endif
#endif
dRLp_dLp2 = dRLp_dLp ! will be overwritten in first call to LAPACK routine
work = math_plain33to9(residuumLp)
call dgesv(9,1,dRLp_dLp2,9,ipiv,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
if (ierr /= 0_pInt) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on dR/dLp inversion at el (elFE) ip ipc ', &
el,'(',mesh_element(1,el),')',ip,ipc
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLp',transpose(dRLp_dLp)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLp',transpose(math_Plain3333to99(dFe_dLp3333))
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFe_constitutive',transpose(math_Plain3333to99(dT_dFe3333))
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLp_dT_constitutive',transpose(math_Plain3333to99(dLp_dT3333))
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> A',transpose(A)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> B',transpose(B)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive',transpose(Lp_constitutive)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess',transpose(Lpguess)
endif
endif
#endif
return
endif
deltaLp = - math_plain9to33(work)
endif
jacoCounterLp = jacoCounterLp + 1_pInt ! increase counter for jaco update
Lpguess = Lpguess + steplengthLp * deltaLp
enddo LpLoop
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionStress)
debug_StressLoopLpDistribution(NiterationStressLp,numerics_integrationMode) = &
debug_StressLoopLpDistribution(NiterationStressLp,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionStress)
endif
!* calculate intermediate velocity gradient and its tangent from constitutive law
call constitutive_LiAndItsTangent(Li_constitutive, dLi_dT3333, dLi_dFi3333, &
Tstar_v, Fi_new, ipc, ip, el)
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Li_constitutive', transpose(Li_constitutive)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Liguess', transpose(Liguess)
endif
#endif
!* update current residuum and check for convergence of loop
aTolLi = max(rTol_crystalliteStress * max(norm2(Liguess),norm2(Li_constitutive)), & ! absolute tolerance from largest acceptable relative error
aTol_crystalliteStress) ! minimum lower cutoff
residuumLi = Liguess - Li_constitutive
if (any(IEEE_is_NaN(residuumLi))) then ! NaN in residuum...
return ! ...me = .false. to inform integrator about problem
elseif (norm2(residuumLi) < aTolLi) then ! converged if below absolute tolerance
exit LiLoop ! ...leave iteration loop
elseif ( NiterationStressLi == 1_pInt &
.or. norm2(residuumLi) < norm2(residuumLi_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLi_old = residuumLi ! ...remember old values and...
Liguess_old = Liguess
steplengthLi = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLi = subStepSizeLi * steplengthLi ! ...try with smaller step length in same direction
Liguess = Liguess_old + steplengthLi * deltaLi
cycle LiLoop
endif
!* calculate Jacobian for correction term
if (mod(jacoCounterLi, iJacoLpresiduum) == 0_pInt) then
temp_33 = math_mul33x33(math_mul33x33(A,B),invFi_current)
dFe_dLi3333 = 0.0_pReal
dFi_dLi3333 = 0.0_pReal
forall(o=1_pInt:3_pInt,p=1_pInt:3_pInt)
dFe_dLi3333(1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
dFi_dLi3333(1:3,o,1:3,p) = -dt*math_I3(o,p)*invFi_current
end forall
forall(o=1_pInt:3_pInt,p=1_pInt:3_pInt) &
dFi_dLi3333(1:3,1:3,o,p) = math_mul33x33(math_mul33x33(Fi_new,dFi_dLi3333(1:3,1:3,o,p)),Fi_new)
dRLi_dLi = math_identity2nd(9_pInt) &
- math_Plain3333to99(math_mul3333xx3333(dLi_dT3333, math_mul3333xx3333(dT_dFe3333, dFe_dLi3333) + &
math_mul3333xx3333(dT_dFi3333, dFi_dLi3333))) &
- math_Plain3333to99(math_mul3333xx3333(dLi_dFi3333, dFi_dLi3333))
work = math_plain33to9(residuumLi)
call dgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
if (ierr /= 0_pInt) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on dR/dLi inversion at el (elFE) ip ipc ', &
el,'(',mesh_element(1,el),')',ip,ipc
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLi',transpose(dRLi_dLi)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLi',transpose(math_Plain3333to99(dFe_dLi3333))
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFi_constitutive',transpose(math_Plain3333to99(dT_dFi3333))
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLi_dT_constitutive',transpose(math_Plain3333to99(dLi_dT3333))
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Li_constitutive',transpose(Li_constitutive)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Liguess',transpose(Liguess)
endif
endif
#endif
return
endif
deltaLi = - math_plain9to33(work)
endif
jacoCounterLi = jacoCounterLi + 1_pInt ! increase counter for jaco update
Liguess = Liguess + steplengthLi * deltaLi
enddo LiLoop
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionStress)
debug_StressLoopLiDistribution(NiterationStressLi,numerics_integrationMode) = &
debug_StressLoopLiDistribution(NiterationStressLi,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionStress)
endif
!* calculate new plastic and elastic deformation gradient
invFp_new = math_mul33x33(invFp_current,B)
invFp_new = invFp_new / math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det
Fp_new = math_inv33(invFp_new)
failedInversionInvFp: if (all(dEq0(Fp_new))) then
#ifdef DEBUG
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on invFp_new inversion at el (elFE) ip ipc ',&
el,'(',mesh_element(1,el),')',ip,ipc, ' ; iteration ', NiterationStressLp
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) &
write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> invFp_new',transpose(invFp_new)
endif
#endif
return
endif failedInversionInvFp
Fe_new = math_mul33x33(math_mul33x33(Fg_new,invFp_new),invFi_new) ! calc resulting Fe
!* calculate 1st Piola-Kirchhoff stress
crystallite_P(1:3,1:3,ipc,ip,el) = math_mul33x33(math_mul33x33(Fg_new,invFp_new), &
math_mul33x33(math_Mandel6to33(Tstar_v), &
transpose(invFp_new)))
!* store local values in global variables
crystallite_Lp(1:3,1:3,ipc,ip,el) = Lpguess
crystallite_Li(1:3,1:3,ipc,ip,el) = Liguess
crystallite_Tstar_v(1:6,ipc,ip,el) = Tstar_v
crystallite_Fp(1:3,1:3,ipc,ip,el) = Fp_new
crystallite_Fi(1:3,1:3,ipc,ip,el) = Fi_new
crystallite_Fe(1:3,1:3,ipc,ip,el) = Fe_new
crystallite_invFp(1:3,1:3,ipc,ip,el) = invFp_new
crystallite_invFi(1:3,1:3,ipc,ip,el) = invFi_new
!* set return flag to true
crystallite_integrateStress = .true.
#ifdef DEBUG
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> P / MPa',transpose(crystallite_P(1:3,1:3,ipc,ip,el))*1.0e-6_pReal
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Cauchy / MPa', &
math_mul33x33(crystallite_P(1:3,1:3,ipc,ip,el), transpose(Fg_new)) * 1.0e-6_pReal / math_det33(Fg_new)
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fe Lp Fe^-1', &
transpose(math_mul33x33(Fe_new, math_mul33x33(crystallite_Lp(1:3,1:3,ipc,ip,el), math_inv33(Fe_new)))) ! transpose to get correct print out order
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp',transpose(crystallite_Fp(1:3,1:3,ipc,ip,el))
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fi',transpose(crystallite_Fi(1:3,1:3,ipc,ip,el))
endif
#endif
end function crystallite_integrateStress
!--------------------------------------------------------------------------------------------------
!> @brief calculates orientations and disorientations (in case of single grain ips)
!--------------------------------------------------------------------------------------------------
subroutine crystallite_orientations
use math, only: &
math_rotationalPart33, &
math_RtoQ, &
math_qConj
use FEsolving, only: &
FEsolving_execElem, &
FEsolving_execIP
use material, only: &
material_phase, &
homogenization_Ngrains, &
plasticState
use mesh, only: &
mesh_element, &
mesh_ipNeighborhood, &
FE_NipNeighbors, &
FE_geomtype, &
FE_celltype
use lattice, only: &
lattice_qDisorientation, &
lattice_structure
use plastic_nonlocal, only: &
plastic_nonlocal_updateCompatibility
implicit none
integer(pInt) &
c, & !< counter in integration point component loop
i, & !< counter in integration point loop
e, & !< counter in element loop
n, & !< counter in neighbor loop
neighboring_e, & !< neighbor element
neighboring_i, & !< neighbor integration point
myPhase, & ! phase
neighboringPhase
real(pReal), dimension(4) :: &
orientation
! --- CALCULATE ORIENTATION AND LATTICE ROTATION ---
!$OMP PARALLEL DO PRIVATE(orientation)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do c = 1_pInt,homogenization_Ngrains(mesh_element(3,e))
! somehow this subroutine is not threadsafe, so need critical statement here; not clear, what exactly the problem is
!$OMP CRITICAL (polarDecomp)
orientation = math_RtoQ(transpose(math_rotationalPart33(crystallite_Fe(1:3,1:3,c,i,e))))
!$OMP END CRITICAL (polarDecomp)
crystallite_rotation(1:4,c,i,e) = lattice_qDisorientation(crystallite_orientation0(1:4,c,i,e), &! active rotation from initial
orientation) ! to current orientation (with no symmetry)
crystallite_orientation(1:4,c,i,e) = orientation
enddo; enddo; enddo
!$OMP END PARALLEL DO
! --- UPDATE SOME ADDITIONAL VARIABLES THAT ARE NEEDED FOR NONLOCAL MATERIAL ---
! --- we use crystallite_orientation from above, so need a separate loop
nonlocalPresent: if (any(plasticState%nonLocal)) then
!$OMP PARALLEL DO PRIVATE(myPhase,neighboring_e,neighboring_i,neighboringPhase)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
myPhase = material_phase(1,i,e) ! get my phase (non-local models make no sense with more than one grain per material point)
if (plasticState(myPhase)%nonLocal) then ! if nonlocal model
! --- calculate disorientation between me and my neighbor ---
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e)))) ! loop through my neighbors
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
if (neighboring_e > 0 .and. neighboring_i > 0) then ! if neighbor exists
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's phase
if (plasticState(neighboringPhase)%nonLocal) then ! neighbor got also nonlocal plasticity
if (lattice_structure(myPhase) == lattice_structure(neighboringPhase)) then ! if my neighbor has same crystal structure like me
crystallite_disorientation(:,n,1,i,e) = &
lattice_qDisorientation( crystallite_orientation(1:4,1,i,e), &
crystallite_orientation(1:4,1,neighboring_i,neighboring_e), &
lattice_structure(myPhase)) ! calculate disorientation for given symmetry
else ! for neighbor with different phase
crystallite_disorientation(:,n,1,i,e) = [0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal]! 180 degree rotation about 100 axis
endif
else ! for neighbor with local plasticity
crystallite_disorientation(:,n,1,i,e) = [-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal]! homomorphic identity
endif
else ! no existing neighbor
crystallite_disorientation(:,n,1,i,e) = [-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal] ! homomorphic identity
endif
enddo
! --- calculate compatibility and transmissivity between me and my neighbor ---
call plastic_nonlocal_updateCompatibility(crystallite_orientation,i,e)
endif
enddo; enddo
!$OMP END PARALLEL DO
endif nonlocalPresent
end subroutine crystallite_orientations
!--------------------------------------------------------------------------------------------------
!> @brief return results of particular grain
!--------------------------------------------------------------------------------------------------
function crystallite_postResults(ipc, ip, el)
use math, only: &
math_qToEuler, &
math_qToEulerAxisAngle, &
math_mul33x33, &
math_det33, &
math_I3, &
inDeg, &
math_Mandel6to33, &
math_qMul, &
math_qConj
use mesh, only: &
mesh_element, &
mesh_ipVolume, &
mesh_maxNipNeighbors, &
mesh_ipNeighborhood, &
FE_NipNeighbors, &
FE_geomtype, &
FE_celltype
use material, only: &
plasticState, &
sourceState, &
microstructure_crystallite, &
crystallite_Noutput, &
material_phase, &
material_texture, &
homogenization_Ngrains
use constitutive, only: &
constitutive_homogenizedC, &
constitutive_postResults
implicit none
integer(pInt), intent(in):: &
el, & !< element index
ip, & !< integration point index
ipc !< grain index
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,el))) + &
1+plasticState(material_phase(ipc,ip,el))%sizePostResults + &
sum(sourceState(material_phase(ipc,ip,el))%p(:)%sizePostResults)) :: &
crystallite_postResults
real(pReal), dimension(3,3) :: &
Ee
real(pReal), dimension(4) :: &
rotation
real(pReal) :: &
detF
integer(pInt) :: &
o, &
c, &
crystID, &
mySize, &
n
crystID = microstructure_crystallite(mesh_element(4,el))
crystallite_postResults = 0.0_pReal
c = 0_pInt
crystallite_postResults(c+1) = real(crystallite_sizePostResults(crystID),pReal) ! size of results from cryst
c = c + 1_pInt
do o = 1_pInt,crystallite_Noutput(crystID)
mySize = 0_pInt
select case(crystallite_outputID(o,crystID))
case (phase_ID)
mySize = 1_pInt
crystallite_postResults(c+1) = real(material_phase(ipc,ip,el),pReal) ! phaseID of grain
case (texture_ID)
mySize = 1_pInt
crystallite_postResults(c+1) = real(material_texture(ipc,ip,el),pReal) ! textureID of grain
case (volume_ID)
mySize = 1_pInt
detF = math_det33(crystallite_partionedF(1:3,1:3,ipc,ip,el)) ! V_current = det(F) * V_reference
crystallite_postResults(c+1) = detF * mesh_ipVolume(ip,el) &
/ real(homogenization_Ngrains(mesh_element(3,el)),pReal) ! grain volume (not fraction but absolute)
case (orientation_ID)
mySize = 4_pInt
crystallite_postResults(c+1:c+mySize) = crystallite_orientation(1:4,ipc,ip,el) ! grain orientation as quaternion
case (eulerangles_ID)
mySize = 3_pInt
crystallite_postResults(c+1:c+mySize) = inDeg &
* math_qToEuler(crystallite_orientation(1:4,ipc,ip,el)) ! grain orientation as Euler angles in degree
case (grainrotation_ID)
mySize = 4_pInt
crystallite_postResults(c+1:c+mySize) = &
math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree
case (grainrotationx_ID)
mySize = 1_pInt
rotation = math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
crystallite_postResults(c+1) = inDeg * rotation(1) * rotation(4) ! angle in degree
case (grainrotationy_ID)
mySize = 1_pInt
rotation = math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
crystallite_postResults(c+1) = inDeg * rotation(2) * rotation(4) ! angle in degree
case (grainrotationz_ID)
mySize = 1_pInt
rotation = math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
crystallite_postResults(c+1) = inDeg * rotation(3) * rotation(4) ! angle in degree
! remark: tensor output is of the form 11,12,13, 21,22,23, 31,32,33
! thus row index i is slow, while column index j is fast. reminder: "row is slow"
case (defgrad_ID)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_partionedF(1:3,1:3,ipc,ip,el)),[mySize])
case (e_ID)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = 0.5_pReal * reshape((math_mul33x33( &
transpose(crystallite_partionedF(1:3,1:3,ipc,ip,el)), &
crystallite_partionedF(1:3,1:3,ipc,ip,el)) - math_I3),[mySize])
case (fe_ID)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Fe(1:3,1:3,ipc,ip,el)),[mySize])
case (ee_ID)
Ee = 0.5_pReal *(math_mul33x33(transpose(crystallite_Fe(1:3,1:3,ipc,ip,el)), &
crystallite_Fe(1:3,1:3,ipc,ip,el)) - math_I3)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = reshape(Ee,[mySize])
case (fp_ID)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Fp(1:3,1:3,ipc,ip,el)),[mySize])
case (fi_ID)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Fi(1:3,1:3,ipc,ip,el)),[mySize])
case (lp_ID)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Lp(1:3,1:3,ipc,ip,el)),[mySize])
case (li_ID)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_Li(1:3,1:3,ipc,ip,el)),[mySize])
case (p_ID)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = &
reshape(transpose(crystallite_P(1:3,1:3,ipc,ip,el)),[mySize])
case (s_ID)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = &
reshape(math_Mandel6to33(crystallite_Tstar_v(1:6,ipc,ip,el)),[mySize])
case (elasmatrix_ID)
mySize = 36_pInt
crystallite_postResults(c+1:c+mySize) = reshape(constitutive_homogenizedC(ipc,ip,el),[mySize])
case(neighboringelement_ID)
mySize = mesh_maxNipNeighbors
crystallite_postResults(c+1:c+mySize) = 0.0_pReal
forall (n = 1_pInt:FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))) &
crystallite_postResults(c+n) = real(mesh_ipNeighborhood(1,n,ip,el),pReal)
case(neighboringip_ID)
mySize = mesh_maxNipNeighbors
crystallite_postResults(c+1:c+mySize) = 0.0_pReal
forall (n = 1_pInt:FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))) &
crystallite_postResults(c+n) = real(mesh_ipNeighborhood(2,n,ip,el),pReal)
end select
c = c + mySize
enddo
crystallite_postResults(c+1) = real(plasticState(material_phase(ipc,ip,el))%sizePostResults,pReal) ! size of constitutive results
c = c + 1_pInt
if (size(crystallite_postResults)-c > 0_pInt) &
crystallite_postResults(c+1:size(crystallite_postResults)) = &
constitutive_postResults(crystallite_Tstar_v(1:6,ipc,ip,el), crystallite_Fe, &
ipc, ip, el)
end function crystallite_postResults
end module crystallite