DAMASK_EICMD/src/constitutive.f90

727 lines
37 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief elasticity, plasticity, internal microstructure state
!--------------------------------------------------------------------------------------------------
module constitutive
use math
use debug
use numerics
use IO
use config
use material
use results
use HDF5_utilities
use lattice
use discretization
use plastic_none
use plastic_isotropic
use plastic_phenopowerlaw
use plastic_kinehardening
use plastic_dislotwin
use plastic_disloucla
use plastic_nonlocal
use geometry_plastic_nonlocal
use source_thermal_dissipation
use source_thermal_externalheat
use source_damage_isoBrittle
use source_damage_isoDuctile
use source_damage_anisoBrittle
use source_damage_anisoDuctile
use kinematics_cleavage_opening
use kinematics_slipplane_opening
use kinematics_thermal_expansion
implicit none
private
integer, public, protected :: &
constitutive_plasticity_maxSizeDotState, &
constitutive_source_maxSizePostResults, &
constitutive_source_maxSizeDotState
public :: &
constitutive_init, &
constitutive_homogenizedC, &
constitutive_microstructure, &
constitutive_LpAndItsTangents, &
constitutive_LiAndItsTangents, &
constitutive_initialFi, &
constitutive_SandItsTangents, &
constitutive_collectDotState, &
constitutive_collectDeltaState, &
constitutive_postResults, &
constitutive_results
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates arrays pointing to array of the various constitutive modules
!--------------------------------------------------------------------------------------------------
subroutine constitutive_init
integer, parameter :: FILEUNIT = 204
integer :: &
o, & !< counter in output loop
ph, & !< counter in phase loop
s, & !< counter in source loop
ins !< instance of plasticity/source
integer, dimension(:,:), pointer :: thisSize
character(len=64), dimension(:,:), pointer :: thisOutput
character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready
logical :: knownSource
!--------------------------------------------------------------------------------------------------
! initialized plasticity
if (any(phase_plasticity == PLASTICITY_NONE_ID)) call plastic_none_init
if (any(phase_plasticity == PLASTICITY_ISOTROPIC_ID)) call plastic_isotropic_init
if (any(phase_plasticity == PLASTICITY_PHENOPOWERLAW_ID)) call plastic_phenopowerlaw_init
if (any(phase_plasticity == PLASTICITY_KINEHARDENING_ID)) call plastic_kinehardening_init
if (any(phase_plasticity == PLASTICITY_DISLOTWIN_ID)) call plastic_dislotwin_init
if (any(phase_plasticity == PLASTICITY_DISLOUCLA_ID)) call plastic_disloucla_init
if (any(phase_plasticity == PLASTICITY_NONLOCAL_ID)) then
call plastic_nonlocal_init
else
call geometry_plastic_nonlocal_disable
endif
!--------------------------------------------------------------------------------------------------
! initialize source mechanisms
if (any(phase_source == SOURCE_thermal_dissipation_ID)) call source_thermal_dissipation_init
if (any(phase_source == SOURCE_thermal_externalheat_ID)) call source_thermal_externalheat_init
if (any(phase_source == SOURCE_damage_isoBrittle_ID)) call source_damage_isoBrittle_init
if (any(phase_source == SOURCE_damage_isoDuctile_ID)) call source_damage_isoDuctile_init
if (any(phase_source == SOURCE_damage_anisoBrittle_ID)) call source_damage_anisoBrittle_init
if (any(phase_source == SOURCE_damage_anisoDuctile_ID)) call source_damage_anisoDuctile_init
!--------------------------------------------------------------------------------------------------
! initialize kinematic mechanisms
if (any(phase_kinematics == KINEMATICS_cleavage_opening_ID)) call kinematics_cleavage_opening_init
if (any(phase_kinematics == KINEMATICS_slipplane_opening_ID)) call kinematics_slipplane_opening_init
if (any(phase_kinematics == KINEMATICS_thermal_expansion_ID)) call kinematics_thermal_expansion_init
write(6,'(/,a)') ' <<<+- constitutive init -+>>>'
mainProcess: if (worldrank == 0) then
!--------------------------------------------------------------------------------------------------
! write description file for constitutive output
call IO_write_jobFile(FILEUNIT,'outputConstitutive')
PhaseLoop: do ph = 1,material_Nphase
activePhase: if (any(material_phaseAt == ph)) then
write(FILEUNIT,'(/,a,/)') '['//trim(config_name_phase(ph))//']'
SourceLoop: do s = 1, phase_Nsources(ph)
knownSource = .true. ! assume valid
sourceType: select case (phase_source(s,ph))
case (SOURCE_damage_isoBrittle_ID) sourceType
ins = source_damage_isoBrittle_instance(ph)
outputName = SOURCE_damage_isoBrittle_label
thisOutput => source_damage_isoBrittle_output
thisSize => source_damage_isoBrittle_sizePostResult
case (SOURCE_damage_isoDuctile_ID) sourceType
ins = source_damage_isoDuctile_instance(ph)
outputName = SOURCE_damage_isoDuctile_label
thisOutput => source_damage_isoDuctile_output
thisSize => source_damage_isoDuctile_sizePostResult
case (SOURCE_damage_anisoBrittle_ID) sourceType
ins = source_damage_anisoBrittle_instance(ph)
outputName = SOURCE_damage_anisoBrittle_label
thisOutput => source_damage_anisoBrittle_output
thisSize => source_damage_anisoBrittle_sizePostResult
case (SOURCE_damage_anisoDuctile_ID) sourceType
ins = source_damage_anisoDuctile_instance(ph)
outputName = SOURCE_damage_anisoDuctile_label
thisOutput => source_damage_anisoDuctile_output
thisSize => source_damage_anisoDuctile_sizePostResult
case default sourceType
knownSource = .false.
end select sourceType
if (knownSource) then
write(FILEUNIT,'(a)') '(source)'//char(9)//trim(outputName)
OutputSourceLoop: do o = 1,size(thisOutput(:,ins))
if(len_trim(thisOutput(o,ins)) > 0) &
write(FILEUNIT,'(a,i4)') trim(thisOutput(o,ins))//char(9),thisSize(o,ins)
enddo OutputSourceLoop
endif
enddo SourceLoop
endif activePhase
enddo PhaseLoop
close(FILEUNIT)
endif mainProcess
constitutive_plasticity_maxSizeDotState = 0
constitutive_source_maxSizeDotState = 0
constitutive_source_maxSizePostResults = 0
PhaseLoop2:do ph = 1,material_Nphase
!--------------------------------------------------------------------------------------------------
! partition and inititalize state
plasticState(ph)%partionedState0 = plasticState(ph)%state0
plasticState(ph)%state = plasticState(ph)%partionedState0
forall(s = 1:phase_Nsources(ph))
sourceState(ph)%p(s)%partionedState0 = sourceState(ph)%p(s)%state0
sourceState(ph)%p(s)%state = sourceState(ph)%p(s)%partionedState0
end forall
!--------------------------------------------------------------------------------------------------
! determine max size of state and output
constitutive_plasticity_maxSizeDotState = max(constitutive_plasticity_maxSizeDotState, &
plasticState(ph)%sizeDotState)
constitutive_source_maxSizeDotState = max(constitutive_source_maxSizeDotState, &
maxval(sourceState(ph)%p(:)%sizeDotState))
constitutive_source_maxSizePostResults = max(constitutive_source_maxSizePostResults, &
maxval(sourceState(ph)%p(:)%sizePostResults))
enddo PhaseLoop2
end subroutine constitutive_init
!--------------------------------------------------------------------------------------------------
!> @brief returns the homogenize elasticity matrix
!> ToDo: homogenizedC66 would be more consistent
!--------------------------------------------------------------------------------------------------
function constitutive_homogenizedC(ipc,ip,el)
real(pReal), dimension(6,6) :: constitutive_homogenizedC
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
case (PLASTICITY_DISLOTWIN_ID) plasticityType
constitutive_homogenizedC = plastic_dislotwin_homogenizedC(ipc,ip,el)
case default plasticityType
constitutive_homogenizedC = lattice_C66(1:6,1:6,material_phaseAt(ipc,el))
end select plasticityType
end function constitutive_homogenizedC
!--------------------------------------------------------------------------------------------------
!> @brief calls microstructure function of the different constitutive models
!--------------------------------------------------------------------------------------------------
subroutine constitutive_microstructure(Fe, Fp, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
Fe, & !< elastic deformation gradient
Fp !< plastic deformation gradient
integer :: &
ho, & !< homogenization
tme, & !< thermal member position
instance, of
ho = material_homogenizationAt(el)
tme = thermalMapping(ho)%p(ip,el)
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
case (PLASTICITY_DISLOTWIN_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_dislotwin_dependentState(temperature(ho)%p(tme),instance,of)
case (PLASTICITY_DISLOUCLA_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_disloUCLA_dependentState(instance,of)
case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_dependentState (Fe,Fp,ip,el)
end select plasticityType
end subroutine constitutive_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
! ToDo: Discuss wheter it makes sense if crystallite handles the configuration conversion, i.e.
! Mp in, dLp_dMp out
!--------------------------------------------------------------------------------------------------
subroutine constitutive_LpAndItsTangents(Lp, dLp_dS, dLp_dFi, &
S, Fi, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
S, & !< 2nd Piola-Kirchhoff stress
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
Lp !< plastic velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLp_dS, &
dLp_dFi !< derivative of Lp with respect to Fi
real(pReal), dimension(3,3,3,3) :: &
dLp_dMp !< derivative of Lp with respect to Mandel stress
real(pReal), dimension(3,3) :: &
Mp !< Mandel stress work conjugate with Lp
integer :: &
ho, & !< homogenization
tme !< thermal member position
integer :: &
i, j, instance, of
ho = material_homogenizationAt(el)
tme = thermalMapping(ho)%p(ip,el)
Mp = matmul(matmul(transpose(Fi),Fi),S)
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
case (PLASTICITY_NONE_ID) plasticityType
Lp = 0.0_pReal
dLp_dMp = 0.0_pReal
case (PLASTICITY_ISOTROPIC_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_isotropic_LpAndItsTangent (Lp,dLp_dMp,Mp,instance,of)
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_phenopowerlaw_LpAndItsTangent (Lp,dLp_dMp,Mp,instance,of)
case (PLASTICITY_KINEHARDENING_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_kinehardening_LpAndItsTangent (Lp,dLp_dMp, Mp,instance,of)
case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_LpAndItsTangent (Lp,dLp_dMp,Mp, &
temperature(ho)%p(tme),geometry_plastic_nonlocal_IPvolume0(ip,el),ip,el)
case (PLASTICITY_DISLOTWIN_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_dislotwin_LpAndItsTangent (Lp,dLp_dMp,Mp,temperature(ho)%p(tme),instance,of)
case (PLASTICITY_DISLOUCLA_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_disloucla_LpAndItsTangent (Lp,dLp_dMp,Mp,temperature(ho)%p(tme),instance,of)
end select plasticityType
do i=1,3; do j=1,3
dLp_dFi(i,j,1:3,1:3) = matmul(matmul(Fi,S),transpose(dLp_dMp(i,j,1:3,1:3))) + &
matmul(matmul(Fi,dLp_dMp(i,j,1:3,1:3)),S)
dLp_dS(i,j,1:3,1:3) = matmul(matmul(transpose(Fi),Fi),dLp_dMp(i,j,1:3,1:3)) ! ToDo: @PS: why not: dLp_dMp:(FiT Fi)
enddo; enddo
end subroutine constitutive_LpAndItsTangents
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
! ToDo: MD: S is Mi?
!--------------------------------------------------------------------------------------------------
subroutine constitutive_LiAndItsTangents(Li, dLi_dS, dLi_dFi, &
S, Fi, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
S !< 2nd Piola-Kirchhoff stress
real(pReal), intent(in), dimension(3,3) :: &
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
Li !< intermediate velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLi_dS, & !< derivative of Li with respect to S
dLi_dFi
real(pReal), dimension(3,3) :: &
my_Li, & !< intermediate velocity gradient
FiInv, &
temp_33
real(pReal), dimension(3,3,3,3) :: &
my_dLi_dS
real(pReal) :: &
detFi
integer :: &
k, i, j, &
instance, of
Li = 0.0_pReal
dLi_dS = 0.0_pReal
dLi_dFi = 0.0_pReal
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
case (PLASTICITY_isotropic_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_isotropic_LiAndItsTangent(my_Li, my_dLi_dS, S ,instance,of)
case default plasticityType
my_Li = 0.0_pReal
my_dLi_dS = 0.0_pReal
end select plasticityType
Li = Li + my_Li
dLi_dS = dLi_dS + my_dLi_dS
KinematicsLoop: do k = 1, phase_Nkinematics(material_phaseAt(ipc,el))
kinematicsType: select case (phase_kinematics(k,material_phaseAt(ipc,el)))
case (KINEMATICS_cleavage_opening_ID) kinematicsType
call kinematics_cleavage_opening_LiAndItsTangent(my_Li, my_dLi_dS, S, ipc, ip, el)
case (KINEMATICS_slipplane_opening_ID) kinematicsType
call kinematics_slipplane_opening_LiAndItsTangent(my_Li, my_dLi_dS, S, ipc, ip, el)
case (KINEMATICS_thermal_expansion_ID) kinematicsType
call kinematics_thermal_expansion_LiAndItsTangent(my_Li, my_dLi_dS, ipc, ip, el)
case default kinematicsType
my_Li = 0.0_pReal
my_dLi_dS = 0.0_pReal
end select kinematicsType
Li = Li + my_Li
dLi_dS = dLi_dS + my_dLi_dS
enddo KinematicsLoop
FiInv = math_inv33(Fi)
detFi = math_det33(Fi)
Li = matmul(matmul(Fi,Li),FiInv)*detFi !< push forward to intermediate configuration
temp_33 = matmul(FiInv,Li)
do i = 1,3; do j = 1,3
dLi_dS(1:3,1:3,i,j) = matmul(matmul(Fi,dLi_dS(1:3,1:3,i,j)),FiInv)*detFi
dLi_dFi(1:3,1:3,i,j) = dLi_dFi(1:3,1:3,i,j) + Li*FiInv(j,i)
dLi_dFi(1:3,i,1:3,j) = dLi_dFi(1:3,i,1:3,j) + math_I3*temp_33(j,i) + Li*FiInv(j,i)
enddo; enddo
end subroutine constitutive_LiAndItsTangents
!--------------------------------------------------------------------------------------------------
!> @brief collects initial intermediate deformation gradient
!--------------------------------------------------------------------------------------------------
pure function constitutive_initialFi(ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(3,3) :: &
constitutive_initialFi !< composite initial intermediate deformation gradient
integer :: &
k !< counter in kinematics loop
integer :: &
phase, &
homog, offset
constitutive_initialFi = math_I3
phase = material_phaseAt(ipc,el)
KinematicsLoop: do k = 1, phase_Nkinematics(phase) !< Warning: small initial strain assumption
kinematicsType: select case (phase_kinematics(k,phase))
case (KINEMATICS_thermal_expansion_ID) kinematicsType
homog = material_homogenizationAt(el)
offset = thermalMapping(homog)%p(ip,el)
constitutive_initialFi = &
constitutive_initialFi + kinematics_thermal_expansion_initialStrain(homog,phase,offset)
end select kinematicsType
enddo KinematicsLoop
end function constitutive_initialFi
!--------------------------------------------------------------------------------------------------
!> @brief returns the 2nd Piola-Kirchhoff stress tensor and its tangent with respect to
!> the elastic/intermediate deformation gradients depending on the selected elastic law
!! (so far no case switch because only Hooke is implemented)
!--------------------------------------------------------------------------------------------------
subroutine constitutive_SandItsTangents(S, dS_dFe, dS_dFi, Fe, Fi, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
Fe, & !< elastic deformation gradient
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
S !< 2nd Piola-Kirchhoff stress tensor
real(pReal), intent(out), dimension(3,3,3,3) :: &
dS_dFe, & !< derivative of 2nd P-K stress with respect to elastic deformation gradient
dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient
call constitutive_hooke_SandItsTangents(S, dS_dFe, dS_dFi, Fe, Fi, ipc, ip, el)
end subroutine constitutive_SandItsTangents
!--------------------------------------------------------------------------------------------------
!> @brief returns the 2nd Piola-Kirchhoff stress tensor and its tangent with respect to
!> the elastic and intermeidate deformation gradients using Hookes law
!--------------------------------------------------------------------------------------------------
subroutine constitutive_hooke_SandItsTangents(S, dS_dFe, dS_dFi, &
Fe, Fi, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
Fe, & !< elastic deformation gradient
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
S !< 2nd Piola-Kirchhoff stress tensor in lattice configuration
real(pReal), intent(out), dimension(3,3,3,3) :: &
dS_dFe, & !< derivative of 2nd P-K stress with respect to elastic deformation gradient
dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient
real(pReal), dimension(3,3) :: E
real(pReal), dimension(3,3,3,3) :: C
integer :: &
ho, & !< homogenization
d !< counter in degradation loop
integer :: &
i, j
ho = material_homogenizationAt(el)
C = math_66toSym3333(constitutive_homogenizedC(ipc,ip,el))
DegradationLoop: do d = 1, phase_NstiffnessDegradations(material_phaseAt(ipc,el))
degradationType: select case(phase_stiffnessDegradation(d,material_phaseAt(ipc,el)))
case (STIFFNESS_DEGRADATION_damage_ID) degradationType
C = C * damage(ho)%p(damageMapping(ho)%p(ip,el))**2
end select degradationType
enddo DegradationLoop
E = 0.5_pReal*(matmul(transpose(Fe),Fe)-math_I3) !< Green-Lagrange strain in unloaded configuration
S = math_mul3333xx33(C,matmul(matmul(transpose(Fi),E),Fi)) !< 2PK stress in lattice configuration in work conjugate with GL strain pulled back to lattice configuration
forall (i=1:3, j=1:3)
dS_dFe(i,j,1:3,1:3) = matmul(Fe,matmul(matmul(Fi,C(i,j,1:3,1:3)),transpose(Fi))) !< dS_ij/dFe_kl = C_ijmn * Fi_lm * Fi_on * Fe_ko
dS_dFi(i,j,1:3,1:3) = 2.0_pReal*matmul(matmul(E,Fi),C(i,j,1:3,1:3)) !< dS_ij/dFi_kl = C_ijln * E_km * Fe_mn
end forall
end subroutine constitutive_hooke_SandItsTangents
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine constitutive_collectDotState(S, FeArray, Fi, FpArray, subdt, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in) :: &
subdt !< timestep
real(pReal), intent(in), dimension(3,3,homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: &
FeArray, & !< elastic deformation gradient
FpArray !< plastic deformation gradient
real(pReal), intent(in), dimension(3,3) :: &
Fi !< intermediate deformation gradient
real(pReal), intent(in), dimension(3,3) :: &
S !< 2nd Piola Kirchhoff stress (vector notation)
real(pReal), dimension(3,3) :: &
Mp
integer :: &
ho, & !< homogenization
tme, & !< thermal member position
i, & !< counter in source loop
instance, of
ho = material_homogenizationAt(el)
tme = thermalMapping(ho)%p(ip,el)
Mp = matmul(matmul(transpose(Fi),Fi),S)
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
case (PLASTICITY_ISOTROPIC_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_isotropic_dotState (Mp,instance,of)
case (PLASTICITY_PHENOPOWERLAW_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_phenopowerlaw_dotState(Mp,instance,of)
case (PLASTICITY_KINEHARDENING_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_kinehardening_dotState(Mp,instance,of)
case (PLASTICITY_DISLOTWIN_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_dislotwin_dotState (Mp,temperature(ho)%p(tme),instance,of)
case (PLASTICITY_DISLOUCLA_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_disloucla_dotState (Mp,temperature(ho)%p(tme),instance,of)
case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_dotState (Mp,FeArray,FpArray,temperature(ho)%p(tme), &
subdt,ip,el)
end select plasticityType
SourceLoop: do i = 1, phase_Nsources(material_phaseAt(ipc,el))
sourceType: select case (phase_source(i,material_phaseAt(ipc,el)))
case (SOURCE_damage_anisoBrittle_ID) sourceType
call source_damage_anisoBrittle_dotState (S, ipc, ip, el) !< correct stress?
case (SOURCE_damage_isoDuctile_ID) sourceType
call source_damage_isoDuctile_dotState ( ipc, ip, el)
case (SOURCE_damage_anisoDuctile_ID) sourceType
call source_damage_anisoDuctile_dotState ( ipc, ip, el)
case (SOURCE_thermal_externalheat_ID) sourceType
of = material_phasememberAt(ipc,ip,el)
call source_thermal_externalheat_dotState(material_phaseAt(ipc,el),of)
end select sourceType
enddo SourceLoop
end subroutine constitutive_collectDotState
!--------------------------------------------------------------------------------------------------
!> @brief for constitutive models having an instantaneous change of state
!> will return false if delta state is not needed/supported by the constitutive model
!--------------------------------------------------------------------------------------------------
subroutine constitutive_collectDeltaState(S, Fe, Fi, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), intent(in), dimension(3,3) :: &
S, & !< 2nd Piola Kirchhoff stress
Fe, & !< elastic deformation gradient
Fi !< intermediate deformation gradient
real(pReal), dimension(3,3) :: &
Mp
integer :: &
i, &
instance, of
Mp = matmul(matmul(transpose(Fi),Fi),S)
plasticityType: select case (phase_plasticity(material_phaseAt(ipc,el)))
case (PLASTICITY_KINEHARDENING_ID) plasticityType
of = material_phasememberAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phaseAt(ipc,el))
call plastic_kinehardening_deltaState(Mp,instance,of)
case (PLASTICITY_NONLOCAL_ID) plasticityType
call plastic_nonlocal_deltaState(Mp,ip,el)
end select plasticityType
sourceLoop: do i = 1, phase_Nsources(material_phaseAt(ipc,el))
sourceType: select case (phase_source(i,material_phaseAt(ipc,el)))
case (SOURCE_damage_isoBrittle_ID) sourceType
call source_damage_isoBrittle_deltaState (constitutive_homogenizedC(ipc,ip,el), Fe, &
ipc, ip, el)
end select sourceType
enddo SourceLoop
end subroutine constitutive_collectDeltaState
!--------------------------------------------------------------------------------------------------
!> @brief returns array of constitutive results
!--------------------------------------------------------------------------------------------------
function constitutive_postResults(S, Fi, ipc, ip, el)
integer, intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(sum(sourceState(material_phaseAt(ipc,el))%p(:)%sizePostResults)) :: &
constitutive_postResults
real(pReal), intent(in), dimension(3,3) :: &
Fi !< intermediate deformation gradient
real(pReal), intent(in), dimension(3,3) :: &
S !< 2nd Piola Kirchhoff stress
integer :: &
startPos, endPos
integer :: &
i, of, instance !< counter in source loop
constitutive_postResults = 0.0_pReal
endPos = 0
SourceLoop: do i = 1, phase_Nsources(material_phaseAt(ipc,el))
startPos = endPos + 1
endPos = endPos + sourceState(material_phaseAt(ipc,el))%p(i)%sizePostResults
of = material_phasememberAt(ipc,ip,el)
sourceType: select case (phase_source(i,material_phaseAt(ipc,el)))
case (SOURCE_damage_isoBrittle_ID) sourceType
constitutive_postResults(startPos:endPos) = source_damage_isoBrittle_postResults(material_phaseAt(ipc,el),of)
case (SOURCE_damage_isoDuctile_ID) sourceType
constitutive_postResults(startPos:endPos) = source_damage_isoDuctile_postResults(material_phaseAt(ipc,el),of)
case (SOURCE_damage_anisoBrittle_ID) sourceType
constitutive_postResults(startPos:endPos) = source_damage_anisoBrittle_postResults(material_phaseAt(ipc,el),of)
case (SOURCE_damage_anisoDuctile_ID) sourceType
constitutive_postResults(startPos:endPos) = source_damage_anisoDuctile_postResults(material_phaseAt(ipc,el),of)
end select sourceType
enddo SourceLoop
end function constitutive_postResults
!--------------------------------------------------------------------------------------------------
!> @brief writes constitutive results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine constitutive_results
#if defined(PETSc) || defined(DAMASK_HDF5)
integer :: p
character(len=256) :: group
do p=1,size(config_name_phase)
group = trim('current/constituent')//'/'//trim(config_name_phase(p))
call HDF5_closeGroup(results_addGroup(group))
group = trim(group)//'/plastic'
call HDF5_closeGroup(results_addGroup(group))
select case(phase_plasticity(p))
case(PLASTICITY_ISOTROPIC_ID)
call plastic_isotropic_results(phase_plasticityInstance(p),group)
case(PLASTICITY_PHENOPOWERLAW_ID)
call plastic_phenopowerlaw_results(phase_plasticityInstance(p),group)
case(PLASTICITY_KINEHARDENING_ID)
call plastic_kinehardening_results(phase_plasticityInstance(p),group)
case(PLASTICITY_DISLOTWIN_ID)
call plastic_dislotwin_results(phase_plasticityInstance(p),group)
case(PLASTICITY_DISLOUCLA_ID)
call plastic_disloUCLA_results(phase_plasticityInstance(p),group)
case(PLASTICITY_NONLOCAL_ID)
call plastic_nonlocal_results(phase_plasticityInstance(p),group)
end select
enddo
#endif
end subroutine constitutive_results
end module constitutive