1320 lines
62 KiB
Fortran
1320 lines
62 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
! $Id$
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
|
|
!--------------------------------------------------------------------------------------------------
|
|
module homogenization
|
|
use prec, only: &
|
|
pInt, &
|
|
pReal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! General variables for the homogenization at a material point
|
|
implicit none
|
|
private
|
|
real(pReal), dimension(:,:,:,:), allocatable, public :: &
|
|
materialpoint_F0, & !< def grad of IP at start of FE increment
|
|
materialpoint_F, & !< def grad of IP to be reached at end of FE increment
|
|
materialpoint_P !< first P--K stress of IP
|
|
real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: &
|
|
materialpoint_dPdF !< tangent of first P--K stress at IP
|
|
real(pReal), dimension(:,:,:), allocatable, public :: &
|
|
materialpoint_results !< results array of material point
|
|
integer(pInt), public, protected :: &
|
|
materialpoint_sizeResults, &
|
|
homogenization_maxSizePostResults, &
|
|
field_maxSizePostResults
|
|
real(pReal), dimension(:,:), allocatable, public, protected :: &
|
|
materialpoint_heat
|
|
|
|
real(pReal), dimension(:,:,:,:), allocatable, private :: &
|
|
materialpoint_subF0, & !< def grad of IP at beginning of homogenization increment
|
|
materialpoint_subF !< def grad of IP to be reached at end of homog inc
|
|
real(pReal), dimension(:,:), allocatable, private :: &
|
|
materialpoint_subFrac, &
|
|
materialpoint_subStep, &
|
|
materialpoint_subdt
|
|
integer(pInt), private :: &
|
|
homogenization_maxSizeState
|
|
logical, dimension(:,:), allocatable, private :: &
|
|
materialpoint_requested, &
|
|
materialpoint_converged
|
|
logical, dimension(:,:,:), allocatable, private :: &
|
|
materialpoint_doneAndHappy
|
|
enum, bind(c)
|
|
enumerator :: undefined_ID, &
|
|
temperature_ID, &
|
|
damage_ID
|
|
end enum
|
|
integer(pInt), dimension(:), allocatable, private, protected :: &
|
|
field_sizePostResults
|
|
integer(pInt), dimension(:,:), allocatable, private :: &
|
|
field_sizePostResult
|
|
|
|
character(len=64), dimension(:,:), allocatable, private :: &
|
|
field_output !< name of each post result output
|
|
integer(pInt), dimension(:), allocatable, private :: &
|
|
field_Noutput !< number of outputs per homog instance
|
|
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
|
|
field_outputID !< ID of each post result output
|
|
|
|
public :: &
|
|
homogenization_init, &
|
|
materialpoint_stressAndItsTangent, &
|
|
field_getDAMAGE, &
|
|
field_putDAMAGE, &
|
|
field_getThermal, &
|
|
field_putThermal, &
|
|
field_getDamageMobility, &
|
|
field_getDamageDiffusion33, &
|
|
field_getThermalConductivity33, &
|
|
field_getMassDensity, &
|
|
field_getSpecificHeat, &
|
|
materialpoint_postResults, &
|
|
field_postResults
|
|
private :: &
|
|
homogenization_partitionDeformation, &
|
|
homogenization_updateState, &
|
|
homogenization_averageStressAndItsTangent, &
|
|
homogenization_averageHeat, &
|
|
homogenization_postResults
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief module initialization
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine homogenization_init()
|
|
#ifdef HDF
|
|
use hdf5, only: &
|
|
HID_T
|
|
use IO, only : &
|
|
HDF5_mappingHomogenization
|
|
#endif
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
|
use math, only: &
|
|
math_I3
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_homogenization, &
|
|
debug_levelBasic, &
|
|
debug_e, &
|
|
debug_g
|
|
use mesh, only: &
|
|
mesh_maxNips, &
|
|
mesh_NcpElems, &
|
|
mesh_element, &
|
|
FE_Nips, &
|
|
FE_geomtype
|
|
use lattice, only: &
|
|
lattice_referenceTemperature
|
|
use constitutive, only: &
|
|
constitutive_maxSizePostResults, &
|
|
constitutive_damage_maxSizePostResults, &
|
|
constitutive_thermal_maxSizePostResults
|
|
use crystallite, only: &
|
|
crystallite_maxSizePostResults
|
|
use material
|
|
use homogenization_none
|
|
use homogenization_isostrain
|
|
use homogenization_RGC
|
|
use IO
|
|
|
|
implicit none
|
|
integer(pInt), parameter :: FILEUNIT = 200_pInt
|
|
integer(pInt) :: e,i,p,myInstance
|
|
integer(pInt), dimension(:,:), pointer :: thisSize
|
|
integer(pInt), dimension(:) , pointer :: thisNoutput
|
|
character(len=64), dimension(:,:), pointer :: thisOutput
|
|
character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready
|
|
logical :: knownHomogenization
|
|
#ifdef HDF
|
|
integer(pInt), dimension(:,:), allocatable :: mapping
|
|
integer(pInt), dimension(:), allocatable :: InstancePosition
|
|
allocate(mapping(mesh_ncpelems,4),source=0_pInt)
|
|
allocate(InstancePosition(material_Nhomogenization),source=0_pInt)
|
|
#endif
|
|
integer(pInt), parameter :: MAXNCHUNKS = 2_pInt
|
|
integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions
|
|
integer(pInt) :: section = 0_pInt
|
|
character(len=65536) :: &
|
|
tag = '', &
|
|
line = ''
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parse homogenization from config file
|
|
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
|
|
call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file
|
|
if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) &
|
|
call homogenization_none_init()
|
|
if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) &
|
|
call homogenization_isostrain_init(FILEUNIT)
|
|
if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) &
|
|
call homogenization_RGC_init(FILEUNIT)
|
|
close(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! parse field from config file
|
|
allocate(field_sizePostResults(material_Nhomogenization), source=0_pInt)
|
|
allocate(field_sizePostResult(maxval(homogenization_Noutput),material_Nhomogenization), &
|
|
source=0_pInt)
|
|
allocate(field_Noutput(material_Nhomogenization), source=0_pInt)
|
|
allocate(field_outputID(maxval(homogenization_Noutput),material_Nhomogenization), &
|
|
source=undefined_ID)
|
|
allocate(field_output(maxval(homogenization_Noutput),material_Nhomogenization))
|
|
field_output = ''
|
|
|
|
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
|
|
call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file
|
|
rewind(FILEUNIT)
|
|
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
|
|
line = IO_read(FILEUNIT)
|
|
enddo
|
|
|
|
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homogenization part
|
|
line = IO_read(FILEUNIT)
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
|
|
line = IO_read(FILEUNIT, .true.) ! reset IO_read
|
|
exit
|
|
endif
|
|
if (IO_getTag(line,'[',']') /= '') then ! next section
|
|
section = section + 1_pInt
|
|
cycle
|
|
endif
|
|
if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran
|
|
positions = IO_stringPos(line,MAXNCHUNKS)
|
|
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
|
|
select case(tag)
|
|
case ('(output)')
|
|
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
|
|
case('temperature')
|
|
field_Noutput(section) = field_Noutput(section) + 1_pInt
|
|
field_outputID(field_Noutput(section),section) = temperature_ID
|
|
field_sizePostResult(field_Noutput(section),section) = 1_pInt
|
|
field_sizePostResults(section) = field_sizePostResults(section) + 1_pInt
|
|
field_output(field_Noutput(section),section) = IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case('damage')
|
|
field_Noutput(section) = field_Noutput(section) + 1_pInt
|
|
field_outputID(field_Noutput(section),section) = damage_ID
|
|
field_sizePostResult(field_Noutput(section),section) = 1_pInt
|
|
field_sizePostResults(section) = field_sizePostResults(section) + 1_pInt
|
|
field_output(field_Noutput(section),section) = IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
|
|
end select
|
|
|
|
end select
|
|
endif
|
|
enddo parsingFile
|
|
close(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! write description file for homogenization output
|
|
call IO_write_jobFile(FILEUNIT,'outputHomogenization')
|
|
do p = 1,material_Nhomogenization
|
|
i = homogenization_typeInstance(p) ! which instance of this homogenization type
|
|
knownHomogenization = .true. ! assume valid
|
|
select case(homogenization_type(p)) ! split per homogenization type
|
|
case (HOMOGENIZATION_NONE_ID)
|
|
outputName = HOMOGENIZATION_NONE_label
|
|
thisNoutput => null()
|
|
thisOutput => null()
|
|
thisSize => null()
|
|
case (HOMOGENIZATION_ISOSTRAIN_ID)
|
|
outputName = HOMOGENIZATION_ISOSTRAIN_label
|
|
thisNoutput => homogenization_isostrain_Noutput
|
|
thisOutput => homogenization_isostrain_output
|
|
thisSize => homogenization_isostrain_sizePostResult
|
|
case (HOMOGENIZATION_RGC_ID)
|
|
outputName = HOMOGENIZATION_RGC_label
|
|
thisNoutput => homogenization_RGC_Noutput
|
|
thisOutput => homogenization_RGC_output
|
|
thisSize => homogenization_RGC_sizePostResult
|
|
case default
|
|
knownHomogenization = .false.
|
|
end select
|
|
write(FILEUNIT,'(/,a,/)') '['//trim(homogenization_name(p))//']'
|
|
if (knownHomogenization) then
|
|
write(FILEUNIT,'(a)') '(type)'//char(9)//trim(outputName)
|
|
write(FILEUNIT,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p)
|
|
do e = 1,thisNoutput(i)
|
|
write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
|
|
enddo
|
|
endif
|
|
#ifdef multiphysicsOut
|
|
write(FILEUNIT,'(a)') '(field)'
|
|
do e = 1_pInt,field_Noutput(p)
|
|
write(FILEUNIT,'(a,i4)') trim(field_output(e,p))//char(9),field_sizePostResult(e,p)
|
|
enddo
|
|
#endif
|
|
enddo
|
|
close(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocate and initialize global variables
|
|
allocate(materialpoint_heat(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
materialpoint_F0 = spread(spread(math_I3,3,mesh_maxNips),4,mesh_NcpElems) ! initialize to identity
|
|
allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
materialpoint_F = materialpoint_F0 ! initialize to identity
|
|
allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems), source=.false.)
|
|
allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems), source=.true.)
|
|
allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems), source=.true.)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! allocate and initialize global state and postresutls variables
|
|
elementLooping: do e = 1,mesh_NcpElems
|
|
myInstance = homogenization_typeInstance(mesh_element(3,e))
|
|
IpLooping: do i = 1,FE_Nips(FE_geomtype(mesh_element(2,e)))
|
|
#ifdef HDF
|
|
InstancePosition(myInstance) = InstancePosition(myInstance)+1_pInt
|
|
mapping(e,1:4) = [instancePosition(myinstance),myinstance,e,i]
|
|
#endif
|
|
enddo IpLooping
|
|
enddo elementLooping
|
|
#ifdef HDF
|
|
call HDF5_mappingHomogenization(mapping)
|
|
#endif
|
|
|
|
homogenization_maxSizePostResults = 0_pInt
|
|
field_maxSizePostResults = 0_pInt
|
|
do p = 1,material_Nhomogenization
|
|
homogenization_maxSizePostResults = max(homogenization_maxSizePostResults,homogState(p)%sizePostResults)
|
|
field_maxSizePostResults = max(field_maxSizePostResults,field_Noutput(p))
|
|
enddo
|
|
materialpoint_sizeResults = 1 & ! grain count
|
|
+ 1 + homogenization_maxSizePostResults & ! homogSize & homogResult
|
|
#ifdef multiphysicsOut
|
|
+ 1 + field_maxSizePostResults & ! field size & field result
|
|
#endif
|
|
+ homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results
|
|
#ifdef multiphysicsOut
|
|
+ 1 + constitutive_damage_maxSizePostResults &
|
|
+ 1 + constitutive_thermal_maxSizePostResults &
|
|
#endif
|
|
+ 1 + constitutive_maxSizePostResults) ! constitutive size & constitutive results
|
|
allocate(materialpoint_results(materialpoint_sizeResults,mesh_maxNips,mesh_NcpElems))
|
|
|
|
write(6,'(/,a)') ' <<<+- homogenization init -+>>>'
|
|
write(6,'(a)') ' $Id$'
|
|
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
|
#include "compilation_info.f90"
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
#ifdef TODO
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state0: ', shape(homogenization_state0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_subState0: ', shape(homogenization_subState0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'homogenization_state: ', shape(homogenization_state)
|
|
#endif
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F0: ', shape(materialpoint_F0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F: ', shape(materialpoint_F)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF0: ', shape(materialpoint_subF0)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF: ', shape(materialpoint_subF)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_P: ', shape(materialpoint_P)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_heat: ', shape(materialpoint_heat)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subStep: ', shape(materialpoint_subStep)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subdt: ', shape(materialpoint_subdt)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested)
|
|
write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged)
|
|
write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
|
|
write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_results: ', shape(materialpoint_results)
|
|
write(6,'(a32,1x,7(i8,1x))') 'maxSizePostResults: ', homogenization_maxSizePostResults
|
|
endif
|
|
flush(6)
|
|
|
|
if (debug_g < 1 .or. debug_g > homogenization_Ngrains(mesh_element(3,debug_e))) &
|
|
call IO_error(602_pInt,ext_msg='component (grain)')
|
|
|
|
end subroutine homogenization_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief parallelized calculation of stress and corresponding tangent at material points
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
|
|
use numerics, only: &
|
|
subStepMinHomog, &
|
|
subStepSizeHomog, &
|
|
stepIncreaseHomog, &
|
|
nHomog, &
|
|
nMPstate
|
|
use math, only: &
|
|
math_transpose33
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP, &
|
|
terminallyIll
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
plasticState, &
|
|
damageState, &
|
|
thermalState, &
|
|
homogState, &
|
|
mappingHomogenization, &
|
|
mappingConstitutive, &
|
|
homogenization_Ngrains
|
|
|
|
|
|
use crystallite, only: &
|
|
crystallite_heat, &
|
|
crystallite_F0, &
|
|
crystallite_Fp0, &
|
|
crystallite_Fp, &
|
|
crystallite_Lp0, &
|
|
crystallite_Lp, &
|
|
crystallite_dPdF, &
|
|
crystallite_dPdF0, &
|
|
crystallite_Tstar0_v, &
|
|
crystallite_Tstar_v, &
|
|
crystallite_partionedF0, &
|
|
crystallite_partionedF, &
|
|
crystallite_partionedFp0, &
|
|
crystallite_partionedLp0, &
|
|
crystallite_partioneddPdF0, &
|
|
crystallite_partionedTstar0_v, &
|
|
crystallite_dt, &
|
|
crystallite_requested, &
|
|
crystallite_converged, &
|
|
crystallite_stressAndItsTangent, &
|
|
crystallite_orientations
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_homogenization, &
|
|
debug_levelBasic, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_MaterialpointLoopDistribution, &
|
|
debug_MaterialpointStateLoopDistribution
|
|
use math, only: &
|
|
math_pDecomposition
|
|
|
|
implicit none
|
|
real(pReal), intent(in) :: dt !< time increment
|
|
logical, intent(in) :: updateJaco !< initiating Jacobian update
|
|
integer(pInt) :: &
|
|
NiterationHomog, &
|
|
NiterationMPstate, &
|
|
g, & !< grain number
|
|
i, & !< integration point number
|
|
e, & !< element number
|
|
myNgrains
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize to starting condition
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i
|
|
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', &
|
|
math_transpose33(materialpoint_F0(1:3,1:3,debug_i,debug_e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', &
|
|
math_transpose33(materialpoint_F(1:3,1:3,debug_i,debug_e))
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize restoration points of ...
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
|
|
|
|
plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%state0( :,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%state0( :,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%state0( :,mappingConstitutive(1,g,i,e))
|
|
|
|
crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e) ! ...plastic def grads
|
|
crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e) ! ...plastic velocity grads
|
|
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness
|
|
crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e) ! ...def grads
|
|
crystallite_partionedTstar0_v(1:6,g,i,e) = crystallite_Tstar0_v(1:6,g,i,e) ! ...2nd PK stress
|
|
|
|
endforall
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e))
|
|
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) ! ...def grad
|
|
materialpoint_subFrac(i,e) = 0.0_pReal
|
|
materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <<added to adopt flexibility in cutback size>>
|
|
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
|
|
materialpoint_requested(i,e) = .true. ! everybody requires calculation
|
|
endforall
|
|
forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
homogState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal homogenization state
|
|
enddo
|
|
NiterationHomog = 0_pInt
|
|
|
|
cutBackLooping: do while (.not. terminallyIll .and. &
|
|
any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog))
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
IpLooping1: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
|
|
converged: if ( materialpoint_converged(i,e) ) then
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i) &
|
|
.or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', &
|
|
materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', &
|
|
materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i
|
|
endif
|
|
#endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate new subStep and new subFrac
|
|
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
|
|
!$OMP FLUSH(materialpoint_subFrac)
|
|
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), &
|
|
stepIncreaseHomog*materialpoint_subStep(i,e)) ! introduce flexibility for step increase/acceleration
|
|
!$OMP FLUSH(materialpoint_subStep)
|
|
|
|
steppingNeeded: if (materialpoint_subStep(i,e) > subStepMinHomog) then
|
|
|
|
! wind forward grain starting point of...
|
|
crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads
|
|
crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
|
|
crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e)! ...stiffness
|
|
crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
|
|
forall (g = 1:myNgrains)
|
|
plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
end forall
|
|
if (homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
|
|
homogState(mappingHomogenization(2,i,e))%state( :,mappingHomogenization(1,i,e))
|
|
materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) ! ...def grad
|
|
!$OMP FLUSH(materialpoint_subF0)
|
|
elseif (materialpoint_requested(i,e)) then steppingNeeded ! already at final time (??)
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionHomog)
|
|
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = &
|
|
debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1
|
|
!$OMP END CRITICAL (distributionHomog)
|
|
endif
|
|
endif steppingNeeded
|
|
|
|
else converged
|
|
if ( (myNgrains == 1_pInt .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
|
|
subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep
|
|
! cutback makes no sense
|
|
!$OMP FLUSH(terminallyIll)
|
|
if (.not. terminallyIll) then ! so first signals terminally ill...
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
!$OMP CRITICAL (setTerminallyIll)
|
|
terminallyIll = .true. ! ...and kills all others
|
|
!$OMP END CRITICAL (setTerminallyIll)
|
|
else ! cutback makes sense
|
|
materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback
|
|
!$OMP FLUSH(materialpoint_subStep)
|
|
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i) &
|
|
.or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,1x,f12.8,a,i8,1x,i2/)') &
|
|
'<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',&
|
|
materialpoint_subStep(i,e),' at el ip',e,i
|
|
endif
|
|
#endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! restore...
|
|
crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads
|
|
crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
|
|
crystallite_Tstar_v(1:6,1:myNgrains,i,e) = crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress
|
|
forall (g = 1:myNgrains)
|
|
plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
|
|
end forall
|
|
if (homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
|
|
homogState(mappingHomogenization(2,i,e))%state( :,mappingHomogenization(1,i,e)) = &
|
|
homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e))
|
|
endif
|
|
endif converged
|
|
|
|
if (materialpoint_subStep(i,e) > subStepMinHomog) then
|
|
materialpoint_requested(i,e) = .true.
|
|
materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) + &
|
|
materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) - materialpoint_F0(1:3,1:3,i,e))
|
|
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
|
|
materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.]
|
|
endif
|
|
enddo IpLooping1
|
|
enddo elementLooping1
|
|
!$OMP END PARALLEL DO
|
|
|
|
NiterationMPstate = 0_pInt
|
|
|
|
convergenceLooping: do while (.not. terminallyIll .and. &
|
|
any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
|
|
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
|
|
) .and. &
|
|
NiterationMPstate < nMPstate)
|
|
NiterationMPstate = NiterationMPstate + 1
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! deformation partitioning
|
|
! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state,
|
|
! results in crystallite_partionedF
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
IpLooping2: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if ( materialpoint_requested(i,e) .and. & ! process requested but...
|
|
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points
|
|
call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents
|
|
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains
|
|
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
|
|
else
|
|
crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore
|
|
endif
|
|
enddo IpLooping2
|
|
enddo elementLooping2
|
|
!$OMP END PARALLEL DO
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! crystallite integration
|
|
! based on crystallite_partionedF0,.._partionedF
|
|
! incrementing by crystallite_dt
|
|
call crystallite_stressAndItsTangent(updateJaco) ! request stress and tangent calculation for constituent grains
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! state update
|
|
!$OMP PARALLEL DO
|
|
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
IpLooping3: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if ( materialpoint_requested(i,e) .and. &
|
|
.not. materialpoint_doneAndHappy(1,i,e)) then
|
|
if (.not. all(crystallite_converged(:,i,e))) then
|
|
materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.]
|
|
materialpoint_converged(i,e) = .false.
|
|
else
|
|
materialpoint_doneAndHappy(1:2,i,e) = homogenization_updateState(i,e)
|
|
materialpoint_converged(i,e) = all(homogenization_updateState(i,e)) ! converged if done and happy
|
|
endif
|
|
!$OMP FLUSH(materialpoint_converged)
|
|
if (materialpoint_converged(i,e)) then
|
|
if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionMPState)
|
|
debug_MaterialpointStateLoopdistribution(NiterationMPstate) = &
|
|
debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1_pInt
|
|
!$OMP END CRITICAL (distributionMPState)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo IpLooping3
|
|
enddo elementLooping3
|
|
!$OMP END PARALLEL DO
|
|
|
|
enddo convergenceLooping
|
|
|
|
NiterationHomog = NiterationHomog + 1_pInt
|
|
|
|
enddo cutBackLooping
|
|
|
|
if (.not. terminallyIll ) then
|
|
call crystallite_orientations() ! calculate crystal orientations
|
|
!$OMP PARALLEL DO
|
|
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
IpLooping4: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
call homogenization_averageStressAndItsTangent(i,e)
|
|
materialpoint_heat(i,e) = homogenization_averageHeat(i,e)
|
|
enddo IpLooping4
|
|
enddo elementLooping4
|
|
!$OMP END PARALLEL DO
|
|
else
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
end subroutine materialpoint_stressAndItsTangent
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief parallelized calculation of result array at material points
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine materialpoint_postResults
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
mappingHomogenization, &
|
|
homogState, &
|
|
plasticState, &
|
|
damageState, &
|
|
thermalState, &
|
|
material_phase, &
|
|
homogenization_Ngrains, &
|
|
microstructure_crystallite
|
|
use constitutive, only: &
|
|
constitutive_postResults
|
|
use crystallite, only: &
|
|
crystallite_sizePostResults, &
|
|
crystallite_postResults
|
|
|
|
implicit none
|
|
integer(pInt) :: &
|
|
thePos, &
|
|
theSize, &
|
|
myNgrains, &
|
|
myCrystallite, &
|
|
g, & !< grain number
|
|
i, & !< integration point number
|
|
e !< element number
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize)
|
|
elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
myCrystallite = microstructure_crystallite(mesh_element(4,e))
|
|
IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
thePos = 0_pInt
|
|
|
|
theSize = homogState(mappingHomogenization(2,i,e))%sizePostResults
|
|
materialpoint_results(thePos+1,i,e) = real(theSize,pReal) ! tell size of homogenization results
|
|
thePos = thePos + 1_pInt
|
|
|
|
if (theSize > 0_pInt) then ! any homogenization results to mention?
|
|
materialpoint_results(thePos+1:thePos+theSize,i,e) = homogenization_postResults(i,e) ! tell homogenization results
|
|
thePos = thePos + theSize
|
|
endif
|
|
|
|
#ifdef multiphysicsOut
|
|
theSize = field_Noutput(mappingHomogenization(2,i,e))
|
|
materialpoint_results(thePos+1,i,e) = real(theSize,pReal) ! tell size of field results
|
|
thePos = thePos + 1_pInt
|
|
|
|
if (theSize > 0_pInt) then ! any homogenization results to mention?
|
|
materialpoint_results(thePos+1:thePos+theSize,i,e) = field_postResults(i,e) ! tell field results
|
|
thePos = thePos + theSize
|
|
endif
|
|
#endif
|
|
|
|
materialpoint_results(thePos+1,i,e) = real(myNgrains,pReal) ! tell number of grains at materialpoint
|
|
thePos = thePos + 1_pInt
|
|
|
|
grainLooping :do g = 1,myNgrains
|
|
#ifdef multiphysicsOut
|
|
theSize = (1 + crystallite_sizePostResults(myCrystallite)) + &
|
|
(1 + plasticState(material_phase(g,i,e))%sizePostResults) + & !ToDo
|
|
(1 + damageState(material_phase(g,i,e))%sizePostResults) + &
|
|
(1 + thermalState(material_phase(g,i,e))%sizePostResults)
|
|
#else
|
|
theSize = (1 + crystallite_sizePostResults(myCrystallite)) + &
|
|
(1 + plasticState(material_phase(g,i,e))%sizePostResults)
|
|
#endif
|
|
materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(g,i,e) ! tell crystallite results
|
|
thePos = thePos + theSize
|
|
enddo grainLooping
|
|
enddo IpLooping
|
|
enddo elementLooping
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine materialpoint_postResults
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief partition material point def grad onto constituents
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine homogenization_partitionDeformation(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
homogenization_type, &
|
|
homogenization_maxNgrains, &
|
|
HOMOGENIZATION_NONE_ID, &
|
|
HOMOGENIZATION_ISOSTRAIN_ID, &
|
|
HOMOGENIZATION_RGC_ID
|
|
use crystallite, only: &
|
|
crystallite_partionedF0, &
|
|
crystallite_partionedF
|
|
use homogenization_isostrain, only: &
|
|
homogenization_isostrain_partitionDeformation
|
|
use homogenization_RGC, only: &
|
|
homogenization_RGC_partitionDeformation
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
|
|
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
|
|
|
|
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
|
|
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el) = 0.0_pReal
|
|
crystallite_partionedF(1:3,1:3,1:1,ip,el) = &
|
|
spread(materialpoint_subF(1:3,1:3,ip,el),3,1)
|
|
|
|
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
|
|
call homogenization_isostrain_partitionDeformation(&
|
|
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
materialpoint_subF(1:3,1:3,ip,el),&
|
|
el)
|
|
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
|
|
call homogenization_RGC_partitionDeformation(&
|
|
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
materialpoint_subF(1:3,1:3,ip,el),&
|
|
ip, &
|
|
el)
|
|
end select chosenHomogenization
|
|
|
|
end subroutine homogenization_partitionDeformation
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
|
|
!> "happy" with result
|
|
!--------------------------------------------------------------------------------------------------
|
|
function homogenization_updateState(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
homogenization_type, &
|
|
homogenization_maxNgrains, &
|
|
HOMOGENIZATION_RGC_ID
|
|
use crystallite, only: &
|
|
crystallite_P, &
|
|
crystallite_dPdF, &
|
|
crystallite_partionedF,&
|
|
crystallite_partionedF0
|
|
use homogenization_RGC, only: &
|
|
homogenization_RGC_updateState
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
logical, dimension(2) :: homogenization_updateState
|
|
|
|
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
|
|
|
|
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
|
|
homogenization_updateState = &
|
|
|
|
homogenization_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
|
|
materialpoint_subF(1:3,1:3,ip,el),&
|
|
materialpoint_subdt(ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
ip, &
|
|
el)
|
|
case default chosenHomogenization
|
|
homogenization_updateState = .true.
|
|
end select chosenHomogenization
|
|
|
|
end function homogenization_updateState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief derive average stress and stiffness from constituent quantities
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine homogenization_averageStressAndItsTangent(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
homogenization_type, &
|
|
homogenization_maxNgrains, &
|
|
HOMOGENIZATION_NONE_ID, &
|
|
HOMOGENIZATION_ISOSTRAIN_ID, &
|
|
HOMOGENIZATION_RGC_ID
|
|
use crystallite, only: &
|
|
crystallite_P,crystallite_dPdF
|
|
use homogenization_isostrain, only: &
|
|
homogenization_isostrain_averageStressAndItsTangent
|
|
use homogenization_RGC, only: &
|
|
homogenization_RGC_averageStressAndItsTangent
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
|
|
chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
|
|
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
|
|
materialpoint_P(1:3,1:3,ip,el) = sum(crystallite_P(1:3,1:3,1:1,ip,el),3)
|
|
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) &
|
|
= sum(crystallite_dPdF(1:3,1:3,1:3,1:3,1:1,ip,el),5)
|
|
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
|
|
call homogenization_isostrain_averageStressAndItsTangent(&
|
|
materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
|
|
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
el)
|
|
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
|
|
call homogenization_RGC_averageStressAndItsTangent(&
|
|
materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
|
|
crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
|
|
el)
|
|
end select chosenHomogenization
|
|
|
|
end subroutine homogenization_averageStressAndItsTangent
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief derive average heat from constituent quantities (does not depend on choosen
|
|
!! homogenization scheme)
|
|
!--------------------------------------------------------------------------------------------------
|
|
real(pReal) function homogenization_averageHeat(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
homogenization_Ngrains
|
|
use crystallite, only: &
|
|
crystallite_heat
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el !< element number
|
|
integer(pInt) :: &
|
|
Ngrains
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! computing the average heat
|
|
Ngrains = homogenization_Ngrains(mesh_element(3,el))
|
|
homogenization_averageHeat= sum(crystallite_heat(1:Ngrains,ip,el))/real(Ngrains,pReal)
|
|
|
|
end function homogenization_averageHeat
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Returns average specific heat at each integration point
|
|
!--------------------------------------------------------------------------------------------------
|
|
function field_getSpecificHeat(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use lattice, only: &
|
|
lattice_specificHeat
|
|
use material, only: &
|
|
material_phase, &
|
|
material_homog, &
|
|
field_thermal_type, &
|
|
FIELD_THERMAL_ADIABATIC_ID, &
|
|
FIELD_THERMAL_CONDUCTION_ID, &
|
|
homogenization_Ngrains
|
|
|
|
implicit none
|
|
real(pReal) :: field_getSpecificHeat
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el !< element number
|
|
integer(pInt) :: &
|
|
ipc
|
|
|
|
field_getSpecificHeat =0.0_pReal
|
|
|
|
select case(field_thermal_type(material_homog(ip,el)))
|
|
|
|
case (FIELD_THERMAL_ADIABATIC_ID)
|
|
field_getSpecificHeat = 0.0_pReal
|
|
|
|
case (FIELD_THERMAL_CONDUCTION_ID)
|
|
do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
|
|
field_getSpecificHeat = field_getSpecificHeat + lattice_specificHeat(material_phase(ipc,ip,el))
|
|
enddo
|
|
|
|
end select
|
|
|
|
field_getSpecificHeat = field_getSpecificHeat /homogenization_Ngrains(mesh_element(3,el))
|
|
|
|
end function field_getSpecificHeat
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Returns average mass density at each integration point
|
|
!--------------------------------------------------------------------------------------------------
|
|
function field_getMassDensity(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use lattice, only: &
|
|
lattice_massDensity
|
|
use material, only: &
|
|
material_phase, &
|
|
material_homog, &
|
|
field_thermal_type, &
|
|
FIELD_THERMAL_ADIABATIC_ID, &
|
|
FIELD_THERMAL_CONDUCTION_ID, &
|
|
homogenization_Ngrains
|
|
|
|
|
|
implicit none
|
|
real(pReal) :: field_getMassDensity
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el !< element number
|
|
integer(pInt) :: &
|
|
ipc
|
|
|
|
field_getMassDensity =0.0_pReal
|
|
|
|
select case(field_thermal_type(material_homog(ip,el)))
|
|
|
|
case (FIELD_THERMAL_ADIABATIC_ID)
|
|
field_getMassDensity = 0.0_pReal
|
|
|
|
case (FIELD_THERMAL_CONDUCTION_ID)
|
|
do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
|
|
field_getMassDensity = field_getMassDensity + lattice_massDensity(material_phase(ipc,ip,el))
|
|
enddo
|
|
|
|
end select
|
|
|
|
field_getMassDensity = field_getMassDensity /homogenization_Ngrains(mesh_element(3,el))
|
|
|
|
end function field_getMassDensity
|
|
!-------------------------------------------------------------------------------------------
|
|
!> @brief Returns average conductivity tensor for thermal field at each integration point
|
|
!-------------------------------------------------------------------------------------------
|
|
function field_getThermalConductivity33(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use lattice, only: &
|
|
lattice_thermalConductivity33
|
|
use material, only: &
|
|
material_phase, &
|
|
material_homog, &
|
|
field_thermal_type, &
|
|
FIELD_THERMAL_ADIABATIC_ID, &
|
|
FIELD_THERMAL_CONDUCTION_ID, &
|
|
homogenization_Ngrains
|
|
use crystallite, only: &
|
|
crystallite_push33ToRef
|
|
|
|
|
|
implicit none
|
|
real(pReal), dimension(3,3) :: field_getThermalConductivity33
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el !< element number
|
|
integer(pInt) :: &
|
|
ipc
|
|
|
|
field_getThermalConductivity33 =0.0_pReal
|
|
|
|
select case(field_thermal_type(material_homog(ip,el)))
|
|
|
|
case (FIELD_THERMAL_ADIABATIC_ID)
|
|
field_getThermalConductivity33 = 0.0_pReal
|
|
|
|
case (FIELD_THERMAL_CONDUCTION_ID)
|
|
do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
|
|
field_getThermalConductivity33 = field_getThermalConductivity33 + &
|
|
crystallite_push33ToRef(ipc,ip,el,lattice_thermalConductivity33(:,:,material_phase(ipc,ip,el)))
|
|
enddo
|
|
|
|
end select
|
|
|
|
field_getThermalConductivity33 = field_getThermalConductivity33 /homogenization_Ngrains(mesh_element(3,el))
|
|
|
|
end function field_getThermalConductivity33
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Returns average diffusion tensor for damage field at each integration point
|
|
!--------------------------------------------------------------------------------------------------
|
|
function field_getDamageDiffusion33(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use lattice, only: &
|
|
lattice_DamageDiffusion33
|
|
use material, only: &
|
|
material_phase, &
|
|
material_homog, &
|
|
field_damage_type, &
|
|
FIELD_DAMAGE_LOCAL_ID, &
|
|
FIELD_DAMAGE_NONLOCAL_ID, &
|
|
homogenization_Ngrains
|
|
|
|
implicit none
|
|
real(pReal), dimension(3,3) :: field_getDamageDiffusion33
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el !< element number
|
|
integer(pInt) :: &
|
|
ipc
|
|
|
|
field_getDamageDiffusion33 =0.0_pReal
|
|
|
|
select case(field_damage_type(material_homog(ip,el)))
|
|
|
|
case (FIELD_DAMAGE_LOCAL_ID)
|
|
field_getDamageDiffusion33 = 0.0_pReal
|
|
|
|
case (FIELD_DAMAGE_NONLOCAL_ID)
|
|
do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
|
|
field_getDamageDiffusion33 = field_getDamageDiffusion33 + lattice_DamageDiffusion33(:,:,material_phase(ipc,ip,el))
|
|
enddo
|
|
|
|
end select
|
|
|
|
field_getDamageDiffusion33 = field_getDamageDiffusion33 /homogenization_Ngrains(mesh_element(3,el))
|
|
|
|
end function field_getDamageDiffusion33
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Returns average mobility for damage field at each integration point
|
|
!--------------------------------------------------------------------------------------------------
|
|
real(pReal) function field_getDamageMobility(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use lattice, only: &
|
|
lattice_damageMobility
|
|
use material, only: &
|
|
material_phase, &
|
|
material_homog, &
|
|
field_damage_type, &
|
|
FIELD_DAMAGE_LOCAL_ID, &
|
|
FIELD_DAMAGE_NONLOCAL_ID, &
|
|
homogenization_Ngrains
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el !< element number
|
|
integer(pInt) :: &
|
|
ipc
|
|
|
|
|
|
field_getDamageMobility =0.0_pReal
|
|
|
|
select case(field_damage_type(material_homog(ip,el)))
|
|
|
|
case (FIELD_DAMAGE_LOCAL_ID)
|
|
field_getDamageMobility = 0.0_pReal
|
|
|
|
case (FIELD_DAMAGE_NONLOCAL_ID)
|
|
do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
|
|
field_getDamageMobility = field_getDamageMobility + lattice_DamageMobility(material_phase(ipc,ip,el))
|
|
enddo
|
|
|
|
end select
|
|
|
|
field_getDamageMobility = field_getDamageMobility /homogenization_Ngrains(mesh_element(3,el))
|
|
|
|
end function field_getDamageMobility
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief ToDo
|
|
!--------------------------------------------------------------------------------------------------
|
|
real(pReal) function field_getDAMAGE(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
homogenization_Ngrains
|
|
use constitutive, only: &
|
|
constitutive_getLocalDamage
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el !< element number
|
|
integer(pInt) :: &
|
|
ipc
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! computing the damage value needed to be passed to field solver
|
|
field_getDAMAGE =0.0_pReal
|
|
|
|
do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
|
|
field_getDAMAGE = field_getDAMAGE + constitutive_getLocalDamage(ipc,ip,el)
|
|
enddo
|
|
|
|
field_getDAMAGE = field_getDAMAGE /homogenization_Ngrains(mesh_element(3,el))
|
|
|
|
end function field_getDAMAGE
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Sets the regularised damage value in field state
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine field_putDAMAGE(ip,el,fieldDamageValue) ! naming scheme
|
|
use material, only: &
|
|
fieldDamage, &
|
|
material_homog, &
|
|
mappingHomogenization, &
|
|
field_damage_type, &
|
|
FIELD_DAMAGE_NONLOCAL_ID
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el
|
|
real(pReal), intent(in) :: &
|
|
fieldDamageValue
|
|
|
|
select case(field_damage_type(material_homog(ip,el)))
|
|
case (FIELD_DAMAGE_NONLOCAL_ID)
|
|
fieldDamage(material_homog(ip,el))% &
|
|
field(1, mappingHomogenization(1,ip,el)) = fieldDamageValue
|
|
|
|
end select
|
|
|
|
end subroutine field_putDAMAGE
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief ToDo
|
|
!--------------------------------------------------------------------------------------------------
|
|
real(pReal) function field_getThermal(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
homogenization_Ngrains
|
|
use constitutive, only: &
|
|
constitutive_getAdiabaticThermal
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el !< element number
|
|
integer(pInt) :: &
|
|
ipc
|
|
|
|
|
|
field_getThermal = 0.0_pReal
|
|
do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
|
|
field_getThermal = field_getThermal + constitutive_getAdiabaticThermal(ipc,ip,el) ! array/function/subroutine which is faster
|
|
enddo
|
|
field_getThermal = field_getThermal /homogenization_Ngrains(mesh_element(3,el))
|
|
|
|
end function field_getThermal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Sets the regularised temperature value in field state
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine field_putThermal(ip,el,fieldThermalValue)
|
|
use material, only: &
|
|
material_homog, &
|
|
fieldThermal, &
|
|
mappingHomogenization, &
|
|
field_thermal_type, &
|
|
FIELD_THERMAL_CONDUCTION_ID
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point number
|
|
el
|
|
real(pReal), intent(in) :: &
|
|
fieldThermalValue
|
|
|
|
select case(field_thermal_type(material_homog(ip,el)))
|
|
case (FIELD_THERMAL_CONDUCTION_ID)
|
|
fieldThermal(material_homog(ip,el))% &
|
|
field(1,mappingHomogenization(1,ip,el)) = fieldThermalValue
|
|
|
|
end select
|
|
|
|
end subroutine field_putThermal
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief return array of homogenization results for post file inclusion. call only,
|
|
!> if homogenization_sizePostResults(i,e) > 0 !!
|
|
!--------------------------------------------------------------------------------------------------
|
|
function homogenization_postResults(ip,el)
|
|
use mesh, only: &
|
|
mesh_element
|
|
use material, only: &
|
|
mappingHomogenization, &
|
|
homogState, &
|
|
homogenization_type, &
|
|
HOMOGENIZATION_NONE_ID, &
|
|
HOMOGENIZATION_ISOSTRAIN_ID, &
|
|
HOMOGENIZATION_RGC_ID
|
|
use homogenization_isostrain, only: &
|
|
homogenization_isostrain_postResults
|
|
use homogenization_RGC, only: &
|
|
homogenization_RGC_postResults
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
real(pReal), dimension(homogState(mappingHomogenization(2,ip,el))%sizePostResults) :: &
|
|
homogenization_postResults
|
|
|
|
homogenization_postResults = 0.0_pReal
|
|
chosenHomogenization: select case (homogenization_type(mesh_element(3,el)))
|
|
case (HOMOGENIZATION_NONE_ID) chosenHomogenization
|
|
|
|
case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
|
|
homogenization_postResults = homogenization_isostrain_postResults(&
|
|
ip, &
|
|
el, &
|
|
materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_F(1:3,1:3,ip,el))
|
|
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
|
|
homogenization_postResults = homogenization_RGC_postResults(&
|
|
ip, &
|
|
el, &
|
|
materialpoint_P(1:3,1:3,ip,el), &
|
|
materialpoint_F(1:3,1:3,ip,el))
|
|
end select chosenHomogenization
|
|
|
|
end function homogenization_postResults
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief return array of homogenization results for post file inclusion. call only,
|
|
!> if homogenization_sizePostResults(i,e) > 0 !!
|
|
!--------------------------------------------------------------------------------------------------
|
|
function field_postResults(ip,el)
|
|
use material, only: &
|
|
mappingHomogenization
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
real(pReal), dimension(field_sizePostResults(mappingHomogenization(2,ip,el))) :: &
|
|
field_postResults
|
|
integer(pInt) :: &
|
|
c = 0_pInt, homog, o
|
|
|
|
field_postResults = 0.0_pReal
|
|
homog = mappingHomogenization(2,ip,el)
|
|
do o = 1_pInt,field_Noutput(homog)
|
|
select case(field_outputID(o,homog))
|
|
case (temperature_ID)
|
|
field_postResults(c+1_pInt) = field_getThermal(ip,el)
|
|
c = c + 1_pInt
|
|
case (damage_ID)
|
|
field_postResults(c+1_pInt) = field_getDAMAGE(ip,el)
|
|
c = c + 1_pInt
|
|
end select
|
|
enddo
|
|
|
|
end function field_postResults
|
|
|
|
end module homogenization
|