DAMASK_EICMD/python/damask/_orientation.py

227 lines
9.5 KiB
Python

import numpy as np
from . import Lattice
from . import Rotation
class Orientation: # ToDo: make subclass of lattice and Rotation
"""
Crystallographic orientation.
A crystallographic orientation contains a rotation and a lattice.
"""
__slots__ = ['rotation','lattice']
def __repr__(self):
"""Report lattice type and orientation."""
return self.lattice.__repr__()+'\n'+self.rotation.__repr__()
def __init__(self, rotation, lattice):
"""
New orientation from rotation and lattice.
Parameters
----------
rotation : Rotation
Rotation specifying the lattice orientation.
lattice : Lattice
Lattice type of the crystal.
"""
if isinstance(lattice, Lattice):
self.lattice = lattice
else:
self.lattice = Lattice(lattice) # assume string
if isinstance(rotation, Rotation):
self.rotation = rotation
else:
self.rotation = Rotation.from_quaternion(rotation) # assume quaternion
def disorientation(self,
other,
SST = True,
symmetries = False):
"""
Disorientation between myself and given other orientation.
Rotation axis falls into SST if SST == True.
Currently requires same symmetry for both orientations.
Look into A. Heinz and P. Neumann 1991 for cases with differing sym.
"""
if self.lattice.symmetry != other.lattice.symmetry:
raise NotImplementedError('disorientation between different symmetry classes not supported yet.')
mySymEqs = self.equivalentOrientations() if SST else self.equivalentOrientations([0]) # take all or only first sym operation
otherSymEqs = other.equivalentOrientations()
for i,sA in enumerate(mySymEqs):
aInv = sA.rotation.inversed()
for j,sB in enumerate(otherSymEqs):
b = sB.rotation
r = b*aInv
for k in range(2):
r.inverse()
breaker = self.lattice.symmetry.inFZ(r.as_Rodrigues(vector=True)) \
and (not SST or other.lattice.symmetry.inDisorientationSST(r.as_Rodrigues(vector=True)))
if breaker: break
if breaker: break
if breaker: break
return (Orientation(r,self.lattice), i,j, k == 1) if symmetries else r # disorientation ...
# ... own sym, other sym,
# self-->other: True, self<--other: False
def inFZ_vec(self):
"""Check if orientations fall into Fundamental Zone."""
if not self.rotation.shape:
return self.lattice.symmetry.inFZ(self.rotation.as_Rodrigues(vector=True))
else:
return [self.lattice.symmetry.inFZ(\
self.rotation.as_Rodrigues(vector=True)[l]) for l in range(self.rotation.shape[0])]
def inFZ(self):
return self.lattice.symmetry.inFZ(self.rotation.as_Rodrigues(vector=True))
@property
def equivalent_vec(self):
"""
Return orientations which are symmetrically equivalent.
One dimension (length according to symmetrically equivalent orientations)
is added to the left of the rotation array.
"""
s = self.lattice.symmetry.symmetry_operations #24 lines (sym) x 4 columns (quat)
s = s.reshape(s.shape[:1]+(1,)*len(self.rotation.shape)+(4,)) #reshape zo (24,1,4)
s = Rotation(np.broadcast_to(s,s.shape[:1]+self.rotation.quaternion.shape))
r = np.broadcast_to(self.rotation.quaternion,s.shape[:1]+self.rotation.quaternion.shape) #(24,NumRots,4)
r = Rotation(r) #(24, NumRot)
return self.__class__(s@r,self.lattice)
def equivalentOrientations(self,members=[]):
"""List of orientations which are symmetrically equivalent."""
try:
iter(members) # asking for (even empty) list of members?
except TypeError:
return self.__class__(self.lattice.symmetry.symmetryOperations(members)*self.rotation,self.lattice) # no, return rotation object
else:
return [self.__class__(q*self.rotation,self.lattice) \
for q in self.lattice.symmetry.symmetryOperations(members)] # yes, return list of rotations
def relatedOrientations_vec(self,model):
"""List of orientations related by the given orientation relationship."""
h = self.lattice.relationOperations(model)
rot= h['rotations']
op=np.array([o.as_quaternion() for o in rot])
s = op.reshape(op.shape[:1]+(1,)*len(self.rotation.shape)+(4,))
s = Rotation(np.broadcast_to(s,s.shape[:1]+self.rotation.quaternion.shape))
r = np.broadcast_to(self.rotation.quaternion,s.shape[:1]+self.rotation.quaternion.shape)
r = Rotation(r)
return self.__class__(s@r,h['lattice'])
def relatedOrientations(self,model):
"""List of orientations related by the given orientation relationship."""
r = self.lattice.relationOperations(model)
return [self.__class__(o*self.rotation,r['lattice']) for o in r['rotations']]
@property
def reduced_vec(self):
"""Transform orientation to fall into fundamental zone according to symmetry."""
equi=self.equivalent_vec.rotation #24 x rot x 3(rodrigues vector)
r= 1 if not self.rotation.shape else equi.shape[1] #number of rotations
quat=np.empty( [r , 4])
for rot in range(r):
for sym in range(equi.shape[0]):
if self.lattice.symmetry.inFZ(equi.as_Rodrigues(vector=True)[sym,rot]) is True:
quat[rot]=equi.as_quaternion()[sym,rot]
return self.__class__(quat,self.lattice)
def reduced(self):
"""Transform orientation to fall into fundamental zone according to symmetry."""
for me in self.equivalentOrientations():
if self.lattice.symmetry.inFZ(me.rotation.as_Rodrigues(vector=True)): break
return self.__class__(me.rotation,self.lattice)
def inversePole(self,
axis,
proper = False,
SST = True):
"""Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)."""
if SST: # pole requested to be within SST
for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions
pole = o.rotation@axis # align crystal direction to axis
if self.lattice.symmetry.inSST(pole,proper): break # found SST version
else:
pole = self.rotation@axis # align crystal direction to axis
return (pole,i if SST else 0)
def IPFcolor(self,axis):
"""TSL color of inverse pole figure for given axis."""
color = np.zeros(3,'d')
for o in self.equivalentOrientations():
pole = o.rotation@axis # align crystal direction to axis
inSST,color = self.lattice.symmetry.inSST(pole,color=True)
if inSST: break
return color
def IPFcolor_vec(self,axis):
"""TSL color of inverse pole figure for given axis. Not for hex or triclinic lattices."""
eq = self.equivalent_vec
pole = eq.rotation @ np.broadcast_to(axis/np.linalg.norm(axis),eq.rotation.shape+(3,))
in_SST, color = self.lattice.symmetry.in_SST(pole,color=True)
# ignore duplicates (occur for highly symmetric orientations)
found = np.zeros_like(in_SST[1],dtype=bool)
c = np.empty(color.shape[1:])
for s in range(in_SST.shape[0]):
c = np.where(np.expand_dims(np.logical_and(in_SST[s],~found),-1),color[s],c)
found = np.logical_or(in_SST[s],found)
return c
@staticmethod
def fromAverage(orientations,
weights = []):
"""Create orientation from average of list of orientations."""
# further read: Orientation distribution analysis in deformed grains, https://doi.org/10.1107/S0021889801003077
if not all(isinstance(item, Orientation) for item in orientations):
raise TypeError("Only instances of Orientation can be averaged.")
closest = []
ref = orientations[0]
for o in orientations:
closest.append(o.equivalentOrientations(
ref.disorientation(o,
SST = False, # select (o[ther]'s) sym orientation
symmetries = True)[2]).rotation) # with lowest misorientation
return Orientation(Rotation.fromAverage(closest,weights),ref.lattice)
def average(self,other):
"""Calculate the average rotation."""
return Orientation.fromAverage([self,other])