DAMASK_EICMD/code/mpie_spectral.f90

552 lines
24 KiB
Fortran

!* $Id$
!********************************************************************
! Material subroutine for BVP solution using spectral method
!
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts
! D.D. Tjahjanto
! C. Kords
! M. Diehl
! R. Lebensohn
!
! MPI fuer Eisenforschung, Duesseldorf
!
!********************************************************************
! Usage:
! - start program with mpie_spectral PathToMeshFile/NameOfMesh.mesh
! PathToLoadFile/NameOfLoadFile.load
! - PathToLoadFile will be the working directory
! - make sure the file "material.config" exists in the working
! directory
!********************************************************************
program mpie_spectral
!********************************************************************
use mpie_interface
use prec, only: pInt, pReal
use IO
use math
use CPFEM, only: CPFEM_general
implicit none
include 'fftw3.f' !header file for fftw3 (declaring variables) library is also needed
!variables to read in from loadcase and mesh file
real(pReal), dimension(9) :: valuevector ! stores information temporarily from loadcase file
integer(pInt), parameter :: maxNchunksInput = 24 ! 4 identifiers, 18 values for the matrices and 2 scalars
integer(pInt), dimension (1+maxNchunksInput*2) :: posInput
integer(pInt), parameter :: maxNchunksMesh = 7 ! 4 identifiers, 3 values
integer(pInt), dimension (1+2*maxNchunksMesh) :: posMesh
integer(pInt) unit, N_l, N_s, N_t, N_n ! numbers of identifiers
logical gotResolution,gotDimension,gotHomogenization
logical, dimension(9) :: bc_maskvector
character(len=1024) path, line
! variables storing information from loadcase file
integer(pInt) N_Loadcases, steps
integer(pInt), dimension(:), allocatable :: bc_steps ! number of steps
integer(pInt), dimension (3,3) :: bc_stress_i ! conversion from bc_mask
real(pReal) timeinc
real(pReal), dimension (:,:,:), allocatable :: bc_velocityGrad, &
bc_stress ! velocity gradient and stress BC
real(pReal), dimension(:), allocatable :: bc_timeIncrement ! length of increment
logical, dimension(:,:,:,:), allocatable :: bc_mask ! mask of boundary conditions
! variables storing information from mesh file
integer(pInt) homog, prodnn
real(pReal) wgt
integer(pInt), dimension(3) :: resolution
real(pReal), dimension(3) :: meshdimension
! stress etc.
real(pReal), dimension(6) :: cstress ! cauchy stress in Mandel notation
real(pReal), dimension (3,3) :: pstress ! Piola-Kirchhoff stress in Matrix notation
real(pReal), dimension (3,3,3,3) :: dPdF,c0,s0 ! ??, reference stiffnes, (reference stiffness)^-1
real(pReal), dimension(6,6) :: dsde,c066,s066 ! mandel notation
real(pReal), dimension(3,3) :: disgradmacro
real(pReal), dimension(3,3) :: cstress_av, defgrad_av, aux33
real(pReal), dimension(:,:,:,:,:), allocatable :: cstress_field, defgrad, defgradold, start
! variables storing information for spectral method
complex(pReal), dimension(:,:,:,:,:), allocatable :: workfft
complex(pReal), dimension(3,3) :: ddefgrad
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat
real(pReal), dimension(3) :: xk
real(pReal), dimension(3,3) :: xknormdyad
integer(pInt), dimension(3) :: k_s
integer*8, dimension(2) :: plan
! convergency etc.
logical errmatinv
integer(pInt) itmax, ierr
real(pReal) error, err_stress_av, err_stress_max, err_strain_av, err_strain_max
real(pReal), dimension(3,3) :: strain_err, cstress_err
! loop variables etc.
integer(pInt) i, j, k, l, m, n, p
integer(pInt) loadcase, ielem, ial, iter, calcmode
real(pReal) temperature ! not used, but needed
!gmsh
character(len=1024) :: nriter
character(len=1024) :: nrstep
!gmsh
!Initializing
bc_maskvector = ''
unit = 234_pInt
N_l = 0_pInt
N_s = 0_pInt
N_t = 0_pInt
N_n = 0_pInt
disgradmacro = .0_pReal
c0 = .0_pReal; c066 = .0_pReal
s0 = .0_pReal; s066 = .0_pReal
cstress_err = .0_pReal; strain_err = .0_pReal
cstress = .0_pReal
dsde = .0_pReal
resolution = 1_pInt; meshdimension = .0_pReal
error = 0.001_pReal
itmax = 50_pInt
temperature = 300.0_pReal
gotResolution =.false.; gotDimension =.false.; gotHomogenization = .false.
if (IargC() < 2) call IO_error(102) ! check for correct Nr. of arguments given
! Reading the loadcase file and assingn variables
path = getLoadcaseName()
print*,'Loadcase: ',trim(path)
print*,'Workingdir: ',trim(getSolverWorkingDirectoryName())
if (.not. IO_open_file(unit,path)) call IO_error(45,ext_msg = path)
rewind(unit)
do
read(unit,'(a1024)',END = 101) line
if (IO_isBlank(line)) cycle ! skip empty lines
posInput = IO_stringPos(line,maxNchunksInput)
do i = 1, maxNchunksInput, 1
select case (IO_lc(IO_stringValue(line,posInput,i)))
case('l','velocitygrad')
N_l = N_l+1
case('s','stress')
N_s = N_s+1
case('t','time','delta')
N_t = N_t+1
case('n','incs','increments','steps')
N_n = N_n+1
end select
enddo ! count all identifiers to allocate memory and do sanity check
if ((N_l /= N_s).or.(N_s /= N_t).or.(N_t /= N_n)) & ! sanity check
call IO_error(46,ext_msg = path) ! error message for incomplete input file
enddo
! allocate memory depending on lines in input file
101 N_Loadcases = N_l
allocate (bc_velocityGrad(3,3,N_Loadcases)); bc_velocityGrad = 0.0_pReal
allocate (bc_stress(3,3,N_Loadcases)); bc_stress = 0.0_pReal
allocate (bc_mask(3,3,2,N_Loadcases)); bc_mask = .false.
allocate (bc_timeIncrement(N_Loadcases)); bc_timeIncrement = 0.0_pReal
allocate (bc_steps(N_Loadcases)); bc_steps = 0_pInt
rewind(unit)
i = 0_pInt
do
read(unit,'(a1024)',END = 200) line
if (IO_isBlank(line)) cycle ! skip empty lines
i = i + 1
posInput = IO_stringPos(line,maxNchunksInput)
do j = 1,maxNchunksInput,2
select case (IO_lc(IO_stringValue(line,posInput,j)))
case('l','velocitygrad')
valuevector = 0.0_pReal
forall (k = 1:9) bc_maskvector(k) = IO_stringValue(line,posInput,j+k) /= '#'
do k = 1,9
if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line,posInput,j+k) ! assign values for the velocity gradient matrix
enddo
bc_mask(:,:,1,i) = reshape(bc_maskvector,(/3,3/))
bc_velocityGrad(:,:,i) = reshape(valuevector,(/3,3/))
case('s','stress')
valuevector = 0.0_pReal
forall (k = 1:9) bc_maskvector(k) = IO_stringValue(line,posInput,j+k) /= '#'
do k = 1,9
if (bc_maskvector(k)) valuevector(k) = IO_floatValue(line,posInput,j+k) ! assign values for the bc_stress matrix
enddo
bc_mask(:,:,2,i) = reshape(bc_maskvector,(/3,3/))
bc_stress(:,:,i) = reshape(valuevector,(/3,3/))
case('t','time','delta') ! increment time
bc_timeIncrement(i) = IO_floatValue(line,posInput,j+1)
case('n','incs','increments','steps') ! bc_steps
bc_steps(i) = IO_intValue(line,posInput,j+1)
end select
enddo; enddo
200 close(unit)
! consistency checks
do i = 1, N_Loadcases
if (any(bc_mask(:,:,1,i) == bc_mask(:,:,2,i))) &
call IO_error(47,i) ! bc_mask consistency
if (any(math_transpose3x3(bc_stress(:,:,i)) + bc_stress(:,:,i) /= 2.0_pReal * bc_stress(:,:,i))) &
call IO_error(48,i) ! bc_stress symmetry
print '(a,/,3(3(f12.6,x)/))','L',bc_velocityGrad(:,:,i)
print '(a,/,3(3(f12.6,x)/))','bc_stress',bc_stress(:,:,i)
print '(a,/,3(3(l,x)/))','bc_mask for velocitygrad',bc_mask(:,:,1,i)
print '(a,/,3(3(l,x)/))','bc_mask for stress',bc_mask(:,:,2,i)
print *,'time',bc_timeIncrement(i)
print *,'incs',bc_steps(i)
print *, ''
enddo
!read header of mesh file to get the information needed before the complete mesh file is intepretated by mesh.f90
path = getSolverJobName()
print*,'JobName: ',trim(path)
if (.not. IO_open_file(unit,trim(path)//InputFileExtension)) call IO_error(101,ext_msg = path)
rewind(unit)
do
read(unit,'(a1024)',END = 100) line
if (IO_isBlank(line)) cycle ! skip empty lines
posMesh = IO_stringPos(line,maxNchunksMesh)
select case ( IO_lc(IO_StringValue(line,posMesh,1)) )
case ('dimension')
gotDimension = .true.
do i = 2,6,2
select case (IO_lc(IO_stringValue(line,posMesh,i)))
case('x')
meshdimension(1) = IO_floatValue(line,posMesh,i+1)
case('y')
meshdimension(2) = IO_floatValue(line,posMesh,i+1)
case('z')
meshdimension(3) = IO_floatValue(line,posMesh,i+1)
end select
enddo
case ('homogenization')
gotHomogenization = .true.
homog = IO_intValue(line,posMesh,2)
case ('resolution')
gotResolution = .true.
do i = 2,6,2
select case (IO_lc(IO_stringValue(line,posMesh,i)))
case('a')
resolution(1) = 2**IO_intValue(line,posMesh,i+1)
case('b')
resolution(2) = 2**IO_intValue(line,posMesh,i+1)
case('c')
resolution(3) = 2**IO_intValue(line,posMesh,i+1)
end select
enddo
end select
if (gotDimension .and. gotHomogenization .and. gotResolution) exit
enddo
100 close(unit)
print '(a,/,i3,i3,i3)','resolution a b c', resolution
print '(a,/,f6.2,f6.2,f6.2)','dimension x y z', meshdimension
print *,'homogenization',homog
print *, ''
allocate (workfft(resolution(1),resolution(2),resolution(3),3,3)); workfft = .0_pReal
allocate (gamma_hat(3,3,3,3,resolution(1),resolution(2),resolution(3))); gamma_hat = .0_pReal
allocate (cstress_field(resolution(1),resolution(2),resolution(3),3,3)); cstress_field = .0_pReal
allocate (defgrad(3,3,resolution(1),resolution(2),resolution(3))); defgrad = .0_pReal
allocate (defgradold(3,3,resolution(1),resolution(2),resolution(3))); defgradold = .0_pReal
allocate (start(3,3,resolution(1),resolution(2),resolution(3))); start = .0_pReal
call dfftw_plan_dft_r2c_3d(plan(1),resolution(1),resolution(2),resolution(3), cstress_field(:,:,:,:,:),workfft(1:resolution(1)/2+1,:,:,:,:), FFTW_PATIENT)
call dfftw_plan_dft_3d(plan(2), resolution(1),resolution(2),resolution(3), workfft(:,:,:,:,:),workfft(:,:,:,:,:), FFTW_FORWARD, FFTW_PATIENT)
prodnn = resolution(1)*resolution(2)*resolution(3)
wgt = 1._pReal/real(prodnn, pReal)
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
defgradold(:,:,i,j,k) = math_I3 !to fit calculation of first step to calculation of following steps
defgrad(:,:,i,j,k) = math_I3 !to fit calculation of first step to calculation of following steps
ielem = ielem +1 !loop over FPs and determine elastic constants of reference material
call CPFEM_general(2,math_I3,math_I3,temperature,0.0_pReal,ielem,1_pInt,cstress,dsde, pstress, dPdF)
c066 = c066+dsde
enddo; enddo; enddo
c066 = c066*wgt
call math_invert(6,c066,s066,i,errmatinv) !i is just a dummy variable
if(errmatinv) call IO_error(45,ext_msg = "problem in c0 inversion") ! todo: change number and add message to io.f90
s0 = math_Mandel66to3333(s066)
c0 = math_Mandel66to3333(c066)
do k = 1, resolution(3)
k_s(3) = k-1
if(k > resolution(3)/2) k_s(3) = k_s(3)-resolution(3)
xk(3) = .0_pReal
if(resolution(3) > 1) xk(3) = real(k_s(3), pReal)/meshdimension(3)
do j = 1, resolution(2)
k_s(2) = j-1
if(j > resolution(2)/2) k_s(2) = k_s(2)-resolution(2)
xk(2) = real(k_s(2), pReal)/meshdimension(2)
do i = 1, resolution(1)
k_s(1) = i-1
if(i > resolution(1)/2) k_s(1) = k_s(1) -resolution(1)
xk(1) = real(k_s(1), pReal)/meshdimension(1)
xknormdyad=.0_pReal
if (any(xk /= .0_pReal)) then
do l = 1,3; do m = 1,3
xknormdyad(l,m) = xk(l)*xk(m)/(xk(1)**2+xk(2)**2+xk(3)**2)
enddo; enddo
endif
!forall loops don't work for the next 2 loop constructs!!!
aux33 = .0_pReal
do l = 1,3; do m = 1,3; do n = 1,3; do p = 1,3
aux33(l,m) = aux33(l,m)+c0(l,n,m,p)*xknormdyad(n,p)
enddo; enddo; enddo; enddo
aux33 = math_inv3x3(aux33)
do l=1,3; do m=1,3; do n=1,3; do p=1,3
gamma_hat(l,m,n,p,i,j,k) = -aux33(l,n)*xknormdyad(m,p)
enddo; enddo; enddo; enddo
enddo; enddo; enddo
! Initialization done
open(539,file='stress-strain.out')
!*************************************************************
!Loop over loadcases defined in the loadcase file
do loadcase = 1, N_Loadcases
!*************************************************************
bc_stress_i = 0_pInt !convert information about stress BC's from bc_mask in an integer-array
do m = 1,3; do n = 1,3
if(bc_mask(m,n,2,loadcase)) bc_stress_i(m,n) = 1
enddo; enddo
timeinc = bc_timeIncrement(loadcase)/bc_steps(loadcase)
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1) !no fluctuation as guess for new loadcase (last two summands will disappear)
start(:,:,i,j,k) = bc_velocityGrad(:,:,loadcase)*timeinc -defgrad(:,:,i,j,k) + defgradold(:,:,i,j,k)
enddo; enddo; enddo
!*************************************************************
! loop oper steps defined in input file for current loadcase
do steps = 1, bc_steps(loadcase)
!*************************************************************
write(*,*) '***************************************************'
write(*,*) 'STEP = ',steps
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
aux33 = defgrad(:,:,i,j,k)
defgrad(:,:,i,j,k) = 2 * defgrad(:,:,i,j,k) - defgradold(:,:,i,j,k) + start(:,:,i,j,k) ! old fluctuations as guess
defgradold(:,:,i,j,k) = aux33 ! wind forward
enddo; enddo; enddo
disgradmacro = disgradmacro + bc_velocityGrad(:,:,loadcase)*timeinc !update macroscopic displacementgradient (stores the desired BCs of defgrad)
start = .0_pReal
calcmode = 1_pInt
iter = 0_pInt
err_stress_av = 2.*error; err_strain_av = 2.*error
!*************************************************************
! convergency loop
do while((iter <= itmax).and.((err_stress_av > error).or.(err_strain_av > error)))
iter = iter+1
write(*,*) 'ITER = ',iter
!*************************************************************
err_strain_av = .0_pReal; err_stress_av = .0_pReal
err_strain_max = .0_pReal; err_stress_max = .0_pReal
cstress_av = .0_pReal; defgrad_av=.0_pReal
write(*,*) 'UPDATE STRESS FIELD'
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general(3, defgradold(:,:,i,j,k), defgrad(:,:,i,j,k),&
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
enddo; enddo; enddo
l = 0_pInt
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
call CPFEM_general(calcmode,& ! first element in first iteration retains calcMode 1, others get 2 (saves winding forward effort)
defgradold(:,:,i,j,k), defgrad(:,:,i,j,k),&
temperature,timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
calcmode = 2
aux33 = math_Mandel6to33(cstress)
do m = 1,3; do n = 1,3 ! calculate stress error
if(abs(aux33(m,n)) > 0.1 * abs(cstress_err(m,n))) then ! only stress components larger than 10% are taking under consideration
err_stress_av = err_stress_av + abs((cstress_field(i,j,k,m,n)-aux33(m,n))/aux33(m,n)) !any find maxval> leave loop
err_stress_max = max(err_stress_max, abs((cstress_field(i,j,k,m,n)-aux33(m,n))/aux33(m,n)))
l=l+1
endif
enddo; enddo
cstress_field(i,j,k,:,:) = aux33
cstress_av = cstress_av + aux33 ! average stress
enddo; enddo; enddo
err_stress_av = err_stress_av/l ! do the weighting of the error
cstress_av = cstress_av*wgt ! do the weighting of average stress
cstress_err = cstress_av
write(*,*) 'SPECTRAL METHOD TO GET CHANGE OF DEFORMATION GRADIENT FIELD'
do m = 1,3; do n = 1,3
call dfftw_execute_dft_r2c(plan(1), cstress_field(:,:,:,m,n),workfft(1:resolution(1)/2+1,:,:,m,n))
enddo; enddo
workfft=conjg(workfft)
do i = 0, resolution(1)/2-2 !unpack fft data for conj complex symmetric part. can be directly used in calculation of cstress_field
m = 1
do k = 1, resolution(3)
n = 1
do j = 1, resolution(2)
workfft(resolution(1)-i,j,k,:,:) = conjg(workfft(2+i,n,m,:,:))
if(n == 1) n = resolution(2) +1
n = n-1
enddo
if(m == 1) m = resolution(3) +1
m = m -1
enddo; enddo
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ddefgrad = .0_pReal
do m = 1,3; do n = 1,3
ddefgrad(m,n) = ddefgrad(m,n) +sum(gamma_hat(m,n,:,:,i,j,k)*workfft(i,j,k,:,:))
enddo; enddo
workfft(i,j,k,:,:) = ddefgrad(:,:)
enddo; enddo; enddo
do m = 1,3; do n = 1,3
call dfftw_execute_dft(plan(2), workfft(:,:,:,m,n), workfft(:,:,:,m,n))
defgrad(m,n,:,:,:) = defgrad(m,n,:,:,:) + real(workfft(:,:,:,m,n), pReal)*wgt
enddo; enddo
l = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
defgrad_av(:,:) = defgrad_av(:,:) + defgrad(:,:,i,j,k) ! calculate average strain
do m = 1,3; do n = 1,3 ! calculate strain error
if(abs(defgrad(m,n,i,j,k)) > 0.1 * abs(strain_err(m,n))) then
err_strain_av = err_strain_av + abs((real(workfft(i,j,k,m,n), pReal)*wgt)/defgrad(m,n,i,j,k))
err_strain_max = max(err_strain_max, abs((real(workfft(i,j,k,m,n), pReal)*wgt)/defgrad(m,n,i,j,k)))
l=l+1
endif
enddo; enddo
enddo; enddo; enddo
err_strain_av = err_strain_av/l ! weight by number of non-zero strain components
defgrad_av = defgrad_av * wgt ! weight by number of points
strain_err = defgrad_av
do m = 1,3; do n = 1,3
if(bc_mask(m,n,1,loadcase)) then !adjust defgrad to achieve displacement BC (disgradmacro)
defgrad(m,n,:,:,:) = defgrad(m,n,:,:,:) + (disgradmacro(m,n)+math_I3(m,n)-defgrad_av(m,n))
endif
if(bc_mask(m,n,2,loadcase)) then !adjust defgrad to achieve convergency in stress
defgrad(m,n,:,:,:) = defgrad(m,n,:,:,:) + sum(s0(m,n,:,:)*bc_stress_i(:,:)*(bc_stress(:,:,loadcase)-cstress_av(:,:)))
endif
enddo; enddo
write(*,*) 'STRESS FIELD ERROR AV = ',err_strain_av
write(*,*) 'STRAIN FIELD ERROR AV = ',err_stress_av
write(*,*) 'STRESS FIELD ERROR MAX = ',err_strain_max
write(*,*) 'STRAIN FIELD ERROR MAX = ',err_stress_max
enddo ! end looping when convergency is achieved
write(539,'(f12.6,a,f12.6)'),defgrad_av(3,3)-1,' ',cstress_av(3,3)
write(*,*) 'U11 U22 U33'
write(*,*) defgrad_av(1,1)-1,defgrad_av(2,2)-1,defgrad_av(3,3)-1
write(*,*) 'U11/U33'
write(*,*) (defgrad_av(1,1)-1)/(defgrad_av(3,3)-1)
write(*,*) 'S11 S22 S33'
write(*,*) cstress_av(1,1),cstress_av(2,2),cstress_av(3,3)
!gsmh output
write(nriter, *) iter
write(nrstep, *) steps
nrstep='defgrad'//trim(adjustl(nrstep))//trim(adjustl(nriter))//'_cpfem.msh'
open(589,file=nrstep)
write(589, '(A, /, A, /, A, /, A, /, I10)'), '$MeshFormat', '2.1 0 8', '$EndMeshFormat', '$Nodes', prodnn
do i = 1, prodnn
write(589, '(I10, I10, I10, I10)'), i, mod((i-1), resolution(1)) +1, mod(((i-1)/resolution(1)),&
resolution(2)) +1, mod(((i-1)/(resolution(1)*resolution(2))), resolution(3)) +1
enddo
write(589, '(A, /, A, /, I10)'), '$EndNodes', '$Elements', prodnn
do i = 1, prodnn
write(589, '(I10, A, I10)'), i, ' 15 2 1 2', i
enddo
write(589, '(A)'), '$EndElements'
write(589, '(A, /, A, /, A, /, A, /, A, /, A, /, A, /, A, /, I10)'), '$NodeData', '1',&
'"'//trim(adjustl(nrstep))//'"', '1','0.0', '3', '0', '9', prodnn
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
write(589, '(i10,f16.8,tr2,f16.8,tr2,f16.8,tr2,f16.8,tr2,f16.8,tr2,f16.8,&
tr2,f16.8,tr2,f16.8,tr2,f16.8,tr2)'), ielem, defgrad(:,:,i,j,k)
enddo; enddo; enddo
write(589, *), '$EndNodeData'
close(589)
write(nriter, *) iter
write(nrstep, *) steps
nrstep = 'stress'//trim(adjustl(nrstep))//trim(adjustl(nriter))//'_cpfem.msh'
open(589,file = nrstep)
write(589, '(A, /, A, /, A, /, A, /, I10)'), '$MeshFormat', '2.1 0 8', '$EndMeshFormat', '$Nodes', prodnn
do i = 1, prodnn
write(589, '(I10, I10, I10, I10)'), i, mod((i-1), resolution(1)) +1, mod(((i-1)/resolution(1)),&
resolution(2)) +1, mod(((i-1)/(resolution(1)*resolution(2))), resolution(3)) +1
enddo
write(589, '(A, /, A, /, I10)'), '$EndNodes', '$Elements', prodnn
do i = 1, prodnn
write(589, '(I10, A, I10)'), i, ' 15 2 1 2', i
enddo
write(589, '(A)'), '$EndElements'
write(589, '(A, /, A, /, A, /, A, /, A, /, A, /, A, /, A, /, I10)'), '$NodeData', '1',&
'"'//trim(adjustl(nrstep))//'"', '1','0.0', '3', '0', '9', prodnn
ielem = 0_pInt
do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)
ielem = ielem + 1
write(589, '(i10,f16.8,tr2,f16.8,tr2,f16.8,tr2,f16.8,tr2,f16.8,tr2,f16.8,&
tr2,f16.8,tr2,f16.8,tr2,f16.8,tr2)'), ielem, cstress_field(i,j,k,:,:)
enddo; enddo; enddo
write(589, *), '$EndNodeData'
close(589)
!end gmsh
enddo ! end loping over steps in current loadcase
enddo ! end looping over loadcases
close(539)
call dfftw_destroy_plan(plan(2))
call dfftw_destroy_plan(plan(1))
end program mpie_spectral
!********************************************************************
! quit subroutine to satisfy IO_error
!
!********************************************************************
subroutine quit(id)
use prec
implicit none
integer(pInt) id
stop
end subroutine