1002 lines
61 KiB
Fortran
1002 lines
61 KiB
Fortran
! Copyright 2011 Max-Planck-Institut fuer Eisenforschung GmbH
|
|
!
|
|
! This file is part of DAMASK,
|
|
! the Duesseldorf Advanced Material Simulation Kit.
|
|
!
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
! it under the terms of the GNU General Public License as published by
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
! (at your option) any later version.
|
|
!
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
! GNU General Public License for more details.
|
|
!
|
|
! You should have received a copy of the GNU General Public License
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
!
|
|
!##############################################################
|
|
!* $Id$
|
|
!********************************************************************
|
|
! Material subroutine for BVP solution using spectral method
|
|
!
|
|
! Run 'DAMASK_spectral.exe --help' to get usage hints
|
|
!
|
|
! written by P. Eisenlohr,
|
|
! F. Roters,
|
|
! L. Hantcherli,
|
|
! W.A. Counts,
|
|
! D.D. Tjahjanto,
|
|
! C. Kords,
|
|
! M. Diehl,
|
|
! R. Lebensohn
|
|
!
|
|
! MPI fuer Eisenforschung, Duesseldorf
|
|
!
|
|
program DAMASK_spectral
|
|
!********************************************************************
|
|
|
|
use DAMASK_interface
|
|
use prec, only: pInt, pReal, DAMASK_NaN
|
|
use IO
|
|
use debug, only: debug_spectral, &
|
|
debug_spectralGeneral, &
|
|
debug_spectralDivergence, &
|
|
debug_spectralRestart, &
|
|
debug_spectralFFTW
|
|
use math
|
|
use kdtree2_module
|
|
use mesh, only: mesh_ipCenterOfGravity
|
|
use CPFEM, only: CPFEM_general, CPFEM_initAll
|
|
use FEsolving, only: restartWrite, restartReadInc
|
|
use numerics, only: err_div_tol, err_stress_tolrel , rotation_tol,&
|
|
itmax, memory_efficient, DAMASK_NumThreadsInt, divergence_correction, &
|
|
fftw_planner_flag, fftw_timelimit
|
|
use homogenization, only: materialpoint_sizeResults, materialpoint_results
|
|
!$ use OMP_LIB ! the openMP function library
|
|
|
|
implicit none
|
|
! variables to read from loadcase and geom file
|
|
real(pReal), dimension(9) :: temp_valueVector ! stores information temporarily from loadcase file
|
|
logical, dimension(9) :: temp_maskVector
|
|
integer(pInt), parameter :: maxNchunksLoadcase = &
|
|
(1_pInt + 9_pInt)*3_pInt + & ! deformation, rotation, and stress
|
|
(1_pInt + 1_pInt)*5_pInt + & ! time, (log)incs, temp, restartfrequency, and outputfrequency
|
|
1_pInt, & ! dropguessing
|
|
maxNchunksGeom = 7_pInt, & ! 4 identifiers, 3 values
|
|
myUnit = 234_pInt
|
|
integer(pInt), dimension (1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing
|
|
integer(pInt) :: headerLength, N_l=0_pInt, N_t=0_pInt, N_n=0_pInt, N_Fdot=0_pInt
|
|
character(len=1024) :: path, line, keyword
|
|
logical :: gotResolution =.false., gotDimension =.false., gotHomogenization = .false.
|
|
type bc_type
|
|
real(pReal), dimension (3,3) :: deformation = 0.0_pReal, & ! applied velocity gradient or time derivative of deformation gradient
|
|
stress = 0.0_pReal, & ! stress BC (if applicable)
|
|
rotation = math_I3 ! rotation of BC (if applicable)
|
|
real(pReal) :: time = 0.0_pReal, & ! length of increment
|
|
temperature = 300_pReal ! isothermal starting conditions
|
|
integer(pInt) :: incs = 0_pInt, & ! number of increments
|
|
outputfrequency = 1_pInt, & ! frequency of result writes
|
|
restartfrequency = 0_pInt, & ! frequency of restart writes
|
|
logscale = 0_pInt ! linear/logaritmic time inc flag
|
|
logical :: followFormerTrajectory = .true., & ! follow trajectory of former loadcase
|
|
velGradApplied = .false. ! decide wether velocity gradient or fdot is given
|
|
logical, dimension(3,3) :: maskDeformation = .false., & ! mask of deformation boundary conditions
|
|
maskStress = .false. ! mask of stress boundary conditions
|
|
logical, dimension(9) :: maskStressVector = .false. ! linear mask of boundary conditions
|
|
end type
|
|
|
|
type(bc_type), allocatable, dimension(:) :: bc
|
|
character(len=6) :: loadcase_string
|
|
|
|
! variables storing information from geom file
|
|
real(pReal) :: wgt
|
|
real(pReal), dimension(3) :: geomdimension = 0.0_pReal ! physical dimension of volume element per direction
|
|
integer(pInt) :: Npoints,& ! number of Fourier points
|
|
homog ! homogenization scheme used
|
|
integer(pInt), dimension(3) :: res = 1_pInt ! resolution (number of Fourier points) in each direction
|
|
integer(pInt) :: res1_red
|
|
|
|
! stress, stiffness and compliance average etc.
|
|
real(pReal), dimension(3,3) :: pstress, pstress_av, defgrad_av_lab, &
|
|
defgradAim = math_I3, defgradAimOld= math_I3, defgradAimCorr= math_I3,&
|
|
mask_stress, mask_defgrad, fDot, &
|
|
pstress_av_lab, defgradAim_lab ! quantities rotated to other coordinate system
|
|
real(pReal), dimension(3,3,3,3) :: dPdF, c0_reference, c_current = 0.0_pReal, s_prev, c_prev ! stiffness and compliance
|
|
real(pReal), dimension(6) :: cstress ! cauchy stress
|
|
real(pReal), dimension(6,6) :: dsde ! small strain stiffness
|
|
real(pReal), dimension(9,9) :: s_prev99, c_prev99 ! compliance and stiffness in matrix notation
|
|
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
|
|
integer(pInt) :: size_reduced = 0.0_pReal ! number of stress BCs
|
|
|
|
! pointwise data
|
|
real(pReal), dimension(:,:,:,:,:), allocatable :: defgrad, defgradold
|
|
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
|
|
real(pReal), dimension(:,:,:), allocatable :: temperature
|
|
|
|
! variables storing information for spectral method and FFTW
|
|
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
|
|
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
|
|
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
|
|
integer(pInt), dimension(3) :: k_s
|
|
type(C_PTR) :: data_fftw, fftw_stress, fftw_fluctuation
|
|
real(pReal), dimension(:,:,:,:,:), pointer :: data_real
|
|
complex(pReal), dimension(:,:,:,:,:), pointer :: data_complex
|
|
!debugging (proof of correct transformation)
|
|
type(C_PTR) :: fftw_debug, fftw_debug_forward, fftw_debug_backward
|
|
real(pReal), dimension(:,:,:), pointer :: fftw_debug_real
|
|
complex(pReal), dimension(:,:,:), pointer :: fftw_debug_complex
|
|
|
|
! variables for regriding
|
|
real(pReal), dimension(:,:,:,:) ,allocatable :: deformed_small
|
|
real(pReal), dimension(:,:) ,allocatable :: deformed_large
|
|
real(pReal), dimension(:,:,:,:) ,allocatable :: new_coordinates
|
|
type(kdtree2), pointer :: tree
|
|
real(pReal), dimension(3) :: shift
|
|
|
|
! loop variables, convergence etc.
|
|
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc ! elapsed time, begin of interval, time interval
|
|
real(pReal) :: guessmode, err_div, err_stress, err_stress_tol, p_hat_avg
|
|
complex(pReal) :: err_div_avg_complex
|
|
complex(pReal), parameter :: img = cmplx(0.0_pReal,1.0_pReal)
|
|
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
|
|
complex(pReal), dimension(3) :: temp3_Complex
|
|
complex(pReal), dimension(3,3) :: temp33_Complex
|
|
real(pReal), dimension(3,3) :: temp33_Real
|
|
integer(pInt) :: i, j, k, l, m, n, p, errorID
|
|
integer(pInt) :: N_Loadcases, loadcase, inc, iter, ielem, CPFEM_mode, &
|
|
ierr, notConvergedCounter = 0_pInt, totalIncsCounter = 0_pInt
|
|
logical :: errmatinv
|
|
real(pReal) :: defgradDet, defgradDetMax, defgradDetMin
|
|
real(pReal) :: correctionFactor
|
|
integer(pInt), dimension(3) :: cutting_freq
|
|
|
|
! --- debugging variables
|
|
type(C_PTR) :: divergence
|
|
real(pReal), dimension(:,:,:,:), pointer :: divergence_real
|
|
complex(pReal), dimension(:,:,:,:), pointer :: divergence_complex
|
|
real(pReal) :: p_real_avg, err_div_max, err_real_div_avg, err_real_div_max
|
|
logical :: debugGeneral, debugDivergence, debugRestart, debugFFTW
|
|
type(C_PTR) :: fftw_divergence ! plan for fftw backward transform of divergence
|
|
integer(pInt) :: row, column
|
|
|
|
! --- initializing model size independed parameters
|
|
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
|
|
|
|
call DAMASK_interface_init()
|
|
|
|
print '(a)', ''
|
|
print '(a)', ' <<<+- DAMASK_spectral init -+>>>'
|
|
print '(a)', ' $Id$'
|
|
print '(a)', ''
|
|
print '(a,a)', ' Working Directory: ',trim(getSolverWorkingDirectoryName())
|
|
print '(a,a)', ' Solver Job Name: ',trim(getSolverJobName())
|
|
print '(a)', ''
|
|
|
|
! Reading the loadcase file and allocate variables for loadcases
|
|
path = getLoadcaseName()
|
|
if (.not. IO_open_file(myUnit,path)) call IO_error(error_ID = 30_pInt,ext_msg = trim(path))
|
|
rewind(myUnit)
|
|
do
|
|
read(myUnit,'(a1024)',END = 100) line
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
positions = IO_stringPos(line,maxNchunksLoadcase)
|
|
do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase
|
|
select case (IO_lc(IO_stringValue(line,positions,i)))
|
|
case('l','velocitygrad','velgrad','velocitygradient')
|
|
N_l = N_l + 1_pInt
|
|
case('fdot')
|
|
N_Fdot = N_Fdot + 1_pInt
|
|
case('t','time','delta')
|
|
N_t = N_t + 1_pInt
|
|
case('n','incs','increments','steps','logincs','logsteps')
|
|
N_n = N_n + 1_pInt
|
|
end select
|
|
enddo ! count all identifiers to allocate memory and do sanity check
|
|
enddo
|
|
|
|
100 N_Loadcases = N_n
|
|
if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check
|
|
call IO_error(error_ID=37_pInt,ext_msg = trim(path)) ! error message for incomplete loadcase
|
|
|
|
allocate (bc(N_Loadcases))
|
|
|
|
! --- reading the loadcase and assign values to the allocated data structure
|
|
rewind(myUnit)
|
|
loadcase = 0_pInt
|
|
do
|
|
read(myUnit,'(a1024)',END = 101) line
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
loadcase = loadcase + 1_pInt
|
|
positions = IO_stringPos(line,maxNchunksLoadcase)
|
|
do j = 1_pInt,maxNchunksLoadcase
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('fdot','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix
|
|
bc(loadcase)%velGradApplied = (IO_lc(IO_stringValue(line,positions,j)) == 'l' .or. & ! in case of given L, set flag to true
|
|
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygrad' .or. &
|
|
IO_lc(IO_stringValue(line,positions,j)) == 'velgrad' .or. &
|
|
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygradient')
|
|
temp_valueVector = 0.0_pReal
|
|
temp_maskVector = .false.
|
|
forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,positions,j+k) /= '*'
|
|
do k = 1_pInt,9_pInt
|
|
if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
|
|
enddo
|
|
bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,(/3,3/)))
|
|
bc(loadcase)%deformation = math_plain9to33(temp_valueVector)
|
|
case('p','pk1','piolakirchhoff','stress')
|
|
temp_valueVector = 0.0_pReal
|
|
forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) = IO_stringValue(line,positions,j+k) /= '*'
|
|
do k = 1_pInt,9_pInt
|
|
if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k) ! assign values for the bc(loadcase)%stress matrix
|
|
enddo
|
|
bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,(/3,3/)))
|
|
bc(loadcase)%stress = math_plain9to33(temp_valueVector)
|
|
case('t','time','delta') ! increment time
|
|
bc(loadcase)%time = IO_floatValue(line,positions,j+1_pInt)
|
|
case('temp','temperature') ! starting temperature
|
|
bc(loadcase)%temperature = IO_floatValue(line,positions,j+1_pInt)
|
|
case('n','incs','increments','steps') ! number of increments
|
|
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
|
|
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
|
|
bc(loadcase)%incs = IO_intValue(line,positions,j+1_pInt)
|
|
bc(loadcase)%logscale = 1_pInt
|
|
case('f','freq','frequency','outputfreq') ! frequency of result writings
|
|
bc(loadcase)%outputfrequency = IO_intValue(line,positions,j+1_pInt)
|
|
case('r','restart','restartwrite') ! frequency of writing restart information
|
|
bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,j+1_pInt))
|
|
case('guessreset','dropguessing')
|
|
bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory
|
|
case('euler') ! rotation of loadcase given in euler angles
|
|
p = 0_pInt ! assuming values given in radians
|
|
l = 1_pInt ! assuming keyword indicating degree/radians
|
|
select case (IO_lc(IO_stringValue(line,positions,j+1_pInt)))
|
|
case('deg','degree')
|
|
p = 1_pInt ! for conversion from degree to radian
|
|
case('rad','radian')
|
|
case default
|
|
l = 0_pInt ! immediately reading in angles, assuming radians
|
|
end select
|
|
forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = IO_floatValue(line,positions,j+l+k) * real(p,pReal) * inRad
|
|
bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1))
|
|
case('rotation','rot') ! assign values for the rotation of loadcase matrix
|
|
temp_valueVector = 0.0_pReal
|
|
forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
|
|
bc(loadcase)%rotation = math_plain9to33(temp_valueVector)
|
|
end select
|
|
enddo; enddo
|
|
|
|
101 close(myUnit)
|
|
|
|
! --- read header of geom file to get the information needed before the complete geom file is intepretated by mesh.f90
|
|
path = getModelName()
|
|
|
|
if (.not. IO_open_file(myUnit,trim(path)//InputFileExtension))&
|
|
call IO_error(error_ID=101_pInt,ext_msg = trim(path)//InputFileExtension)
|
|
rewind(myUnit)
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,2_pInt)
|
|
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
|
|
if (keyword(1:4) == 'head') then
|
|
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
|
|
else
|
|
call IO_error(error_ID=42_pInt)
|
|
endif
|
|
|
|
rewind(myUnit)
|
|
do i = 1_pInt, headerLength
|
|
read(myUnit,'(a1024)') line
|
|
positions = IO_stringPos(line,maxNchunksGeom)
|
|
select case ( IO_lc(IO_StringValue(line,positions,1)) )
|
|
case ('dimension')
|
|
gotDimension = .true.
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('x')
|
|
geomdimension(1) = IO_floatValue(line,positions,j+1_pInt)
|
|
case('y')
|
|
geomdimension(2) = IO_floatValue(line,positions,j+1_pInt)
|
|
case('z')
|
|
geomdimension(3) = IO_floatValue(line,positions,j+1_pInt)
|
|
end select
|
|
enddo
|
|
case ('homogenization')
|
|
gotHomogenization = .true.
|
|
homog = IO_intValue(line,positions,2_pInt)
|
|
case ('resolution')
|
|
gotResolution = .true.
|
|
do j = 2_pInt,6_pInt,2_pInt
|
|
select case (IO_lc(IO_stringValue(line,positions,j)))
|
|
case('a')
|
|
res(1) = IO_intValue(line,positions,j+1_pInt)
|
|
case('b')
|
|
res(2) = IO_intValue(line,positions,j+1_pInt)
|
|
case('c')
|
|
res(3) = IO_intValue(line,positions,j+1_pInt)
|
|
end select
|
|
enddo
|
|
end select
|
|
enddo
|
|
close(myUnit)
|
|
if (.not.(gotDimension .and. gotHomogenization .and. gotResolution)) call IO_error(error_ID = 45_pInt)
|
|
|
|
if(mod(res(1),2_pInt)/=0_pInt .or.&
|
|
mod(res(2),2_pInt)/=0_pInt .or.&
|
|
(mod(res(3),2_pInt)/=0_pInt .and. res(3)/= 1_pInt)) call IO_error(error_ID = 103_pInt)
|
|
res1_red = res(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c)
|
|
Npoints = res(1)*res(2)*res(3)
|
|
wgt = 1.0_pReal/real(Npoints, pReal)
|
|
|
|
! --- initialization of CPFEM_general (= constitutive law)
|
|
call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt)
|
|
|
|
! --- debugging parameters
|
|
debugGeneral = iand(debug_spectral,debug_spectralGeneral) > 0_pInt
|
|
debugDivergence = iand(debug_spectral,debug_spectralDivergence) > 0_pInt
|
|
debugRestart = iand(debug_spectral,debug_spectralRestart) > 0_pInt
|
|
debugFFTW = iand(debug_spectral,debug_spectralFFTW) > 0_pInt
|
|
|
|
! --- output of geometry
|
|
print '(a)', ''
|
|
print '(a)', '#############################################################'
|
|
print '(a)', 'DAMASK spectral:'
|
|
print '(a)', 'The spectral method boundary value problem solver for'
|
|
print '(a)', 'the Duesseldorf Advanced Material Simulation Kit'
|
|
print '(a)', '#############################################################'
|
|
print '(a,a)', 'geometry file: ',trim(path)//'.geom'
|
|
print '(a)', '============================================================='
|
|
print '(a,i12,i12,i12)','resolution a b c:', res
|
|
print '(a,f12.5,f12.5,f12.5)','dimension x y z:', geomdimension
|
|
print '(a,i5)','homogenization: ',homog
|
|
print '(a)', '#############################################################'
|
|
print '(a,a)', 'loadcase file: ',trim(getLoadcaseName())
|
|
|
|
if (bc(1)%followFormerTrajectory) then
|
|
call IO_warning(warning_ID = 33_pInt) ! cannot guess along trajectory for first inc of first loadcase
|
|
bc(1)%followFormerTrajectory = .false.
|
|
endif
|
|
|
|
! --- consistency checks and output of loadcase
|
|
|
|
errorID = 0_pInt
|
|
do loadcase = 1_pInt, N_Loadcases
|
|
write (loadcase_string, '(i6)' ) loadcase
|
|
|
|
print '(a)', '============================================================='
|
|
print '(a,i6)', 'loadcase: ', loadcase
|
|
|
|
if (.not. bc(loadcase)%followFormerTrajectory) print '(a)', 'drop guessing along trajectory'
|
|
if (bc(loadcase)%velGradApplied) then
|
|
do j = 1_pInt, 3_pInt
|
|
if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. &
|
|
any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 32_pInt ! each row should be either fully or not at all defined
|
|
enddo
|
|
print '(a)','velocity gradient:'
|
|
else
|
|
print '(a)','deformation gradient rate:'
|
|
endif
|
|
print '(3(3(f12.6,x)/)$)', merge(math_transpose3x3(bc(loadcase)%deformation),&
|
|
reshape(spread(DAMASK_NaN,1,9),(/3,3/)),transpose(bc(loadcase)%maskDeformation))
|
|
print '(a,/,3(3(f12.6,x)/)$)','stress / GPa:',1e-9*merge(math_transpose3x3(bc(loadcase)%stress),&
|
|
reshape(spread(DAMASK_NaN,1,9),(/3,3/)),&
|
|
transpose(bc(loadcase)%maskStress))
|
|
if (any(bc(loadcase)%rotation /= math_I3)) &
|
|
print '(a,3(3(f12.6,x)/)$)','rotation of loadframe:',math_transpose3x3(bc(loadcase)%rotation)
|
|
print '(a,f12.6)','temperature:',bc(loadcase)%temperature
|
|
print '(a,f12.6)','time: ',bc(loadcase)%time
|
|
print '(a,i5)' ,'increments: ',bc(loadcase)%incs
|
|
print '(a,i5)','output frequency: ',bc(loadcase)%outputfrequency
|
|
print '(a,i5)','restart frequency: ',bc(loadcase)%restartfrequency
|
|
|
|
|
|
if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 31 ! exclusive or masking only
|
|
if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. &
|
|
reshape((/.false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false./),(/3,3/)))) &
|
|
errorID = 38_pInt ! no rotation is allowed by stress BC
|
|
if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose3x3(bc(loadcase)%rotation))-math_I3)&
|
|
> reshape(spread(rotation_tol,1,9),(/3,3/)))&
|
|
.or. abs(math_det3x3(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol) &
|
|
errorID = 46_pInt ! given rotation matrix contains strain
|
|
if (bc(loadcase)%time < 0.0_pReal) errorID = 34_pInt ! negative time increment
|
|
if (bc(loadcase)%incs < 1_pInt) errorID = 35_pInt ! non-positive incs count
|
|
if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 36_pInt ! non-positive result frequency
|
|
if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string)
|
|
enddo
|
|
|
|
! Initialization of fftw (see manual on fftw.org for more details)
|
|
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(error_ID=102)
|
|
#ifdef _OPENMP
|
|
if(DAMASK_NumThreadsInt > 0_pInt) then
|
|
ierr = fftw_init_threads()
|
|
if (ierr == 0_pInt) call IO_error(error_ID = 104_pInt)
|
|
call fftw_plan_with_nthreads(DAMASK_NumThreadsInt)
|
|
endif
|
|
#endif
|
|
call fftw_set_timelimit(fftw_timelimit)
|
|
|
|
!*************************************************************
|
|
! Loop over loadcases defined in the loadcase file
|
|
do loadcase = 1_pInt, N_Loadcases
|
|
!*************************************************************
|
|
time0 = time ! loadcase start time
|
|
if (bc(loadcase)%followFormerTrajectory) then ! continue to guess along former trajectory where applicable
|
|
guessmode = 1.0_pReal
|
|
else
|
|
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first inc
|
|
endif
|
|
|
|
mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation)
|
|
mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress)
|
|
size_reduced = count(bc(loadcase)%maskStressVector)
|
|
allocate (c_reduced(size_reduced,size_reduced)); c_reduced = 0.0_pReal
|
|
allocate (s_reduced(size_reduced,size_reduced)); s_reduced = 0.0_pReal
|
|
|
|
timeinc = bc(loadcase)%time/bc(loadcase)%incs ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used
|
|
|
|
fDot = bc(loadcase)%deformation ! only valid for given fDot. will be overwritten later in case L is given
|
|
|
|
!*************************************************************
|
|
! loop oper incs defined in input file for current loadcase
|
|
do inc = 1_pInt, bc(loadcase)%incs
|
|
!*************************************************************
|
|
! forwarding time
|
|
if (bc(loadcase)%logscale == 1_pInt) then ! loglinear scale
|
|
if (loadcase == 1_pInt) then ! 1st loadcase of loglinear scale
|
|
if (inc == 1_pInt) then ! 1st inc of 1st loadcase of loglinear scale
|
|
timeinc = bc(1)%time*(2.0_pReal**real( 1_pInt-bc(1)%incs ,pReal)) ! assume 1st inc is equal to 2nd
|
|
else ! not-1st inc of 1st loadcase of loglinear scale
|
|
timeinc = bc(1)%time*(2.0_pReal**real(inc-1_pInt-bc(1)%incs ,pReal))
|
|
endif
|
|
else ! not-1st loadcase of logarithmic scale
|
|
timeinc = time0 *( (1.0_pReal + bc(loadcase)%time/time0 )**real( inc/bc(loadcase)%incs ,pReal) &
|
|
-(1.0_pReal + bc(loadcase)%time/time0 )**real( (inc-1_pInt)/bc(loadcase)%incs ,pReal) )
|
|
endif
|
|
endif
|
|
time = time + timeinc
|
|
totalIncsCounter = totalIncsCounter + 1_pInt
|
|
|
|
!*************************************************************
|
|
! Initialization Start
|
|
!*************************************************************
|
|
|
|
if(totalIncsCounter == restartReadInc) then ! Initialize values
|
|
guessmode = 0.0_pReal ! no old values
|
|
allocate (defgrad ( res(1), res(2),res(3),3,3)); defgrad = 0.0_pReal
|
|
allocate (defgradold ( res(1), res(2),res(3),3,3)); defgradold = 0.0_pReal
|
|
allocate (coordinates(3,res(1), res(2),res(3))); coordinates = 0.0_pReal
|
|
allocate (temperature( res(1), res(2),res(3))); temperature = bc(1)%temperature ! start out isothermally
|
|
allocate (xi (3,res1_red,res(2),res(3))); xi = 0.0_pReal
|
|
data_fftw = fftw_alloc_complex(int(res1_red*res(2)*res(3)*9_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
|
call c_f_pointer(data_fftw, data_real, [ res(1)+2_pInt,res(2),res(3),3,3])
|
|
call c_f_pointer(data_fftw, data_complex, [ res1_red, res(2),res(3),3,3])
|
|
|
|
if (debugDivergence) then
|
|
divergence = fftw_alloc_complex(int(res1_red*res(2)*res(3)*3_pInt,C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
|
call c_f_pointer(divergence, divergence_real, [ res(1)+2_pInt,res(2),res(3),3])
|
|
call c_f_pointer(divergence, divergence_complex, [ res1_red, res(2),res(3),3])
|
|
endif
|
|
if (debugFFTW) then
|
|
fftw_debug = fftw_alloc_complex(int(res1_red*res(2)*res(3),C_SIZE_T)) !C_SIZE_T is of type integer(8)
|
|
call c_f_pointer(fftw_debug, fftw_debug_real, [ res(1)+2_pInt,res(2),res(3)])
|
|
call c_f_pointer(fftw_debug, fftw_debug_complex, [ res1_red, res(2),res(3)])
|
|
endif
|
|
|
|
|
|
fftw_stress = fftw_plan_many_dft_r2c(3,(/res(3),res(2) ,res(1)/),9,& ! dimensions , length in each dimension in reversed order
|
|
data_real,(/res(3),res(2) ,res(1)+2_pInt/),& ! input data , physical length in each dimension in reversed order
|
|
1, res(3)*res(2)*(res(1)+2_pInt),& ! striding , product of physical lenght in the 3 dimensions
|
|
data_complex,(/res(3),res(2) ,res1_red/),&
|
|
1, res(3)*res(2)* res1_red,fftw_planner_flag)
|
|
|
|
fftw_fluctuation = fftw_plan_many_dft_c2r(3,(/res(3),res(2) ,res(1)/),9,&
|
|
data_complex,(/res(3),res(2) ,res1_red/),&
|
|
1, res(3)*res(2)* res1_red,&
|
|
data_real,(/res(3),res(2) ,res(1)+2_pInt/),&
|
|
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
|
if (debugDivergence) &
|
|
fftw_divergence = fftw_plan_many_dft_c2r(3,(/res(3),res(2) ,res(1)/),3,&
|
|
divergence_complex,(/res(3),res(2) ,res1_red/),&
|
|
1, res(3)*res(2)* res1_red,&
|
|
divergence_real,(/res(3),res(2) ,res(1)+2_pInt/),&
|
|
1, res(3)*res(2)*(res(1)+2_pInt),fftw_planner_flag)
|
|
|
|
if (debugFFTW) fftw_debug_forward = fftw_plan_dft_r2c_3d(res(3),res(2),res(1),fftw_debug_real,fftw_debug_complex,fftw_planner_flag) !reversed order
|
|
if (debugFFTW) fftw_debug_backward= fftw_plan_dft_c2r_3d(res(3),res(2),res(1),fftw_debug_complex,fftw_debug_real,fftw_planner_flag) !reversed order
|
|
|
|
if (debugGeneral) then
|
|
write (6,*) 'FFTW initialized'
|
|
endif
|
|
|
|
if (restartReadInc==1_pInt) then ! not restarting, no deformation at the beginning
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
defgrad(i,j,k,1:3,1:3) = math_I3
|
|
defgradold(i,j,k,1:3,1:3) = math_I3
|
|
enddo; enddo; enddo
|
|
else ! using old values
|
|
if (IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',trim(getSolverJobName()),size(defgrad))) then
|
|
read (777,rec=1) defgrad
|
|
close (777)
|
|
endif
|
|
defgradold = defgrad
|
|
defgradAim = 0.0_pReal
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
defgradAim = defgradAim + defgrad(i,j,k,1:3,1:3) ! calculating old average deformation
|
|
enddo; enddo; enddo
|
|
defgradAim = defgradAim * wgt
|
|
defgradAimOld = defgradAim
|
|
guessmode=0.0_pInt
|
|
endif
|
|
ielem = 0_pInt
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
coordinates(1:3,i,j,k) = mesh_ipCenterOfGravity(1:3,1,ielem) ! set to initial coordinates ToDo: SHOULD BE UPDATED TO CURRENT POSITION IN FUTURE REVISIONS!!! But do we know them? I don't think so. Otherwise we don't need geometry reconstruction
|
|
call CPFEM_general(2_pInt,coordinates(1:3,i,j,k),math_I3,math_I3,temperature(i,j,k),&
|
|
0.0_pReal,ielem,1_pInt,cstress,dsde,pstress,dPdF)
|
|
c_current = c_current + dPdF
|
|
enddo; enddo; enddo
|
|
c0_reference = c_current * wgt ! linear reference material stiffness
|
|
|
|
if (debugGeneral) then
|
|
write (6,*) 'first call to CPFEM_general finished'
|
|
endif
|
|
|
|
do k = 1_pInt, res(3) ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
|
|
k_s(3) = k - 1_pInt
|
|
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
|
|
do j = 1_pInt, res(2)
|
|
k_s(2) = j - 1_pInt
|
|
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
|
|
do i = 1, res1_red
|
|
k_s(1) = i - 1_pInt
|
|
xi(3,i,j,k) = 0.0_pReal ! 2D case
|
|
if(res(3) > 1_pInt) xi(3,i,j,k) = real(k_s(3), pReal)/geomdimension(3) ! 3D case
|
|
xi(2,i,j,k) = real(k_s(2), pReal)/geomdimension(2) ! 2D and 3D case
|
|
xi(1,i,j,k) = real(k_s(1), pReal)/geomdimension(1) ! 2D and 3D case
|
|
enddo; enddo; enddo
|
|
|
|
!remove the given highest frequencies for calculation of the gamma operator
|
|
cutting_freq = (/0_pInt,0_pInt,0_pInt/) ! for 0,0,0, just the highest freq. is removed
|
|
do k = 1_pInt ,res(3); do j = 1_pInt ,res(2); do i = 1_pInt, res1_red
|
|
if((k .gt. res(3)/2_pInt - cutting_freq(3)).and.(k .le. res(3)/2_pInt + 1_pInt + cutting_freq(3))) xi(3,i,j,k)= 0.0_pReal
|
|
if((j .gt. res(2)/2_pInt - cutting_freq(2)).and.(j .le. res(2)/2_pInt + 1_pInt + cutting_freq(2))) xi(2,i,j,k)= 0.0_pReal
|
|
if((i .gt. res(1)/2_pInt - cutting_freq(1)).and.(i .le. res(1)/2_pInt + 1_pInt + cutting_freq(1))) xi(1,i,j,k)= 0.0_pReal
|
|
enddo; enddo; enddo
|
|
|
|
if(memory_efficient) then ! allocate just single fourth order tensor
|
|
allocate (gamma_hat(1,1,1,3,3,3,3)); gamma_hat = 0.0_pReal
|
|
else ! precalculation of gamma_hat field
|
|
allocate (gamma_hat(res1_red ,res(2),res(3),3,3,3,3)); gamma_hat = 0.0_pReal
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
|
if (any(xi(1:3,i,j,k) /= 0.0_pReal)) then
|
|
do l = 1_pInt ,3_pInt; do m = 1_pInt,3_pInt
|
|
xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k)
|
|
enddo; enddo
|
|
temp33_Real = math_inv3x3(math_mul3333xx33(c0_reference, xiDyad))
|
|
else
|
|
xiDyad = 0.0_pReal
|
|
temp33_Real = 0.0_pReal
|
|
endif
|
|
do l=1_pInt,3_pInt; do m=1_pInt,3_pInt; do n=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
|
gamma_hat(i,j,k, l,m,n,p) = - 0.25*(temp33_Real(l,n)+temp33_Real(n,l)) *&
|
|
(xiDyad(m,p)+xiDyad(p,m))
|
|
enddo; enddo; enddo; enddo
|
|
enddo; enddo; enddo
|
|
endif
|
|
|
|
if (divergence_correction) then
|
|
if (res(3) == 1_pInt) then
|
|
correctionFactor = minval(geomdimension(1:2))*wgt**(-1.0_pReal/4.0_pReal) ! 2D case, ToDo: correct?
|
|
else
|
|
correctionFactor = minval(geomdimension(1:3))*wgt**(-1.0_pReal/4.0_pReal) ! multiplying by minimum dimension to get rid of dimension dependency and phenomenologigal factor wgt**(-1/4) to get rid of resolution dependency
|
|
endif
|
|
else
|
|
correctionFactor = 1.0_pReal
|
|
endif
|
|
|
|
! write header of output file
|
|
!$OMP CRITICAL (write2out)
|
|
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())&
|
|
//'.spectralOut',form='UNFORMATTED',status='REPLACE')
|
|
write(538), 'load', trim(getLoadcaseName())
|
|
write(538), 'workingdir', trim(getSolverWorkingDirectoryName())
|
|
write(538), 'geometry', trim(getSolverJobName())//InputFileExtension
|
|
write(538), 'resolution', res
|
|
write(538), 'dimension', geomdimension
|
|
write(538), 'materialpoint_sizeResults', materialpoint_sizeResults
|
|
write(538), 'loadcases', N_Loadcases
|
|
write(538), 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase
|
|
write(538), 'times', bc(1:N_Loadcases)%time ! one entry per loadcase
|
|
write(538), 'logscales', bc(1:N_Loadcases)%logscale
|
|
bc(1)%incs = bc(1)%incs + 1_pInt
|
|
write(538), 'increments', bc(1:N_Loadcases)%incs ! one entry per loadcase
|
|
bc(1)%incs = bc(1)%incs - 1_pInt
|
|
write(538), 'startingIncrement', restartReadInc -1_pInt ! start with writing out the previous inc
|
|
|
|
write(538), 'eoh' ! end of header
|
|
write(538), materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed) results
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
!*************************************************************
|
|
! Initialization End
|
|
!*************************************************************
|
|
|
|
if(totalIncsCounter >= restartReadInc) then ! Do calculations (otherwise just forwarding)
|
|
if(bc(loadcase)%restartFrequency>0_pInt) &
|
|
restartWrite = ( mod(inc - 1_pInt,bc(loadcase)%restartFrequency)==0_pInt) ! at frequency of writing restart information
|
|
! setting restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?)
|
|
if (bc(loadcase)%velGradApplied) & ! calculate fDot from given L and current F
|
|
fDot = math_mul33x33(bc(loadcase)%deformation, defgradAim)
|
|
|
|
!winding forward of deformation aim in loadcase system
|
|
temp33_Real = defgradAim
|
|
defgradAim = defgradAim &
|
|
+ guessmode * mask_stress * (defgradAim - defgradAimOld) &
|
|
+ mask_defgrad * fDot * timeinc
|
|
defgradAimOld = temp33_Real
|
|
|
|
! update local deformation gradient
|
|
if (any(bc(loadcase)%rotation/=math_I3)) then ! lab and loadcase coordinate system are NOT the same
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
temp33_Real = defgrad(i,j,k,1:3,1:3)
|
|
if (bc(loadcase)%velGradApplied) & ! use velocity gradient to calculate new deformation gradient (if not guessing)
|
|
fDot = math_mul33x33(bc(loadcase)%deformation,&
|
|
math_rotate_forward3x3(defgradold(i,j,k,1:3,1:3),bc(loadcase)%rotation))
|
|
defgrad(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
|
|
+ guessmode * (defgrad(i,j,k,1:3,1:3) - defgradold(i,j,k,1:3,1:3))& ! guessing...
|
|
+ math_rotate_backward3x3((1.0_pReal-guessmode) * mask_defgrad * fDot,&
|
|
bc(loadcase)%rotation) *timeinc ! apply the prescribed value where deformation is given if not guessing
|
|
defgradold(i,j,k,1:3,1:3) = temp33_Real
|
|
enddo; enddo; enddo
|
|
else ! one coordinate system for lab and loadcase, save some multiplications
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
temp33_Real = defgrad(i,j,k,1:3,1:3)
|
|
if (bc(loadcase)%velGradApplied) & ! use velocity gradient to calculate new deformation gradient (if not guessing)
|
|
fDot = math_mul33x33(bc(loadcase)%deformation,defgradold(i,j,k,1:3,1:3))
|
|
defgrad(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
|
|
+ guessmode * (defgrad(i,j,k,1:3,1:3) - defgradold(i,j,k,1:3,1:3))& ! guessing...
|
|
+ (1.0_pReal-guessmode) * mask_defgrad * fDot * timeinc ! apply the prescribed value where deformation is given if not guessing
|
|
defgradold(i,j,k,1:3,1:3) = temp33_Real
|
|
enddo; enddo; enddo
|
|
endif
|
|
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
|
|
|
|
CPFEM_mode = 1_pInt ! winding forward
|
|
iter = 0_pInt
|
|
err_div = 2.0_pReal * err_div_tol ! go into loop
|
|
|
|
! c_prev = math_rotate_forward3x3x3x3(c_current*wgt,bc(loadcase)%rotation) ToDo: ask Philip ! calculate stiffness from former inc
|
|
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
|
|
c_prev99 = math_Plain3333to99(c_prev)
|
|
k = 0_pInt ! build reduced stiffness
|
|
do n = 1_pInt,9_pInt
|
|
if(bc(loadcase)%maskStressVector(n)) then
|
|
k = k + 1_pInt
|
|
j = 0_pInt
|
|
do m = 1_pInt,9_pInt
|
|
if(bc(loadcase)%maskStressVector(m)) then
|
|
j = j + 1_pInt
|
|
c_reduced(k,j) = c_prev99(n,m)
|
|
endif; enddo; endif; enddo
|
|
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
|
|
if(errmatinv) call IO_error(error_ID=800)
|
|
s_prev99 = 0.0_pReal ! build full compliance
|
|
k = 0_pInt
|
|
do n = 1_pInt,9_pInt
|
|
if(bc(loadcase)%maskStressVector(n)) then
|
|
k = k + 1_pInt
|
|
j = 0_pInt
|
|
do m = 1_pInt,9_pInt
|
|
if(bc(loadcase)%maskStressVector(m)) then
|
|
j = j + 1_pInt
|
|
s_prev99(n,m) = s_reduced(k,j)
|
|
endif; enddo; endif; enddo
|
|
s_prev = (math_Plain99to3333(s_prev99))
|
|
endif
|
|
|
|
|
|
print '(a)', '#############################################################'
|
|
print '(A,I5.5,A,es12.6)', 'Increment ', totalIncsCounter, ' Time ',time
|
|
if (restartWrite ) then
|
|
print '(A)', 'writing converged results of previous inc for restart'
|
|
if(IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(defgrad))) then ! and writing deformation gradient field to file
|
|
write (777,rec=1) defgrad
|
|
close (777)
|
|
endif
|
|
endif
|
|
|
|
!*************************************************************
|
|
! convergence loop
|
|
do while(iter < itmax .and. &
|
|
(err_div > err_div_tol .or. &
|
|
err_stress > err_stress_tol))
|
|
iter = iter + 1_pInt
|
|
!*************************************************************
|
|
|
|
print '(a)', ''
|
|
print '(a)', '============================================================='
|
|
print '(5(a,i5.5))', 'Loadcase ',loadcase,' Increment ',inc,'/',bc(loadcase)%incs,'@Iteration ',iter,'/',itmax
|
|
do n = 1_pInt,3_pInt; do m = 1_pInt,3_pInt
|
|
defgrad_av_lab(m,n) = sum(defgrad(1:res(1),1:res(2),1:res(3),m,n)) * wgt
|
|
enddo; enddo
|
|
print '(a,/,3(3(f12.7,x)/)$)', 'deformation gradient:',&
|
|
math_transpose3x3(math_rotate_forward3x3(defgrad_av_lab,bc(loadcase)%rotation))
|
|
print '(a)', ''
|
|
print '(a)', '... update stress field P(F) ................................'
|
|
|
|
ielem = 0_pInt
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
call CPFEM_general(3_pInt,& ! collect cycle
|
|
coordinates(1:3,i,j,k), defgradold(i,j,k,1:3,1:3), defgrad(i,j,k,1:3,1:3),&
|
|
temperature(i,j,k),timeinc,ielem,1_pInt,&
|
|
cstress,dsde, pstress, dPdF)
|
|
enddo; enddo; enddo
|
|
|
|
data_real = 0.0_pReal ! needed because of the padding for FFTW
|
|
c_current = 0.0_pReal
|
|
ielem = 0_pInt
|
|
if (debugFFTW) then
|
|
row = (mod(totalIncsCounter+iter+7_pInt,9_pInt))/3_pInt + 1_pInt ! go through the elements of the tensors, controlled by totalIncsCounter and iter, starting at 1
|
|
column = (mod(totalIncsCounter+iter+1_pInt,3_pInt)) + 1_pInt
|
|
endif
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
ielem = ielem + 1_pInt
|
|
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
|
|
coordinates(1:3,i,j,k),&
|
|
defgradold(i,j,k,1:3,1:3), defgrad(i,j,k,1:3,1:3),& ! others get 2 (saves winding forward effort)
|
|
temperature(i,j,k),timeinc,ielem,1_pInt,&
|
|
cstress,dsde, pstress,dPdF)
|
|
CPFEM_mode = 2_pInt
|
|
|
|
data_real(i,j,k,1:3,1:3) = pstress
|
|
if (debugFFTW) fftw_debug_real(i,j,k) = pstress(row,column) ! choose an arbitrary component
|
|
c_current = c_current + dPdF
|
|
enddo; enddo; enddo
|
|
|
|
do n = 1_pInt,3_pInt; do m = 1_pInt,3_pInt
|
|
pstress_av_lab(m,n) = sum(data_real(1:res(1),1:res(2),1:res(3),m,n)) * wgt
|
|
enddo; enddo
|
|
|
|
print '(a)', ''
|
|
print '(a)', '... calculating equilibrium with spectral method ............'
|
|
|
|
call fftw_execute_dft_r2c(fftw_stress,data_real,data_complex) ! FFT of pstress
|
|
if (debugFFTW) then
|
|
call fftw_execute_dft_r2c(fftw_debug_forward,fftw_debug_real,fftw_debug_complex)
|
|
print '(a,i1,x,i1)', 'checking FT results of compontent ', row, column
|
|
print '(a,2(es10.4,x))', 'max FT relative error ',&
|
|
maxval( real((fftw_debug_complex(1:res1_red,1:res(2),1:res(3))- data_complex(1:res1_red,1:res(2),1:res(3),row,column))/fftw_debug_real(1:res1_red,1:res(2),1:res(3)))), &
|
|
maxval(aimag((fftw_debug_complex(1:res1_red,1:res(2),1:res(3))- data_complex(1:res1_red,1:res(2),1:res(3),row,column))/fftw_debug_real(1:res1_red,1:res(2),1:res(3))))
|
|
fftw_debug_complex = 0.0_pReal
|
|
endif
|
|
p_hat_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(real(data_complex(1,1,1,1:3,1:3)),& ! L_2 norm of average stress (freq 0,0,0) in fourier space,
|
|
math_transpose3x3(real(data_complex(1,1,1,1:3,1:3))))))) ! ignore imaginary part as it is always zero for real only input
|
|
err_div_avg_complex = 0.0_pReal
|
|
err_div_max = 0.0_pReal ! only important if debugDivergence == .true.
|
|
divergence_complex = 0.0_pReal ! - '' -
|
|
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
|
temp3_Complex = math_mul33x3_complex(data_complex(i,j,k,1:3,1:3),xi(1:3,i,j,k)) ! calculate divergence without factor of 2*pi*img
|
|
if(debugDivergence) then ! need divergence NOT squared
|
|
divergence_complex(i,j,k,1:3) = temp3_Complex *img !ToDo negativ img?
|
|
endif
|
|
temp3_Complex = temp3_Complex**2.0_pReal ! all criteria need divergence squared
|
|
if(i==1_pInt .or. i == res1_red) then ! We are on one of the two slides without conjg. complex counterpart
|
|
err_div_avg_complex = err_div_avg_complex + sum(temp3_Complex) ! RMS of L_2 norm of div(stress) in fourier space (Suquet small strain)
|
|
else ! Has somewhere a conj. complex counterpart. Therefore count it twice.
|
|
err_div_avg_complex = err_div_avg_complex +2.0*real(sum(temp3_Complex) ) ! Ignore img part (conjg. complex sum will end up 0). This and the different order
|
|
endif ! compared to c2c transform results in slight numerical deviations.
|
|
if(debugDivergence) then
|
|
err_div_max = max(err_div_max,abs(sqrt(sum(temp3_Complex)))) ! maximum of L two norm of div(stress) in fourier space (Suquet large strain)
|
|
endif
|
|
enddo; enddo; enddo
|
|
|
|
err_div = abs(sqrt (err_div_avg_complex*wgt)) ! weighting by and taking square root (RMS). abs(...) because result is a complex number
|
|
err_div = err_div *correctionFactor/p_hat_avg ! weighting by average stress and multiplying with correction factor
|
|
err_div_max = err_div_max*correctionFactor/p_hat_avg ! - '' - only if debugDivergence == .true. of importance
|
|
|
|
! calculate additional divergence criteria and report -------------
|
|
if(debugDivergence) then
|
|
call fftw_execute_dft_c2r(fftw_divergence,divergence_complex,divergence_real)
|
|
divergence_real = divergence_real *pi*2.0_pReal* wgt !pointwise factor 2*pi from differentation and weighting from FT
|
|
err_real_div_avg = 0.0_pReal
|
|
err_real_div_max = 0.0_pReal
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
err_real_div_avg = err_real_div_avg + sum(divergence_real(i,j,k,1:3)**2.0_pReal) ! avg of L_2 norm of div(stress) in real space
|
|
err_real_div_max = max(err_real_div_max, sqrt(sum(divergence_real(i,j,k,1:3)**2.0_pReal))) ! maximum of L two norm of div(stress) in real space
|
|
enddo; enddo; enddo
|
|
p_real_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(pstress_av_lab,& ! L_2 norm of average stress in real space,
|
|
math_transpose3x3(pstress_av_lab)))))
|
|
err_real_div_avg = sqrt(wgt*err_real_div_avg)*correctionFactor/p_real_avg ! RMS in real space
|
|
err_real_div_max = err_real_div_max *correctionFactor/p_real_avg
|
|
|
|
print '(a,es10.4,a,f6.2)', 'error divergence FT avg = ',err_div, ', ', err_div/err_div_tol
|
|
print '(a,es10.4)', 'error divergence FT max = ',err_div_max
|
|
print '(a,es10.4)', 'error divergence Real avg = ',err_real_div_avg
|
|
print '(a,es10.4)', 'error divergence Real max = ',err_real_div_max
|
|
else
|
|
print '(a,es10.4,a,f6.2)', 'error divergence = ',err_div, ', ', err_div/err_div_tol
|
|
endif
|
|
! --------------------------
|
|
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res1_red
|
|
if (any(xi(1:3,i,j,k) /= 0.0_pReal)) then
|
|
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt
|
|
xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k)
|
|
enddo; enddo
|
|
temp33_Real = math_inv3x3(math_mul3333xx33(c0_reference, xiDyad))
|
|
else
|
|
xiDyad = 0.0_pReal
|
|
temp33_Real = 0.0_pReal
|
|
endif
|
|
do l=1_pInt,3_pInt; do m=1_pInt,3_pInt; do n=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
|
gamma_hat(1,1,1, l,m,n,p) = - 0.25_pReal*(temp33_Real(l,n)+temp33_Real(n,l))*&
|
|
(xiDyad(m,p) +xiDyad(p,m))
|
|
enddo; enddo; enddo; enddo
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
|
|
temp33_Complex(m,n) = sum(gamma_hat(1,1,1, m,n, 1:3,1:3) * data_complex(i,j,k,1:3,1:3))
|
|
enddo; enddo
|
|
data_complex(i,j,k,1:3,1:3) = temp33_Complex
|
|
if (debugFFTW) fftw_debug_complex(i,j,k) = temp33_Complex(row,column)
|
|
enddo; enddo; enddo
|
|
else ! use precalculated gamma-operator
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res1_red
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
|
|
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n, 1:3,1:3) * data_complex(i,j,k,1:3,1:3))
|
|
enddo; enddo
|
|
data_complex(i,j,k,1:3,1:3) = temp33_Complex
|
|
if (debugFFTW) fftw_debug_complex(i,j,k) = temp33_Complex(row,column)
|
|
enddo; enddo; enddo
|
|
endif
|
|
|
|
data_complex(1,1,1,1:3,1:3) = defgrad_av_lab - math_I3 ! assign zero frequency (real part) with average displacement gradient
|
|
if (debugFFTW) fftw_debug_complex(1,1,1) = data_complex(1,1,1,row,column)
|
|
|
|
call fftw_execute_dft_c2r(fftw_fluctuation,data_complex,data_real) ! back transform of fluct deformation gradient
|
|
if (debugFFTW) then
|
|
print '(a,i1,x,i1)', 'checking iFT results of compontent ', row, column
|
|
call fftw_execute_dft_c2r(fftw_debug_backward,fftw_debug_complex,fftw_debug_real)
|
|
print '(a,es10.4)', 'max iFT relative error ',&
|
|
maxval((fftw_debug_real(1:res(1),1:res(2),1:res(3))- data_real(1:res(1),1:res(2),1:res(3),row,column))/fftw_debug_real(1:res(1),1:res(2),1:res(3)))
|
|
endif
|
|
|
|
defgrad = defgrad + data_real(1:res(1),1:res(2),1:res(3),1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
|
|
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
|
|
defgrad_av_lab(m,n) = sum(defgrad(1:res(1),1:res(2),1:res(3),m,n))*wgt ! ToDo: check whether this needs recalculation or is equivalent to former defgrad_av
|
|
enddo; enddo
|
|
|
|
! stress boundary condition check -------------
|
|
pstress_av = math_rotate_forward3x3(pstress_av_lab,bc(loadcase)%rotation)
|
|
print '(a,/,3(3(f12.7,x)/)$)', 'Piola-Kirchhoff stress / MPa: ',math_transpose3x3(pstress_av)/1.e6
|
|
|
|
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
|
|
err_stress = maxval(abs(mask_stress * (pstress_av - bc(loadcase)%stress))) ! maximum deviaton (tensor norm not applicable)
|
|
err_stress_tol = maxval(abs(pstress_av)) * err_stress_tolrel ! don't use any tensor norm because the comparison should be coherent
|
|
print '(a)', ''
|
|
print '(a,es10.4,a,f6.2)', 'error stress = ',err_stress, ', ', err_stress/err_stress_tol
|
|
print '(a)', '... correcting deformation gradient to fulfill BCs ..........'
|
|
defgradAimCorr = - math_mul3333xx33(s_prev, ((pstress_av - bc(loadcase)%stress))) ! residual on given stress components
|
|
defgradAim = defgradAim + defgradAimCorr
|
|
print '(a,/,3(3(f12.7,x)/)$)', 'new deformation aim: ', math_transpose3x3(defgradAim)
|
|
print '(a,x,es10.4)' , 'with determinant: ', math_det3x3(defgradAim)
|
|
else
|
|
err_stress_tol = 0.0_pReal
|
|
endif
|
|
! ------------------------------
|
|
|
|
! homogeneous correction towards avg deformation gradient -------------
|
|
defgradAim_lab = math_rotate_backward3x3(defgradAim,bc(loadcase)%rotation) ! boundary conditions from load frame into lab (Fourier) frame
|
|
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
|
|
defgrad(1:res(1),1:res(2),1:res(3),m,n) = &
|
|
defgrad(1:res(1),1:res(2),1:res(3),m,n) + (defgradAim_lab(m,n) - defgrad_av_lab(m,n)) ! anticipated target minus current state
|
|
enddo; enddo
|
|
! ------------------------------
|
|
|
|
! bounds of det(F) -------------
|
|
defgradDetMax = -huge(1.0_pReal)
|
|
defgradDetMin = +huge(1.0_pReal)
|
|
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
defgradDet = math_det3x3(defgrad(i,j,k,1:3,1:3))
|
|
defgradDetMax = max(defgradDetMax,defgradDet)
|
|
defgradDetMin = min(defgradDetMin,defgradDet)
|
|
enddo; enddo; enddo
|
|
|
|
print '(a,x,es10.4)' , 'max determinant of deformation:', defgradDetMax
|
|
print '(a,x,es10.4)' , 'min determinant of deformation:', defgradDetMin
|
|
|
|
! ------------------------------
|
|
|
|
enddo ! end looping when convergency is achieved
|
|
|
|
!$OMP CRITICAL (write2out)
|
|
print '(a)', ''
|
|
print '(a)', '============================================================='
|
|
if(err_div > err_div_tol .or. err_stress > err_stress_tol) then
|
|
print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' NOT converged'
|
|
notConvergedCounter = notConvergedCounter + 1_pInt
|
|
else
|
|
print '(A,I5.5,A)', 'increment ', totalIncsCounter, ' converged'
|
|
endif
|
|
if (mod(totalIncsCounter -1_pInt,bc(loadcase)%outputfrequency) == 0_pInt) then ! at output frequency
|
|
print '(a)', ''
|
|
print '(a)', '... writing results to file .................................'
|
|
write(538), materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
|
|
endif
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
! ##################################################
|
|
! # test of regridding
|
|
! allocate(deformed_small(res(1) ,res(2) ,res(3) ,3)); deformed_small = 0.0_pReal
|
|
! allocate(deformed_large(3,Npoints*27_pInt)); deformed_large = 0.0_pReal !ToDo: make it smaller (small corona only)
|
|
|
|
! call deformed_fft(res,geomdimension,defgrad_av_lab,1.0_pReal,defgrad,deformed_small) ! calculate deformed coordinates
|
|
! shift = math_mul33x3(defgrad_av_lab,geomdimension)
|
|
|
|
! print*, 'defgrad'
|
|
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
! print*, defgrad(i,j,k,1:3,1:3)
|
|
! enddo; enddo; enddo
|
|
|
|
! print*, 'deformed_small'
|
|
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
! print*, deformed_small(i,j,k,1:3)
|
|
! enddo; enddo; enddo
|
|
|
|
! print*, 'shift', shift
|
|
! ielem = 0_pInt
|
|
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
! do n = -1, 1
|
|
! do m = -1, 1
|
|
! do l = -1, 1
|
|
! ielem = ielem +1_pInt
|
|
! deformed_large(1:3,ielem) = deformed_small(i,j,k,1:3)+ real((/l,m,n/),pReal)*shift
|
|
! enddo; enddo; enddo
|
|
! enddo; enddo; enddo
|
|
! print*, 'deformed_large'
|
|
! print*, deformed_large
|
|
! tree => kdtree2_create(deformed_large,sort=.true.,rearrange=.true.)
|
|
|
|
! allocate(new_coordinates(res(1),res(2),res(3),3)); new_coordinates = 0.0_pReal !fluctuation free new coordinates
|
|
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
|
|
! new_coordinates(i,j,k,1:3) = math_mul33x3(defgrad_av_lab,coordinates(1:3,i,j,k))
|
|
! enddo; enddo; enddo
|
|
! pause
|
|
! ##################################################
|
|
! # end test of regridding
|
|
|
|
endif ! end calculation/forwarding
|
|
enddo ! end looping over incs in current loadcase
|
|
deallocate(c_reduced)
|
|
deallocate(s_reduced)
|
|
enddo ! end looping over loadcases
|
|
!$OMP CRITICAL (write2out)
|
|
print '(a)', ''
|
|
print '(a)', '#############################################################'
|
|
print '(a,i5.5,a,i5.5,a)', 'of ', totalIncsCounter - restartReadInc + 1_pInt, ' calculated increments, ',&
|
|
notConvergedCounter, ' increments did not converge!'
|
|
!$OMP END CRITICAL (write2out)
|
|
close(538)
|
|
call fftw_destroy_plan(fftw_stress); call fftw_destroy_plan(fftw_fluctuation)
|
|
if (debugDivergence) call fftw_destroy_plan(fftw_divergence)
|
|
if (debugFFTW) then
|
|
call fftw_destroy_plan(fftw_debug_forward)
|
|
call fftw_destroy_plan(fftw_debug_backward)
|
|
endif
|
|
end program DAMASK_spectral
|
|
|
|
!********************************************************************
|
|
! quit subroutine to satisfy IO_error
|
|
!
|
|
!********************************************************************
|
|
subroutine quit(id)
|
|
use prec
|
|
implicit none
|
|
|
|
integer(pInt) id
|
|
|
|
stop
|
|
end subroutine
|