85735605f8
Note that mixed boundary conditions for L introduce an ambiguity. Consider: L = [[1.0, x, x], [ 0, 0, 0], [ 0, 0, 0]] P = [[x, 0, 0], [x, x, x], [x, x, x]] What we need is F^(n+1)=F_dot^(n+1) x Delta_t, where F_dot^(n+1) is F_dot^(n+1)_ij = L_ik F^n_kj. So component F_11 has contributions from L_12 and L_13. We first assume L_12=L_13=0 and then choose F^(n+1)_12 and F^(n+1)_13 to get P_12=P_13=0. This implicitly gives a solution for L_12 and L_13, which is however only one out of infinitely many. |
||
---|---|---|
PRIVATE@8fec909d19 | ||
cmake | ||
env | ||
examples | ||
img | ||
install/MarcMentat | ||
processing | ||
python | ||
src | ||
.gitattributes | ||
.gitignore | ||
.gitlab-ci.yml | ||
.gitmodules | ||
CMakeLists.txt | ||
COPYING | ||
DAMASK_prerequisites.sh | ||
LICENSE | ||
Makefile | ||
README | ||
VERSION |
README
DAMASK - The Düsseldorf Advanced Material Simulation Kit Visit damask.mpie.de for installation and usage instructions CONTACT INFORMATION Max-Planck-Institut für Eisenforschung GmbH Max-Planck-Str. 1 40237 Düsseldorf Germany damask@mpie.de https://damask.mpie.de https://magit1.mpie.de