376 lines
18 KiB
Fortran
376 lines
18 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization
|
|
!--------------------------------------------------------------------------------------------------
|
|
module homogenization
|
|
use prec
|
|
use IO
|
|
use config
|
|
use math
|
|
use material
|
|
use constitutive
|
|
use discretization
|
|
use thermal_isothermal
|
|
use thermal_conduction
|
|
use damage_none
|
|
use damage_nonlocal
|
|
use results
|
|
|
|
implicit none
|
|
private
|
|
|
|
logical, public :: &
|
|
terminallyIll = .false. !< at least one material point is terminally ill
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! General variables for the homogenization at a material point
|
|
real(pReal), dimension(:,:,:), allocatable, public :: &
|
|
homogenization_F0, & !< def grad of IP at start of FE increment
|
|
homogenization_F !< def grad of IP to be reached at end of FE increment
|
|
real(pReal), dimension(:,:,:), allocatable, public :: & !, protected :: & Issue with ifort
|
|
homogenization_P !< first P--K stress of IP
|
|
real(pReal), dimension(:,:,:,:,:), allocatable, public :: & !, protected :: &
|
|
homogenization_dPdF !< tangent of first P--K stress at IP
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
type :: tNumerics
|
|
integer :: &
|
|
nMPstate !< materialpoint state loop limit
|
|
real(pReal) :: &
|
|
subStepMinHomog, & !< minimum (relative) size of sub-step allowed during cutback in homogenization
|
|
subStepSizeHomog, & !< size of first substep when cutback in homogenization
|
|
stepIncreaseHomog !< increase of next substep size when previous substep converged in homogenization
|
|
end type tNumerics
|
|
|
|
type(tNumerics) :: num
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
interface
|
|
|
|
module subroutine mech_init(num_homog)
|
|
class(tNode), pointer, intent(in) :: &
|
|
num_homog !< pointer to mechanical homogenization numerics data
|
|
end subroutine mech_init
|
|
|
|
module subroutine mech_partition(subF,ip,el)
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
subF
|
|
integer, intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
end subroutine mech_partition
|
|
|
|
module subroutine mech_homogenize(ip,el)
|
|
integer, intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
end subroutine mech_homogenize
|
|
|
|
module subroutine mech_results(group_base,h)
|
|
|
|
character(len=*), intent(in) :: group_base
|
|
integer, intent(in) :: h
|
|
|
|
end subroutine mech_results
|
|
|
|
! -------- ToDo ---------------------------------------------------------
|
|
module function mech_RGC_updateState(P,F,F0,avgF,dt,dPdF,ip,el)
|
|
logical, dimension(2) :: mech_RGC_updateState
|
|
real(pReal), dimension(:,:,:), intent(in) :: &
|
|
P,& !< partitioned stresses
|
|
F,& !< partitioned deformation gradients
|
|
F0 !< partitioned initial deformation gradients
|
|
real(pReal), dimension(:,:,:,:,:), intent(in) :: dPdF !< partitioned stiffnesses
|
|
real(pReal), dimension(3,3), intent(in) :: avgF !< average F
|
|
real(pReal), intent(in) :: dt !< time increment
|
|
integer, intent(in) :: &
|
|
ip, & !< integration point number
|
|
el !< element number
|
|
end function mech_RGC_updateState
|
|
|
|
end interface
|
|
! -----------------------------------------------------------------------
|
|
|
|
public :: &
|
|
homogenization_init, &
|
|
materialpoint_stressAndItsTangent, &
|
|
homogenization_forward, &
|
|
homogenization_results
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief module initialization
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine homogenization_init
|
|
|
|
class (tNode) , pointer :: &
|
|
num_homog, &
|
|
num_homogGeneric
|
|
|
|
print'(/,a)', ' <<<+- homogenization init -+>>>'; flush(IO_STDOUT)
|
|
|
|
num_homog => config_numerics%get('homogenization',defaultVal=emptyDict)
|
|
num_homogGeneric => num_homog%get('generic',defaultVal=emptyDict)
|
|
|
|
num%nMPstate = num_homogGeneric%get_asInt ('nMPstate', defaultVal=10)
|
|
num%subStepMinHomog = num_homogGeneric%get_asFloat('subStepMin', defaultVal=1.0e-3_pReal)
|
|
num%subStepSizeHomog = num_homogGeneric%get_asFloat('subStepSize', defaultVal=0.25_pReal)
|
|
num%stepIncreaseHomog = num_homogGeneric%get_asFloat('stepIncrease', defaultVal=1.5_pReal)
|
|
|
|
if (num%nMPstate < 1) call IO_error(301,ext_msg='nMPstate')
|
|
if (num%subStepMinHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinHomog')
|
|
if (num%subStepSizeHomog <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeHomog')
|
|
if (num%stepIncreaseHomog <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseHomog')
|
|
|
|
|
|
call mech_init(num_homog)
|
|
|
|
if (any(thermal_type == THERMAL_isothermal_ID)) call thermal_isothermal_init
|
|
if (any(thermal_type == THERMAL_conduction_ID)) call thermal_conduction_init
|
|
|
|
if (any(damage_type == DAMAGE_none_ID)) call damage_none_init
|
|
if (any(damage_type == DAMAGE_nonlocal_ID)) call damage_nonlocal_init
|
|
|
|
|
|
end subroutine homogenization_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief parallelized calculation of stress and corresponding tangent at material points
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine materialpoint_stressAndItsTangent(dt,FEsolving_execIP,FEsolving_execElem)
|
|
|
|
real(pReal), intent(in) :: dt !< time increment
|
|
integer, dimension(2), intent(in) :: FEsolving_execElem, FEsolving_execIP
|
|
integer :: &
|
|
NiterationMPstate, &
|
|
ip, & !< integration point number
|
|
el, & !< element number
|
|
myNgrains, co, ce, ho
|
|
real(pReal) :: &
|
|
subFrac, &
|
|
subStep
|
|
logical :: &
|
|
converged
|
|
logical, dimension(2) :: &
|
|
doneAndHappy
|
|
|
|
|
|
!$OMP PARALLEL DO PRIVATE(ce,ho,myNgrains,NiterationMPstate,subFrac,converged,subStep,doneAndHappy)
|
|
do el = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
ho = material_homogenizationAt(el)
|
|
myNgrains = homogenization_Nconstituents(ho)
|
|
do ip = FEsolving_execIP(1),FEsolving_execIP(2)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize restoration points
|
|
call constitutive_initializeRestorationPoints(ip,el)
|
|
|
|
subFrac = 0.0_pReal
|
|
converged = .false. ! pretend failed step ...
|
|
subStep = 1.0_pReal/num%subStepSizeHomog ! ... larger then the requested calculation
|
|
|
|
if (homogState(ho)%sizeState > 0) &
|
|
homogState(ho)%subState0(:,material_homogenizationMemberAt(ip,el)) = &
|
|
homogState(ho)%State0( :,material_homogenizationMemberAt(ip,el))
|
|
|
|
if (damageState(ho)%sizeState > 0) &
|
|
damageState(ho)%subState0(:,material_homogenizationMemberAt(ip,el)) = &
|
|
damageState(ho)%State0( :,material_homogenizationMemberAt(ip,el))
|
|
|
|
cutBackLooping: do while (.not. terminallyIll .and. subStep > num%subStepMinHomog)
|
|
|
|
if (converged) then
|
|
subFrac = subFrac + subStep
|
|
subStep = min(1.0_pReal-subFrac,num%stepIncreaseHomog*subStep) ! introduce flexibility for step increase/acceleration
|
|
|
|
steppingNeeded: if (subStep > num%subStepMinHomog) then
|
|
|
|
! wind forward grain starting point
|
|
call constitutive_windForward(ip,el)
|
|
|
|
if(homogState(ho)%sizeState > 0) &
|
|
homogState(ho)%subState0(:,material_homogenizationMemberAt(ip,el)) = &
|
|
homogState(ho)%State (:,material_homogenizationMemberAt(ip,el))
|
|
if(damageState(ho)%sizeState > 0) &
|
|
damageState(ho)%subState0(:,material_homogenizationMemberAt(ip,el)) = &
|
|
damageState(ho)%State (:,material_homogenizationMemberAt(ip,el))
|
|
|
|
endif steppingNeeded
|
|
elseif ( (myNgrains == 1 .and. subStep <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite
|
|
num%subStepSizeHomog * subStep <= num%subStepMinHomog ) then ! would require too small subStep
|
|
! cutback makes no sense
|
|
if (.not. terminallyIll) & ! so first signals terminally ill...
|
|
print*, ' Integration point ', ip,' at element ', el, ' terminally ill'
|
|
terminallyIll = .true. ! ...and kills all others
|
|
else ! cutback makes sense
|
|
subStep = num%subStepSizeHomog * subStep ! crystallite had severe trouble, so do a significant cutback
|
|
|
|
call constitutive_restore(ip,el,subStep < 1.0_pReal)
|
|
|
|
if(homogState(ho)%sizeState > 0) &
|
|
homogState(ho)%State( :,material_homogenizationMemberAt(ip,el)) = &
|
|
homogState(ho)%subState0(:,material_homogenizationMemberAt(ip,el))
|
|
if(damageState(ho)%sizeState > 0) &
|
|
damageState(ho)%State( :,material_homogenizationMemberAt(ip,el)) = &
|
|
damageState(ho)%subState0(:,material_homogenizationMemberAt(ip,el))
|
|
endif
|
|
|
|
if (subStep > num%subStepMinHomog) doneAndHappy = [.false.,.true.]
|
|
|
|
NiterationMPstate = 0
|
|
convergenceLooping: do while (.not. terminallyIll &
|
|
.and. .not. doneAndHappy(1) &
|
|
.and. NiterationMPstate < num%nMPstate)
|
|
NiterationMPstate = NiterationMPstate + 1
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! deformation partitioning
|
|
|
|
if (.not. doneAndHappy(1)) then
|
|
ce = (el-1)*discretization_nIPs + ip
|
|
call mech_partition(homogenization_F0(1:3,1:3,ce) &
|
|
+ (homogenization_F(1:3,1:3,ce)-homogenization_F0(1:3,1:3,ce))&
|
|
*(subStep+subFrac), &
|
|
ip,el)
|
|
converged = .true.
|
|
do co = 1, myNgrains
|
|
converged = converged .and. crystallite_stress(dt*subStep,co,ip,el)
|
|
enddo
|
|
|
|
if (.not. converged) then
|
|
doneAndHappy = [.true.,.false.]
|
|
else
|
|
ce = (el-1)*discretization_nIPs + ip
|
|
doneAndHappy = updateState(dt*subStep, &
|
|
homogenization_F0(1:3,1:3,ce) &
|
|
+ (homogenization_F(1:3,1:3,ce)-homogenization_F0(1:3,1:3,ce)) &
|
|
*(subStep+subFrac), &
|
|
ip,el)
|
|
converged = all(doneAndHappy)
|
|
endif
|
|
endif
|
|
|
|
enddo convergenceLooping
|
|
enddo cutBackLooping
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
if (.not. terminallyIll ) then
|
|
!$OMP PARALLEL DO PRIVATE(ho,myNgrains)
|
|
elementLooping3: do el = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
ho = material_homogenizationAt(el)
|
|
myNgrains = homogenization_Nconstituents(ho)
|
|
IpLooping3: do ip = FEsolving_execIP(1),FEsolving_execIP(2)
|
|
do co = 1, myNgrains
|
|
call crystallite_orientations(co,ip,el)
|
|
enddo
|
|
call mech_homogenize(ip,el)
|
|
enddo IpLooping3
|
|
enddo elementLooping3
|
|
!$OMP END PARALLEL DO
|
|
else
|
|
print'(/,a,/)', ' << HOMOG >> Material Point terminally ill'
|
|
endif
|
|
|
|
end subroutine materialpoint_stressAndItsTangent
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
|
|
!> "happy" with result
|
|
!--------------------------------------------------------------------------------------------------
|
|
function updateState(subdt,subF,ip,el)
|
|
|
|
real(pReal), intent(in) :: &
|
|
subdt !< current time step
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
subF
|
|
integer, intent(in) :: &
|
|
ip, & !< integration point
|
|
el !< element number
|
|
integer :: c
|
|
logical, dimension(2) :: updateState
|
|
real(pReal) :: dPdFs(3,3,3,3,homogenization_Nconstituents(material_homogenizationAt(el)))
|
|
|
|
updateState = .true.
|
|
chosenHomogenization: select case(homogenization_type(material_homogenizationAt(el)))
|
|
case (HOMOGENIZATION_RGC_ID) chosenHomogenization
|
|
do c=1,homogenization_Nconstituents(material_homogenizationAt(el))
|
|
dPdFs(:,:,:,:,c) = crystallite_stressTangent(c,ip,el)
|
|
enddo
|
|
updateState = &
|
|
updateState .and. &
|
|
mech_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
|
|
crystallite_partitionedF(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el), &
|
|
crystallite_partitionedF0(1:3,1:3,1:homogenization_Nconstituents(material_homogenizationAt(el)),ip,el),&
|
|
subF,&
|
|
subdt, &
|
|
dPdFs, &
|
|
ip, &
|
|
el)
|
|
end select chosenHomogenization
|
|
|
|
end function updateState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief writes homogenization results to HDF5 output file
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine homogenization_results
|
|
use material, only: &
|
|
material_homogenization_type => homogenization_type
|
|
|
|
integer :: p
|
|
character(len=:), allocatable :: group_base,group
|
|
|
|
call results_closeGroup(results_addGroup('current/homogenization/'))
|
|
|
|
do p=1,size(material_name_homogenization)
|
|
group_base = 'current/homogenization/'//trim(material_name_homogenization(p))
|
|
call results_closeGroup(results_addGroup(group_base))
|
|
|
|
call mech_results(group_base,p)
|
|
|
|
group = trim(group_base)//'/damage'
|
|
call results_closeGroup(results_addGroup(group))
|
|
select case(damage_type(p))
|
|
case(DAMAGE_NONLOCAL_ID)
|
|
call damage_nonlocal_results(p,group)
|
|
end select
|
|
|
|
group = trim(group_base)//'/thermal'
|
|
call results_closeGroup(results_addGroup(group))
|
|
select case(thermal_type(p))
|
|
case(THERMAL_CONDUCTION_ID)
|
|
call thermal_conduction_results(p,group)
|
|
end select
|
|
|
|
enddo
|
|
|
|
end subroutine homogenization_results
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Forward data after successful increment.
|
|
! ToDo: Any guessing for the current states possible?
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine homogenization_forward
|
|
|
|
integer :: ho
|
|
|
|
do ho = 1, size(material_name_homogenization)
|
|
homogState (ho)%state0 = homogState (ho)%state
|
|
damageState(ho)%state0 = damageState(ho)%state
|
|
enddo
|
|
|
|
end subroutine homogenization_forward
|
|
|
|
end module homogenization
|