DAMASK_EICMD/python/damask/util.py

886 lines
28 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""Miscellaneous helper functionality."""
import sys as _sys
import datetime as _datetime
import os as _os
import subprocess as _subprocess
import shlex as _shlex
import re as _re
import signal as _signal
import fractions as _fractions
from collections import abc as _abc
from functools import reduce as _reduce, partial as _partial
from typing import Callable as _Callable, Union as _Union, Iterable as _Iterable, Sequence as _Sequence, Dict as _Dict, \
List as _List, Tuple as _Tuple, Literal as _Literal, Any as _Any, Collection as _Collection, TextIO as _TextIO
from pathlib import Path as _Path
import numpy as _np
import h5py as _h5py
from . import version as _version
from ._typehints import FloatSequence as _FloatSequence, NumpyRngSeed as _NumpyRngSeed, IntCollection as _IntCollection, \
FileHandle as _FileHandle
# https://svn.blender.org/svnroot/bf-blender/trunk/blender/build_files/scons/tools/bcolors.py
# https://stackoverflow.com/questions/287871
_colors = {
'header' : '\033[95m',
'OK_blue': '\033[94m',
'OK_green': '\033[92m',
'warning': '\033[93m',
'fail': '\033[91m',
'end_color': '\033[0m',
'bold': '\033[1m',
'dim': '\033[2m',
'underline': '\033[4m',
'crossout': '\033[9m'
}
####################################################################################################
# Functions
####################################################################################################
def srepr(msg,
glue: str = '\n',
quote: bool = False) -> str:
r"""
Join (quoted) items with glue string.
Parameters
----------
msg : (sequence of) object with __repr__
Items to join.
glue : str, optional
Glue used for joining operation. Defaults to '\n'.
quote : bool, optional
Quote items. Defaults to False.
Returns
-------
joined : str
String representation of the joined and quoted items.
"""
q = '"' if quote else ''
if (not hasattr(msg, 'strip') and
(hasattr(msg, '__getitem__') or
hasattr(msg, '__iter__'))):
return glue.join(q+str(x)+q for x in msg)
else:
return q+(msg if isinstance(msg,str) else repr(msg))+q
def emph(msg) -> str:
"""
Format with emphasis.
Parameters
----------
msg : (sequence of) object with __repr__
Message to format.
Returns
-------
formatted : str
Formatted string representation of the joined items.
"""
return _colors['bold']+srepr(msg)+_colors['end_color']
def deemph(msg) -> str:
"""
Format with deemphasis.
Parameters
----------
msg : (sequence of) object with __repr__
Message to format.
Returns
-------
formatted : str
Formatted string representation of the joined items.
"""
return _colors['dim']+srepr(msg)+_colors['end_color']
def warn(msg) -> str:
"""
Format for warning.
Parameters
----------
msg : (sequence of) object with __repr__
Message to format.
Returns
-------
formatted : str
Formatted string representation of the joined items.
"""
return _colors['warning']+emph(msg)+_colors['end_color']
def strikeout(msg) -> str:
"""
Format as strikeout.
Parameters
----------
msg : (iterable of) object with __repr__
Message to format.
Returns
-------
formatted : str
Formatted string representation of the joined items.
"""
return _colors['crossout']+srepr(msg)+_colors['end_color']
def run(cmd: str,
wd: str = './',
env: _Dict[str, str] = None,
timeout: int = None) -> _Tuple[str, str]:
"""
Run a command.
Parameters
----------
cmd : str
Command to be executed.
wd : str, optional
Working directory of process. Defaults to './'.
env : dict, optional
Environment for execution.
timeout : integer, optional
Timeout in seconds.
Returns
-------
stdout, stderr : (str, str)
Output of the executed command.
"""
def pass_signal(sig,_,proc,default):
proc.send_signal(sig)
_signal.signal(sig,default)
_signal.raise_signal(sig)
signals = [_signal.SIGINT,_signal.SIGTERM]
print(f"running '{cmd}' in '{wd}'")
process = _subprocess.Popen(_shlex.split(cmd),
stdout = _subprocess.PIPE,
stderr = _subprocess.PIPE,
env = _os.environ if env is None else env,
cwd = wd,
encoding = 'utf-8')
# ensure that process is terminated (https://stackoverflow.com/questions/22916783)
sig_states = [_signal.signal(sig,_partial(pass_signal,proc=process,default=_signal.getsignal(sig))) for sig in signals]
try:
stdout,stderr = process.communicate(timeout=timeout)
finally:
for sig,state in zip(signals,sig_states):
_signal.signal(sig,state)
if process.returncode != 0:
print(stdout)
print(stderr)
raise RuntimeError(f"'{cmd}' failed with returncode {process.returncode}")
return stdout, stderr
def open_text(fname: _FileHandle,
mode: _Literal['r','w'] = 'r') -> _TextIO: # noqa
"""
Open a text file.
Parameters
----------
fname : file, str, or pathlib.Path
Name or handle of file.
mode: {'r','w'}, optional
Access mode: 'r'ead or 'w'rite, defaults to 'r'.
Returns
-------
f : file handle
"""
return fname if not isinstance(fname, (str,_Path)) else \
open(_Path(fname).expanduser(),mode,newline=('\n' if mode == 'w' else None))
def execution_stamp(class_name: str,
function_name: str = None) -> str:
"""Timestamp the execution of a (function within a) class."""
now = _datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S%z')
_function_name = '' if function_name is None else f'.{function_name}'
return f'damask.{class_name}{_function_name} v{_version} ({now})'
def natural_sort(key: str) -> _List[_Union[int, str]]:
"""
Natural sort.
For use in python's 'sorted'.
References
----------
https://en.wikipedia.org/wiki/Natural_sort_order
"""
convert = lambda text: int(text) if text.isdigit() else text
return [ convert(c) for c in _re.split('([0-9]+)', key) ]
def show_progress(iterable: _Iterable,
N_iter: int = None,
prefix: str = '',
bar_length: int = 50) -> _Any:
"""
Decorate a loop with a progress bar.
Use similar like enumerate.
Parameters
----------
iterable : iterable
Iterable to be decorated.
N_iter : int, optional
Total number of iterations. Required if iterable is not a sequence.
prefix : str, optional
Prefix string.
bar_length : int, optional
Length of progress bar in characters. Defaults to 50.
"""
if isinstance(iterable,_abc.Sequence):
if N_iter is None:
N = len(iterable)
else:
raise ValueError('N_iter given for sequence')
else:
if N_iter is None:
raise ValueError('N_iter not given')
N = N_iter
if N <= 1:
for item in iterable:
yield item
else:
status = ProgressBar(N,prefix,bar_length)
for i,item in enumerate(iterable):
yield item
status.update(i)
def scale_to_coprime(v: _FloatSequence) -> _np.ndarray:
"""
Scale vector to co-prime (relatively prime) integers.
Parameters
----------
v : sequence of float, len (:)
Vector to scale.
Returns
-------
m : numpy.ndarray, shape (:)
Vector scaled to co-prime numbers.
"""
MAX_DENOMINATOR = 1000000
def get_square_denominator(x):
"""Denominator of the square of a number."""
return _fractions.Fraction(x ** 2).limit_denominator(MAX_DENOMINATOR).denominator
def lcm(a,b):
"""Least common multiple."""
try:
return _np.lcm(a,b) # numpy > 1.18
except AttributeError:
return a * b // _np.gcd(a, b)
v_ = _np.array(v)
m = (v_ * _reduce(lcm, map(lambda x: int(get_square_denominator(x)),v_))**0.5).astype(_np.int64)
m = m//_reduce(_np.gcd,m)
with _np.errstate(invalid='ignore'):
if not _np.allclose(_np.ma.masked_invalid(v_/m),v_[_np.argmax(abs(v_))]/m[_np.argmax(abs(v_))]):
raise ValueError(f'invalid result "{m}" for input "{v_}"')
return m
def project_equal_angle(vector: _np.ndarray,
direction: _Literal['x', 'y', 'z'] = 'z', # noqa
normalize: bool = True,
keepdims: bool = False) -> _np.ndarray:
"""
Apply equal-angle projection to vector.
Parameters
----------
vector : numpy.ndarray, shape (...,3)
Vector coordinates to be projected.
direction : {'x', 'y', 'z'}
Projection direction. Defaults to 'z'.
normalize : bool
Ensure unit length of input vector. Defaults to True.
keepdims : bool
Maintain three-dimensional output coordinates.
Defaults to False.
Returns
-------
coordinates : numpy.ndarray, shape (...,2 | 3)
Projected coordinates.
Notes
-----
Two-dimensional output uses right-handed frame spanned by
the next and next-next axis relative to the projection direction,
e.g. x-y when projecting along z and z-x when projecting along y.
Examples
--------
>>> import damask
>>> import numpy as np
>>> project_equal_angle(np.ones(3))
[0.3660254, 0.3660254]
>>> project_equal_angle(np.ones(3),direction='x',normalize=False,keepdims=True)
[0, 0.5, 0.5]
>>> project_equal_angle([0,1,1],direction='y',normalize=True,keepdims=False)
[0.41421356, 0]
"""
shift = 'zyx'.index(direction)
v = _np.roll(vector/_np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector,
shift,axis=-1)
return _np.roll(_np.block([v[...,:2]/(1.0+_np.abs(v[...,2:3])),_np.zeros_like(v[...,2:3])]),
-shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2]
def project_equal_area(vector: _np.ndarray,
direction: _Literal['x', 'y', 'z'] = 'z', # noqa
normalize: bool = True,
keepdims: bool = False) -> _np.ndarray:
"""
Apply equal-area projection to vector.
Parameters
----------
vector : numpy.ndarray, shape (...,3)
Vector coordinates to be projected.
direction : {'x', 'y', 'z'}
Projection direction. Defaults to 'z'.
normalize : bool
Ensure unit length of input vector. Defaults to True.
keepdims : bool
Maintain three-dimensional output coordinates.
Defaults to False.
Returns
-------
coordinates : numpy.ndarray, shape (...,2 | 3)
Projected coordinates.
Notes
-----
Two-dimensional output uses right-handed frame spanned by
the next and next-next axis relative to the projection direction,
e.g. x-y when projecting along z and z-x when projecting along y.
Examples
--------
>>> import damask
>>> import numpy as np
>>> project_equal_area(np.ones(3))
[0.45970084, 0.45970084]
>>> project_equal_area(np.ones(3),direction='x',normalize=False,keepdims=True)
[0.0, 0.70710678, 0.70710678]
>>> project_equal_area([0,1,1],direction='y',normalize=True,keepdims=False)
[0.5411961, 0.0]
"""
shift = 'zyx'.index(direction)
v = _np.roll(vector/_np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector,
shift,axis=-1)
return _np.roll(_np.block([v[...,:2]/_np.sqrt(1.0+_np.abs(v[...,2:3])),_np.zeros_like(v[...,2:3])]),
-shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2]
def hybrid_IA(dist: _np.ndarray,
N: int,
rng_seed: _NumpyRngSeed = None) -> _np.ndarray:
"""
Hybrid integer approximation.
Parameters
----------
dist : numpy.ndarray
Distribution to be approximated
N : int
Number of samples to draw.
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
A seed to initialize the BitGenerator. Defaults to None.
If None, then fresh, unpredictable entropy will be pulled from the OS.
"""
N_opt_samples,N_inv_samples = (max(_np.count_nonzero(dist),N),0) # random subsampling if too little samples requested
scale_,scale,inc_factor = (0.0,float(N_opt_samples),1.0)
while (not _np.isclose(scale, scale_)) and (N_inv_samples != N_opt_samples):
repeats = _np.rint(scale*dist).astype(_np.int64)
N_inv_samples = _np.sum(repeats)
scale_,scale,inc_factor = (scale,scale+inc_factor*0.5*(scale - scale_), inc_factor*2.0) \
if N_inv_samples < N_opt_samples else \
(scale_,0.5*(scale_ + scale), 1.0)
return _np.repeat(_np.arange(len(dist)),repeats)[_np.random.default_rng(rng_seed).permutation(N_inv_samples)[:N]]
def shapeshifter(fro: _Tuple[int, ...],
to: _Tuple[int, ...],
mode: _Literal['left','right'] = 'left', # noqa
keep_ones: bool = False) -> _Tuple[int, ...]:
"""
Return dimensions that reshape 'fro' to become broadcastable to 'to'.
Parameters
----------
fro : tuple
Original shape of array.
to : tuple
Target shape of array after broadcasting.
len(to) cannot be less than len(fro).
mode : {'left', 'right'}, optional
Indicates whether new axes are preferably added to
either left or right of the original shape.
Defaults to 'left'.
keep_ones : bool, optional
Treat '1' in fro as literal value instead of dimensional placeholder.
Defaults to False.
Returns
-------
new_dims : tuple
Dimensions for reshape.
Examples
--------
>>> import numpy as np
>>> from damask import util
>>> a = np.ones((3,4,2))
>>> b = np.ones(4)
>>> b_extended = b.reshape(util.shapeshifter(b.shape,a.shape))
>>> (a * np.broadcast_to(b_extended,a.shape)).shape
(3,4,2)
"""
if len(fro) == 0 and len(to) == 0: return tuple()
_fro = [1] if len(fro) == 0 else list(fro)[::-1 if mode=='left' else 1]
_to = [1] if len(to) == 0 else list(to) [::-1 if mode=='left' else 1]
final_shape: _List[int] = []
index = 0
for i,item in enumerate(_to):
if item == _fro[index]:
final_shape.append(item)
index+=1
else:
final_shape.append(1)
if _fro[index] == 1 and not keep_ones:
index+=1
if index == len(_fro):
final_shape = final_shape+[1]*(len(_to)-i-1)
break
if index != len(_fro): raise ValueError(f'shapes cannot be shifted {fro} --> {to}')
return tuple(final_shape[::-1] if mode == 'left' else final_shape)
def shapeblender(a: _Tuple[int, ...],
b: _Tuple[int, ...]) -> _Tuple[int, ...]:
"""
Return a shape that overlaps the rightmost entries of 'a' with the leftmost of 'b'.
Parameters
----------
a : tuple
Shape of first array.
b : tuple
Shape of second array.
Examples
--------
>>> shapeblender((4,4,3),(3,2,1))
(4,4,3,2,1)
>>> shapeblender((1,2),(1,2,3))
(1,2,3)
>>> shapeblender((1,),(2,2,1))
(1,2,2,1)
>>> shapeblender((3,2),(3,2))
(3,2)
"""
i = min(len(a),len(b))
while i > 0 and a[-i:] != b[:i]: i -= 1
return a + b[i:]
def _docstringer(docstring: _Union[str, _Callable],
extra_parameters: str = None,
# extra_examples: str = None,
# extra_notes: str = None,
return_type: _Union[str, _Callable] = None) -> str:
"""
Extend a docstring.
Parameters
----------
docstring : str or callable, optional
Docstring (of callable) to extend.
extra_parameters : str, optional
Additional information to append to Parameters section.
return_type : str or callable, optional
Type of return variable.
"""
docstring_ = str( docstring if isinstance(docstring,str)
else docstring.__doc__ if hasattr(docstring,'__doc__')
else '')
d = dict(Parameters=extra_parameters,
# Examples=extra_examples,
# Notes=extra_notes,
)
for key,extra in [(k,v) for (k,v) in d.items() if v is not None]:
if not (heading := _re.search(fr'^([ ]*){key}\s*\n\1{"-"*len(key)}',
docstring_,flags=_re.MULTILINE)):
raise RuntimeError(f"Docstring {docstring_} lacks a correctly formatted {key} section to insert values into")
content = [line for line in extra.split('\n') if line.strip()]
indent = len(heading.group(1))
shift = min([len(line)-len(line.lstrip(' '))-indent for line in content])
extra = '\n'.join([(line[shift:] if shift > 0 else
f'{" "*-shift}{line}') for line in content])
docstring_ = _re.sub(fr'(^([ ]*){key}\s*\n\2{"-"*len(key)}[\n ]*[A-Za-z0-9_ ]*: ([^\n]+\n)*)',
fr'\1{extra}\n',
docstring_,flags=_re.MULTILINE)
if return_type is None:
return docstring_
else:
if isinstance(return_type,str):
return_type_ = return_type
else:
return_class = return_type.__annotations__.get('return','')
return_type_ = (_sys.modules[return_type.__module__].__name__.split('.')[0]
+'.'
+(return_class.__name__ if not isinstance(return_class,str) else return_class)
)
return _re.sub(r'(^([ ]*)Returns\s*\n\2-------\s*\n[ ]*[A-Za-z0-9_ ]*: )(.*)\n',
fr'\1{return_type_}\n',
docstring_,flags=_re.MULTILINE)
def extend_docstring(docstring: _Union[str, _Callable] = None,
extra_parameters: str = None) -> _Callable:
"""
Decorator: Extend the function's docstring.
Parameters
----------
docstring : str or callable, optional
Docstring to extend. Defaults to that of decorated function.
extra_parameters : str, optional
Additional information to append to Parameters section.
Notes
-----
Return type will become own type if docstring is callable.
"""
def _decorator(func):
func.__doc__ = _docstringer(func.__doc__ if docstring is None else docstring,
extra_parameters,
func if isinstance(docstring,_Callable) else None,
)
return func
return _decorator
def DREAM3D_base_group(fname: _Union[str, _Path]) -> str:
"""
Determine the base group of a DREAM.3D file.
The base group is defined as the group (folder) that contains
a 'SPACING' dataset in a '_SIMPL_GEOMETRY' group.
Parameters
----------
fname : str or pathlib.Path
Filename of the DREAM.3D (HDF5) file.
Returns
-------
path : str
Path to the base group.
"""
with _h5py.File(_Path(fname).expanduser(),'r') as f:
base_group = f.visit(lambda path: path.rsplit('/',2)[0] if '_SIMPL_GEOMETRY/SPACING' in path else None)
if base_group is None:
raise ValueError(f'could not determine base group in file "{fname}"')
return base_group
def DREAM3D_cell_data_group(fname: _Union[str, _Path]) -> str:
"""
Determine the cell data group of a DREAM.3D file.
The cell data group is defined as the group (folder) that contains
a dataset in the base group whose length matches the total number
of points as specified in '_SIMPL_GEOMETRY/DIMENSIONS'.
Parameters
----------
fname : str or pathlib.Path
Filename of the DREAM.3D (HDF5) file.
Returns
-------
path : str
Path to the cell data group.
"""
base_group = DREAM3D_base_group(fname)
with _h5py.File(_Path(fname).expanduser(),'r') as f:
cells = tuple(f['/'.join([base_group,'_SIMPL_GEOMETRY','DIMENSIONS'])][()][::-1])
cell_data_group = f[base_group].visititems(lambda path,obj: path.split('/')[0] \
if isinstance(obj,_h5py._hl.dataset.Dataset) and _np.shape(obj)[:-1] == cells \
else None)
if cell_data_group is None:
raise ValueError(f'could not determine cell-data group in file "{fname}/{base_group}"')
return cell_data_group
def Bravais_to_Miller(*,
uvtw: _np.ndarray = None,
hkil: _np.ndarray = None) -> _np.ndarray:
"""
Transform 4 MillerBravais indices to 3 Miller indices of crystal direction [uvw] or plane normal (hkl).
Parameters
----------
uvtw|hkil : numpy.ndarray, shape (...,4)
MillerBravais indices of crystallographic direction [uvtw] or plane normal (hkil).
Returns
-------
uvw|hkl : numpy.ndarray, shape (...,3)
Miller indices of [uvw] direction or (hkl) plane normal.
"""
if (uvtw is not None) ^ (hkil is None):
raise KeyError('specify either "uvtw" or "hkil"')
axis,basis = (_np.array(uvtw),_np.array([[1,0,-1,0],
[0,1,-1,0],
[0,0, 0,1]])) \
if hkil is None else \
(_np.array(hkil),_np.array([[1,0,0,0],
[0,1,0,0],
[0,0,0,1]]))
return _np.einsum('il,...l',basis,axis)
def Miller_to_Bravais(*,
uvw: _np.ndarray = None,
hkl: _np.ndarray = None) -> _np.ndarray:
"""
Transform 3 Miller indices to 4 MillerBravais indices of crystal direction [uvtw] or plane normal (hkil).
Parameters
----------
uvw|hkl : numpy.ndarray, shape (...,3)
Miller indices of crystallographic direction [uvw] or plane normal (hkl).
Returns
-------
uvtw|hkil : numpy.ndarray, shape (...,4)
MillerBravais indices of [uvtw] direction or (hkil) plane normal.
"""
if (uvw is not None) ^ (hkl is None):
raise KeyError('specify either "uvw" or "hkl"')
axis,basis = (_np.array(uvw),_np.array([[ 2,-1, 0],
[-1, 2, 0],
[-1,-1, 0],
[ 0, 0, 3]])/3) \
if hkl is None else \
(_np.array(hkl),_np.array([[ 1, 0, 0],
[ 0, 1, 0],
[-1,-1, 0],
[ 0, 0, 1]]))
return _np.einsum('il,...l',basis,axis)
def dict_prune(d: _Dict) -> _Dict:
"""
Recursively remove empty dictionaries.
Parameters
----------
d : dict
Dictionary to prune.
Returns
-------
pruned : dict
Pruned dictionary.
"""
# https://stackoverflow.com/questions/48151953
new = {}
for k,v in d.items():
if isinstance(v, dict):
v = dict_prune(v)
if not isinstance(v,dict) or v != {}:
new[k] = v
return new
def dict_flatten(d: _Dict) -> _Dict:
"""
Recursively remove keys of single-entry dictionaries.
Parameters
----------
d : dict
Dictionary to flatten.
Returns
-------
flattened : dict
Flattened dictionary.
"""
if isinstance(d,dict) and len(d) == 1:
entry = d[list(d.keys())[0]]
new = dict_flatten(entry.copy()) if isinstance(entry,dict) else entry
else:
new = {k: (dict_flatten(v) if isinstance(v, dict) else v) for k,v in d.items()}
return new
def tail_repack(extended: _Union[str, _Sequence[str]],
existing: _List[str] = []) -> _List[str]:
"""
Repack tailing characters into single string if all are new.
Parameters
----------
extended : (list of) str
Extended string list with potentially autosplitted tailing string relative to `existing`.
existing : list of str
Base string list.
Returns
-------
repacked : list of str
Repacked version of `extended`.
Examples
--------
>>> tail_repack(['a','new','e','n','t','r','y'],['a','new'])
['a','new','entry']
>>> tail_repack(['a','new','shiny','e','n','t','r','y'],['a','new'])
['a','new','shiny','e','n','t','r','y']
"""
return [extended] if isinstance(extended,str) else existing + \
([''.join(extended[len(existing):])] if _np.prod([len(i) for i in extended[len(existing):]]) == 1 else
list(extended[len(existing):]))
def aslist(arg: _Union[_IntCollection, int, None]) -> _List:
"""
Transform argument to list.
Parameters
----------
arg : (collection of) int or None
Entity to transform into list.
Returns
-------
transformed : list
Entity transformed into list.
"""
return [] if arg is None else list(arg) if isinstance(arg,(_np.ndarray,_Collection)) else [arg]
####################################################################################################
# Classes
####################################################################################################
class ProgressBar:
"""
Report progress of an interation as a status bar.
Works for 0-based loops, ETA is estimated by linear extrapolation.
"""
def __init__(self,
total: int,
prefix: str,
bar_length: int):
"""
Set current time as basis for ETA estimation.
Parameters
----------
total : int
Total # of iterations.
prefix : str
Prefix string.
bar_length : int
Character length of bar.
"""
self.total = total
self.prefix = prefix
self.bar_length = bar_length
self.time_start = self.time_last_update = _datetime.datetime.now()
self.fraction_last = 0.0
_sys.stderr.write(f"{self.prefix} {''*self.bar_length} 0% ETA n/a")
_sys.stderr.flush()
def update(self,
iteration: int) -> None:
fraction = (iteration+1) / self.total
if (filled_length := int(self.bar_length * fraction)) > int(self.bar_length * self.fraction_last) or \
_datetime.datetime.now() - self.time_last_update > _datetime.timedelta(seconds=10):
self.time_last_update = _datetime.datetime.now()
bar = '' * filled_length + '' * (self.bar_length - filled_length)
remaining_time = (_datetime.datetime.now() - self.time_start) \
* (self.total - (iteration+1)) / (iteration+1)
remaining_time -= _datetime.timedelta(microseconds=remaining_time.microseconds) # remove μs
_sys.stderr.write(f'\r{self.prefix} {bar} {fraction:>4.0%} ETA {remaining_time}')
_sys.stderr.flush()
self.fraction_last = fraction
if iteration == self.total - 1:
_sys.stderr.write('\n')
_sys.stderr.flush()