227 lines
9.5 KiB
Python
227 lines
9.5 KiB
Python
import numpy as np
|
|
|
|
from . import Lattice
|
|
from . import Rotation
|
|
|
|
class Orientation: # ToDo: make subclass of lattice and Rotation
|
|
"""
|
|
Crystallographic orientation.
|
|
|
|
A crystallographic orientation contains a rotation and a lattice.
|
|
|
|
"""
|
|
|
|
__slots__ = ['rotation','lattice']
|
|
|
|
def __repr__(self):
|
|
"""Report lattice type and orientation."""
|
|
return self.lattice.__repr__()+'\n'+self.rotation.__repr__()
|
|
|
|
def __init__(self, rotation, lattice):
|
|
"""
|
|
New orientation from rotation and lattice.
|
|
|
|
Parameters
|
|
----------
|
|
rotation : Rotation
|
|
Rotation specifying the lattice orientation.
|
|
lattice : Lattice
|
|
Lattice type of the crystal.
|
|
|
|
"""
|
|
if isinstance(lattice, Lattice):
|
|
self.lattice = lattice
|
|
else:
|
|
self.lattice = Lattice(lattice) # assume string
|
|
|
|
if isinstance(rotation, Rotation):
|
|
self.rotation = rotation
|
|
else:
|
|
self.rotation = Rotation.from_quaternion(rotation) # assume quaternion
|
|
|
|
|
|
def disorientation(self,
|
|
other,
|
|
SST = True,
|
|
symmetries = False):
|
|
"""
|
|
Disorientation between myself and given other orientation.
|
|
|
|
Rotation axis falls into SST if SST == True.
|
|
|
|
Currently requires same symmetry for both orientations.
|
|
Look into A. Heinz and P. Neumann 1991 for cases with differing sym.
|
|
|
|
"""
|
|
if self.lattice.symmetry != other.lattice.symmetry:
|
|
raise NotImplementedError('disorientation between different symmetry classes not supported yet.')
|
|
|
|
mySymEqs = self.equivalentOrientations() if SST else self.equivalentOrientations([0]) # take all or only first sym operation
|
|
otherSymEqs = other.equivalentOrientations()
|
|
|
|
for i,sA in enumerate(mySymEqs):
|
|
aInv = sA.rotation.inversed()
|
|
for j,sB in enumerate(otherSymEqs):
|
|
b = sB.rotation
|
|
r = b*aInv
|
|
for k in range(2):
|
|
r.inverse()
|
|
breaker = self.lattice.symmetry.inFZ(r.as_Rodrigues(vector=True)) \
|
|
and (not SST or other.lattice.symmetry.inDisorientationSST(r.as_Rodrigues(vector=True)))
|
|
if breaker: break
|
|
if breaker: break
|
|
if breaker: break
|
|
|
|
return (Orientation(r,self.lattice), i,j, k == 1) if symmetries else r # disorientation ...
|
|
# ... own sym, other sym,
|
|
# self-->other: True, self<--other: False
|
|
|
|
def inFZ_vec(self):
|
|
"""Check if orientations fall into Fundamental Zone."""
|
|
if not self.rotation.shape:
|
|
return self.lattice.symmetry.inFZ(self.rotation.as_Rodrigues(vector=True))
|
|
else:
|
|
return [self.lattice.symmetry.inFZ(\
|
|
self.rotation.as_Rodrigues(vector=True)[l]) for l in range(self.rotation.shape[0])]
|
|
|
|
|
|
def inFZ(self):
|
|
return self.lattice.symmetry.inFZ(self.rotation.as_Rodrigues(vector=True))
|
|
|
|
@property
|
|
def equivalent_vec(self):
|
|
"""
|
|
Return orientations which are symmetrically equivalent.
|
|
|
|
One dimension (length according to symmetrically equivalent orientations)
|
|
is added to the left of the rotation array.
|
|
|
|
"""
|
|
s = self.lattice.symmetry.symmetry_operations #24 lines (sym) x 4 columns (quat)
|
|
s = s.reshape(s.shape[:1]+(1,)*len(self.rotation.shape)+(4,)) #reshape zo (24,1,4)
|
|
s = Rotation(np.broadcast_to(s,s.shape[:1]+self.rotation.quaternion.shape))
|
|
|
|
r = np.broadcast_to(self.rotation.quaternion,s.shape[:1]+self.rotation.quaternion.shape) #(24,NumRots,4)
|
|
r = Rotation(r) #(24, NumRot)
|
|
|
|
return self.__class__(s@r,self.lattice)
|
|
|
|
|
|
def equivalentOrientations(self,members=[]):
|
|
"""List of orientations which are symmetrically equivalent."""
|
|
try:
|
|
iter(members) # asking for (even empty) list of members?
|
|
except TypeError:
|
|
return self.__class__(self.lattice.symmetry.symmetryOperations(members)*self.rotation,self.lattice) # no, return rotation object
|
|
else:
|
|
return [self.__class__(q*self.rotation,self.lattice) \
|
|
for q in self.lattice.symmetry.symmetryOperations(members)] # yes, return list of rotations
|
|
|
|
def relatedOrientations_vec(self,model):
|
|
"""List of orientations related by the given orientation relationship."""
|
|
h = self.lattice.relationOperations(model)
|
|
rot= h['rotations']
|
|
op=np.array([o.as_quaternion() for o in rot])
|
|
|
|
s = op.reshape(op.shape[:1]+(1,)*len(self.rotation.shape)+(4,))
|
|
s = Rotation(np.broadcast_to(s,s.shape[:1]+self.rotation.quaternion.shape))
|
|
|
|
r = np.broadcast_to(self.rotation.quaternion,s.shape[:1]+self.rotation.quaternion.shape)
|
|
r = Rotation(r)
|
|
|
|
return self.__class__(s@r,h['lattice'])
|
|
|
|
|
|
def relatedOrientations(self,model):
|
|
"""List of orientations related by the given orientation relationship."""
|
|
r = self.lattice.relationOperations(model)
|
|
return [self.__class__(o*self.rotation,r['lattice']) for o in r['rotations']]
|
|
|
|
@property
|
|
def reduced_vec(self):
|
|
"""Transform orientation to fall into fundamental zone according to symmetry."""
|
|
equi=self.equivalent_vec.rotation #24 x rot x 3(rodrigues vector)
|
|
r= 1 if not self.rotation.shape else equi.shape[1] #number of rotations
|
|
quat=np.empty( [r , 4])
|
|
for rot in range(r):
|
|
for sym in range(equi.shape[0]):
|
|
if self.lattice.symmetry.inFZ(equi.as_Rodrigues(vector=True)[sym,rot]) is True:
|
|
quat[rot]=equi.as_quaternion()[sym,rot]
|
|
return self.__class__(quat,self.lattice)
|
|
|
|
|
|
|
|
def reduced(self):
|
|
"""Transform orientation to fall into fundamental zone according to symmetry."""
|
|
for me in self.equivalentOrientations():
|
|
if self.lattice.symmetry.inFZ(me.rotation.as_Rodrigues(vector=True)): break
|
|
|
|
return self.__class__(me.rotation,self.lattice)
|
|
|
|
|
|
def inversePole(self,
|
|
axis,
|
|
proper = False,
|
|
SST = True):
|
|
"""Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST)."""
|
|
if SST: # pole requested to be within SST
|
|
for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions
|
|
pole = o.rotation@axis # align crystal direction to axis
|
|
if self.lattice.symmetry.inSST(pole,proper): break # found SST version
|
|
else:
|
|
pole = self.rotation@axis # align crystal direction to axis
|
|
|
|
return (pole,i if SST else 0)
|
|
|
|
|
|
def IPFcolor(self,axis):
|
|
"""TSL color of inverse pole figure for given axis."""
|
|
color = np.zeros(3,'d')
|
|
|
|
for o in self.equivalentOrientations():
|
|
pole = o.rotation@axis # align crystal direction to axis
|
|
inSST,color = self.lattice.symmetry.inSST(pole,color=True)
|
|
if inSST: break
|
|
|
|
return color
|
|
|
|
|
|
def IPFcolor_vec(self,axis):
|
|
"""TSL color of inverse pole figure for given axis. Not for hex or triclinic lattices."""
|
|
eq = self.equivalent_vec
|
|
pole = eq.rotation @ np.broadcast_to(axis/np.linalg.norm(axis),eq.rotation.shape+(3,))
|
|
in_SST, color = self.lattice.symmetry.in_SST(pole,color=True)
|
|
|
|
# ignore duplicates (occur for highly symmetric orientations)
|
|
found = np.zeros_like(in_SST[1],dtype=bool)
|
|
c = np.empty(color.shape[1:])
|
|
for s in range(in_SST.shape[0]):
|
|
c = np.where(np.expand_dims(np.logical_and(in_SST[s],~found),-1),color[s],c)
|
|
found = np.logical_or(in_SST[s],found)
|
|
|
|
return c
|
|
|
|
|
|
@staticmethod
|
|
def fromAverage(orientations,
|
|
weights = []):
|
|
"""Create orientation from average of list of orientations."""
|
|
# further read: Orientation distribution analysis in deformed grains, https://doi.org/10.1107/S0021889801003077
|
|
if not all(isinstance(item, Orientation) for item in orientations):
|
|
raise TypeError("Only instances of Orientation can be averaged.")
|
|
|
|
closest = []
|
|
ref = orientations[0]
|
|
for o in orientations:
|
|
closest.append(o.equivalentOrientations(
|
|
ref.disorientation(o,
|
|
SST = False, # select (o[ther]'s) sym orientation
|
|
symmetries = True)[2]).rotation) # with lowest misorientation
|
|
|
|
return Orientation(Rotation.fromAverage(closest,weights),ref.lattice)
|
|
|
|
|
|
def average(self,other):
|
|
"""Calculate the average rotation."""
|
|
return Orientation.fromAverage([self,other])
|