DAMASK_EICMD/lib/damask/h5table.py

97 lines
2.9 KiB
Python

# -*- coding: UTF-8 no BOM -*-
import os
import sys
import h5py
import numpy as np
import xml.etree.cElementTree as ET
# ---------------------------------------------------------------- #
# python 3 has no unicode object, this ensures that the code works #
# on Python 2&3 #
# ---------------------------------------------------------------- #
try:
test=isinstance('test', unicode)
except(NameError):
unicode=str
# ------------------------------------------------------- #
# Singleton class for converting feature name to H5F path #
# ------------------------------------------------------- #
# NOTE:
# use simple function to mimic the singleton class in
# C++/Java
def lables_to_path(label, dsXMLPath=None):
""" read the xml definition file and return the path."""
if dsXMLPath is None:
dsXMLPath = os.path.abspath(__file__).replace("h5table.py",
"DS_HDF5.xml")
tree = ET.parse(dsXMLPath)
dataType = tree.find('{}/type'.format(label)).text
h5path = tree.find('{}/h5path'.format(label)).text
return (dataType, h5path)
# ----------------------- #
# H5Table interface class #
# ----------------------- #
class H5Table(object):
"""
DESCRIPTION
-----------
Interface class for manipulating data in HDF5 with DAMASK
specialized data structure.
PARAMETERS
----------
h5f_path: str
Absolute path the HDF5 file
METHOD
------
get_attr()
add_attr()
get_data()
add_data()
NOTE
----
1. As an interface class, it uses the lazy evaluation design
that read the data only when its absolutely necessary.
"""
def __init__(self, h5f_path):
"""
"""
self.h5f_path = h5f_path
def __del__(self, feature_name=None):
dataType, h5f_path = lables_to_path(feature_name)
h5f = h5py.File(self.h5f_path, 'a')
del h5f[h5f_path]
def get_attr(self, attr_name=None):
"""
"""
h5f = h5py.File(self.h5f_path, 'r')
def add_attr(self, ):
"""
"""
pass
def get_data(self, feature_name=None):
""" extract dataset from HDF5 table and return it in a numpy array """
dataType, h5f_path = lables_to_path(feature_name)
h5f = h5py.File(self.h5f_path, 'r')
h5f_dst = h5f[h5f_path] # get the handle for target dataset(table)
return h5f_dst.read_direct(np.zeros(h5f_dst.shape))
def add_data(self, feature_name, dataset=None):
""" adding new feature into existing HDF5 file """
dataType, h5f_path = lables_to_path(feature_name)
if dataType is not "attr":
h5f = h5py.File(self.h5f_path, 'a')
h5f.create_dataset(h5f_path, data=dataset)
else:
raise ValueError("feature {} isn't valid".format(feature_name))