DAMASK_EICMD/src/lattice.f90

2220 lines
124 KiB
Fortran
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief contains lattice definitions including Schmid matrices for slip, twin, trans,
! and cleavage as well as interaction among the various systems
!--------------------------------------------------------------------------------------------------
module lattice
use prec
use IO
use config
use math
use rotations
implicit none
private
!--------------------------------------------------------------------------------------------------
! face centered cubic (cF)
integer, dimension(*), parameter :: &
FCC_NSLIPSYSTEM = [12, 6] !< # of slip systems per family for fcc
integer, dimension(*), parameter :: &
FCC_NTWINSYSTEM = [12] !< # of twin systems per family for fcc
integer, dimension(*), parameter :: &
FCC_NTRANSSYSTEM = [12] !< # of transformation systems per family for fcc
integer, dimension(*), parameter :: &
FCC_NCLEAVAGESYSTEM = [3] !< # of cleavage systems per family for fcc
integer, parameter :: &
FCC_NSLIP = sum(FCC_NSLIPSYSTEM), & !< total # of slip systems for fcc
FCC_NTWIN = sum(FCC_NTWINSYSTEM), & !< total # of twin systems for fcc
FCC_NTRANS = sum(FCC_NTRANSSYSTEM), & !< total # of transformation systems for fcc
FCC_NCLEAVAGE = sum(FCC_NCLEAVAGESYSTEM) !< total # of cleavage systems for fcc
real(pReal), dimension(3+3,FCC_NSLIP), parameter :: &
FCC_SYSTEMSLIP = reshape(real([&
! <110>{111} systems
0, 1,-1, 1, 1, 1, & ! B2
-1, 0, 1, 1, 1, 1, & ! B4
1,-1, 0, 1, 1, 1, & ! B5
0,-1,-1, -1,-1, 1, & ! C1
1, 0, 1, -1,-1, 1, & ! C3
-1, 1, 0, -1,-1, 1, & ! C5
0,-1, 1, 1,-1,-1, & ! A2
-1, 0,-1, 1,-1,-1, & ! A3
1, 1, 0, 1,-1,-1, & ! A6
0, 1, 1, -1, 1,-1, & ! D1
1, 0,-1, -1, 1,-1, & ! D4
-1,-1, 0, -1, 1,-1, & ! D6
! <110>{110}/non-octahedral systems
1, 1, 0, 1,-1, 0, &
1,-1, 0, 1, 1, 0, &
1, 0, 1, 1, 0,-1, &
1, 0,-1, 1, 0, 1, &
0, 1, 1, 0, 1,-1, &
0, 1,-1, 0, 1, 1 &
],pReal),shape(FCC_SYSTEMSLIP)) !< fcc slip systems
real(pReal), dimension(3+3,FCC_NTWIN), parameter :: &
FCC_SYSTEMTWIN = reshape(real( [&
! <112>{111} systems
-2, 1, 1, 1, 1, 1, &
1,-2, 1, 1, 1, 1, &
1, 1,-2, 1, 1, 1, &
2,-1, 1, -1,-1, 1, &
-1, 2, 1, -1,-1, 1, &
-1,-1,-2, -1,-1, 1, &
-2,-1,-1, 1,-1,-1, &
1, 2,-1, 1,-1,-1, &
1,-1, 2, 1,-1,-1, &
2, 1,-1, -1, 1,-1, &
-1,-2,-1, -1, 1,-1, &
-1, 1, 2, -1, 1,-1 &
],pReal),shape(FCC_SYSTEMTWIN)) !< fcc twin systems
integer, dimension(2,FCC_NTWIN), parameter, public :: &
lattice_FCC_TWINNUCLEATIONSLIPPAIR = reshape( [&
2,3, &
1,3, &
1,2, &
5,6, &
4,6, &
4,5, &
8,9, &
7,9, &
7,8, &
11,12, &
10,12, &
10,11 &
],shape(lattice_FCC_TWINNUCLEATIONSLIPPAIR))
real(pReal), dimension(3+3,FCC_NCLEAVAGE), parameter :: &
FCC_SYSTEMCLEAVAGE = reshape(real([&
! <001>{001} systems
0, 1, 0, 1, 0, 0, &
0, 0, 1, 0, 1, 0, &
1, 0, 0, 0, 0, 1 &
],pReal),shape(FCC_SYSTEMCLEAVAGE)) !< fcc cleavage systems
!--------------------------------------------------------------------------------------------------
! body centered cubic (cI)
integer, dimension(*), parameter :: &
BCC_NSLIPSYSTEM = [12, 12, 24] !< # of slip systems per family for bcc
integer, dimension(*), parameter :: &
BCC_NTWINSYSTEM = [12] !< # of twin systems per family for bcc
integer, dimension(*), parameter :: &
BCC_NCLEAVAGESYSTEM = [3] !< # of cleavage systems per family for bcc
integer, parameter :: &
BCC_NSLIP = sum(BCC_NSLIPSYSTEM), & !< total # of slip systems for bcc
BCC_NTWIN = sum(BCC_NTWINSYSTEM), & !< total # of twin systems for bcc
BCC_NCLEAVAGE = sum(BCC_NCLEAVAGESYSTEM) !< total # of cleavage systems for bcc
real(pReal), dimension(3+3,BCC_NSLIP), parameter :: &
BCC_SYSTEMSLIP = reshape(real([&
! <111>{110} systems
1,-1, 1, 0, 1, 1, & ! D1
-1,-1, 1, 0, 1, 1, & ! C1
1, 1, 1, 0,-1, 1, & ! B2
-1, 1, 1, 0,-1, 1, & ! A2
-1, 1, 1, 1, 0, 1, & ! A3
-1,-1, 1, 1, 0, 1, & ! C3
1, 1, 1, -1, 0, 1, & ! B4
1,-1, 1, -1, 0, 1, & ! D4
-1, 1, 1, 1, 1, 0, & ! A6
-1, 1,-1, 1, 1, 0, & ! D6
1, 1, 1, -1, 1, 0, & ! B5
1, 1,-1, -1, 1, 0, & ! C5
! <111>{112} systems
-1, 1, 1, 2, 1, 1, & ! A-4
1, 1, 1, -2, 1, 1, & ! B-3
1, 1,-1, 2,-1, 1, & ! C-10
1,-1, 1, 2, 1,-1, & ! D-9
1,-1, 1, 1, 2, 1, & ! D-6
1, 1,-1, -1, 2, 1, & ! C-5
1, 1, 1, 1,-2, 1, & ! B-12
-1, 1, 1, 1, 2,-1, & ! A-11
1, 1,-1, 1, 1, 2, & ! C-2
1,-1, 1, -1, 1, 2, & ! D-1
-1, 1, 1, 1,-1, 2, & ! A-8
1, 1, 1, 1, 1,-2, & ! B-7
! Slip system <111>{123}
1, 1,-1, 1, 2, 3, &
1,-1, 1, -1, 2, 3, &
-1, 1, 1, 1,-2, 3, &
1, 1, 1, 1, 2,-3, &
1,-1, 1, 1, 3, 2, &
1, 1,-1, -1, 3, 2, &
1, 1, 1, 1,-3, 2, &
-1, 1, 1, 1, 3,-2, &
1, 1,-1, 2, 1, 3, &
1,-1, 1, -2, 1, 3, &
-1, 1, 1, 2,-1, 3, &
1, 1, 1, 2, 1,-3, &
1,-1, 1, 2, 3, 1, &
1, 1,-1, -2, 3, 1, &
1, 1, 1, 2,-3, 1, &
-1, 1, 1, 2, 3,-1, &
-1, 1, 1, 3, 1, 2, &
1, 1, 1, -3, 1, 2, &
1, 1,-1, 3,-1, 2, &
1,-1, 1, 3, 1,-2, &
-1, 1, 1, 3, 2, 1, &
1, 1, 1, -3, 2, 1, &
1, 1,-1, 3,-2, 1, &
1,-1, 1, 3, 2,-1 &
],pReal),shape(BCC_SYSTEMSLIP)) !< bcc slip systems
real(pReal), dimension(3+3,BCC_NTWIN), parameter :: &
BCC_SYSTEMTWIN = reshape(real([&
! <111>{112} systems
-1, 1, 1, 2, 1, 1, &
1, 1, 1, -2, 1, 1, &
1, 1,-1, 2,-1, 1, &
1,-1, 1, 2, 1,-1, &
1,-1, 1, 1, 2, 1, &
1, 1,-1, -1, 2, 1, &
1, 1, 1, 1,-2, 1, &
-1, 1, 1, 1, 2,-1, &
1, 1,-1, 1, 1, 2, &
1,-1, 1, -1, 1, 2, &
-1, 1, 1, 1,-1, 2, &
1, 1, 1, 1, 1,-2 &
],pReal),shape(BCC_SYSTEMTWIN)) !< bcc twin systems
real(pReal), dimension(3+3,BCC_NCLEAVAGE), parameter :: &
BCC_SYSTEMCLEAVAGE = reshape(real([&
! <001>{001} systems
0, 1, 0, 1, 0, 0, &
0, 0, 1, 0, 1, 0, &
1, 0, 0, 0, 0, 1 &
],pReal),shape(BCC_SYSTEMCLEAVAGE)) !< bcc cleavage systems
!--------------------------------------------------------------------------------------------------
! hexagonal (hP)
integer, dimension(*), parameter :: &
HEX_NSLIPSYSTEM = [3, 3, 3, 6, 12, 6] !< # of slip systems per family for hex
integer, dimension(*), parameter :: &
HEX_NTWINSYSTEM = [6, 6, 6, 6] !< # of slip systems per family for hex
integer, parameter :: &
HEX_NSLIP = sum(HEX_NSLIPSYSTEM), & !< total # of slip systems for hex
HEX_NTWIN = sum(HEX_NTWINSYSTEM) !< total # of twin systems for hex
real(pReal), dimension(4+4,HEX_NSLIP), parameter :: &
HEX_SYSTEMSLIP = reshape(real([&
! <-1-1.0>{00.1}/basal systems (independent of c/a-ratio)
2, -1, -1, 0, 0, 0, 0, 1, &
-1, 2, -1, 0, 0, 0, 0, 1, &
-1, -1, 2, 0, 0, 0, 0, 1, &
! <-1-1.0>{1-1.0}/prismatic systems (independent of c/a-ratio)
2, -1, -1, 0, 0, 1, -1, 0, &
-1, 2, -1, 0, -1, 0, 1, 0, &
-1, -1, 2, 0, 1, -1, 0, 0, &
! <-11.0>{11.0}/2. order prismatic compound systems (plane normal independent of c/a-ratio)
-1, 1, 0, 0, 1, 1, -2, 0, &
0, -1, 1, 0, -2, 1, 1, 0, &
1, 0, -1, 0, 1, -2, 1, 0, &
! <-1-1.0>{-11.1}/1. order pyramidal <a> systems (direction independent of c/a-ratio)
-1, 2, -1, 0, 1, 0, -1, 1, &
-2, 1, 1, 0, 0, 1, -1, 1, &
-1, -1, 2, 0, -1, 1, 0, 1, &
1, -2, 1, 0, -1, 0, 1, 1, &
2, -1, -1, 0, 0, -1, 1, 1, &
1, 1, -2, 0, 1, -1, 0, 1, &
! <11.3>{-10.1}/1. order pyramidal <c+a> systems (direction independent of c/a-ratio)
-2, 1, 1, 3, 1, 0, -1, 1, &
-1, -1, 2, 3, 1, 0, -1, 1, &
-1, -1, 2, 3, 0, 1, -1, 1, &
1, -2, 1, 3, 0, 1, -1, 1, &
1, -2, 1, 3, -1, 1, 0, 1, &
2, -1, -1, 3, -1, 1, 0, 1, &
2, -1, -1, 3, -1, 0, 1, 1, &
1, 1, -2, 3, -1, 0, 1, 1, &
1, 1, -2, 3, 0, -1, 1, 1, &
-1, 2, -1, 3, 0, -1, 1, 1, &
-1, 2, -1, 3, 1, -1, 0, 1, &
-2, 1, 1, 3, 1, -1, 0, 1, &
! <11.3>{-1-1.2}/2. order pyramidal <c+a> systems
-1, -1, 2, 3, 1, 1, -2, 2, &
1, -2, 1, 3, -1, 2, -1, 2, &
2, -1, -1, 3, -2, 1, 1, 2, &
1, 1, -2, 3, -1, -1, 2, 2, &
-1, 2, -1, 3, 1, -2, 1, 2, &
-2, 1, 1, 3, 2, -1, -1, 2 &
],pReal),shape(HEX_SYSTEMSLIP)) !< hex slip systems, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
real(pReal), dimension(4+4,HEX_NTWIN), parameter :: &
HEX_SYSTEMTWIN = reshape(real([&
! <-10.1>{10.2} systems, shear = (3-(c/a)^2)/(sqrt(3) c/a)
! tension in Co, Mg, Zr, Ti, and Be; compression in Cd and Zn
-1, 0, 1, 1, 1, 0, -1, 2, & !
0, -1, 1, 1, 0, 1, -1, 2, &
1, -1, 0, 1, -1, 1, 0, 2, &
1, 0, -1, 1, -1, 0, 1, 2, &
0, 1, -1, 1, 0, -1, 1, 2, &
-1, 1, 0, 1, 1, -1, 0, 2, &
! <11.6>{-1-1.1} systems, shear = 1/(c/a)
! tension in Co, Re, and Zr
-1, -1, 2, 6, 1, 1, -2, 1, &
1, -2, 1, 6, -1, 2, -1, 1, &
2, -1, -1, 6, -2, 1, 1, 1, &
1, 1, -2, 6, -1, -1, 2, 1, &
-1, 2, -1, 6, 1, -2, 1, 1, &
-2, 1, 1, 6, 2, -1, -1, 1, &
! <10.-2>{10.1} systems, shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
! compression in Mg
1, 0, -1, -2, 1, 0, -1, 1, &
0, 1, -1, -2, 0, 1, -1, 1, &
-1, 1, 0, -2, -1, 1, 0, 1, &
-1, 0, 1, -2, -1, 0, 1, 1, &
0, -1, 1, -2, 0, -1, 1, 1, &
1, -1, 0, -2, 1, -1, 0, 1, &
! <11.-3>{11.2} systems, shear = 2((c/a)^2-2)/(3 c/a)
! compression in Ti and Zr
1, 1, -2, -3, 1, 1, -2, 2, &
-1, 2, -1, -3, -1, 2, -1, 2, &
-2, 1, 1, -3, -2, 1, 1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, &
1, -2, 1, -3, 1, -2, 1, 2, &
2, -1, -1, -3, 2, -1, -1, 2 &
],pReal),shape(HEX_SYSTEMTWIN)) !< hex twin systems, sorted by P. Eisenlohr CCW around <c> starting next to a_1 axis
!--------------------------------------------------------------------------------------------------
! body centered tetragonal (tI)
integer, dimension(*), parameter :: &
BCT_NSLIPSYSTEM = [2, 2, 2, 4, 2, 4, 2, 2, 4, 8, 4, 8, 8 ] !< # of slip systems per family for bct
integer, parameter :: &
BCT_NSLIP = sum(BCT_NSLIPSYSTEM) !< total # of slip systems for bct
real(pReal), dimension(3+3,BCT_NSLIP), parameter :: &
BCT_SYSTEMSLIP = reshape(real([&
! {100)<001] systems
0, 0, 1, 1, 0, 0, &
0, 0, 1, 0, 1, 0, &
! {110)<001] systems
0, 0, 1, 1, 1, 0, &
0, 0, 1, -1, 1, 0, &
! {100)<010] systems
0, 1, 0, 1, 0, 0, &
1, 0, 0, 0, 1, 0, &
! {110)<1-11]/2 systems
1,-1, 1, 1, 1, 0, &
1,-1,-1, 1, 1, 0, &
-1,-1,-1, -1, 1, 0, &
-1,-1, 1, -1, 1, 0, &
! {110)<1-10] systems
1, -1, 0, 1, 1, 0, &
1, 1, 0, 1,-1, 0, &
! {100)<011] systems
0, 1, 1, 1, 0, 0, &
0,-1, 1, 1, 0, 0, &
-1, 0, 1, 0, 1, 0, &
1, 0, 1, 0, 1, 0, &
! {001)<010] systems
0, 1, 0, 0, 0, 1, &
1, 0, 0, 0, 0, 1, &
! {001)<110] systems
1, 1, 0, 0, 0, 1, &
-1, 1, 0, 0, 0, 1, &
! {011)<01-1] systems
0, 1,-1, 0, 1, 1, &
0,-1,-1, 0,-1, 1, &
-1, 0,-1, -1, 0, 1, &
1, 0,-1, 1, 0, 1, &
! {011)<1-11]/2 systems
1,-1, 1, 0, 1, 1, &
1, 1,-1, 0, 1, 1, &
1, 1, 1, 0, 1,-1, &
-1, 1, 1, 0, 1,-1, &
1,-1,-1, 1, 0, 1, &
-1,-1, 1, 1, 0, 1, &
1, 1, 1, 1, 0,-1, &
1,-1, 1, 1, 0,-1, &
! {011)<100] systems
1, 0, 0, 0, 1, 1, &
1, 0, 0, 0, 1,-1, &
0, 1, 0, 1, 0, 1, &
0, 1, 0, 1, 0,-1, &
! {211)<01-1] systems
0, 1,-1, 2, 1, 1, &
0,-1,-1, 2,-1, 1, &
1, 0,-1, 1, 2, 1, &
-1, 0,-1, -1, 2, 1, &
0, 1,-1, -2, 1, 1, &
0,-1,-1, -2,-1, 1, &
-1, 0,-1, -1,-2, 1, &
1, 0,-1, 1,-2, 1, &
! {211)<-111]/2 systems
-1, 1, 1, 2, 1, 1, &
-1,-1, 1, 2,-1, 1, &
1,-1, 1, 1, 2, 1, &
-1,-1, 1, -1, 2, 1, &
1, 1, 1, -2, 1, 1, &
1,-1, 1, -2,-1, 1, &
-1, 1, 1, -1,-2, 1, &
1, 1, 1, 1,-2, 1 &
],pReal),shape(BCT_SYSTEMSLIP)) !< bct slip systems for c/a = 0.5456 (Sn), sorted by Bieler 2009 (https://doi.org/10.1007/s11664-009-0909-x)
interface lattice_forestProjection_edge
module procedure slipProjection_transverse
end interface lattice_forestProjection_edge
interface lattice_forestProjection_screw
module procedure slipProjection_direction
end interface lattice_forestProjection_screw
public :: &
lattice_init, &
lattice_equivalent_nu, &
lattice_equivalent_mu, &
lattice_symmetrize_33, &
lattice_symmetrize_C66, &
lattice_SchmidMatrix_slip, &
lattice_SchmidMatrix_twin, &
lattice_SchmidMatrix_trans, &
lattice_SchmidMatrix_cleavage, &
lattice_nonSchmidMatrix, &
lattice_interaction_SlipBySlip, &
lattice_interaction_TwinByTwin, &
lattice_interaction_TransByTrans, &
lattice_interaction_SlipByTwin, &
lattice_interaction_SlipByTrans, &
lattice_interaction_TwinBySlip, &
lattice_characteristicShear_Twin, &
lattice_C66_twin, &
lattice_C66_trans, &
lattice_forestProjection_edge, &
lattice_forestProjection_screw, &
lattice_slip_normal, &
lattice_slip_direction, &
lattice_slip_transverse, &
lattice_labels_slip, &
lattice_labels_twin
contains
!--------------------------------------------------------------------------------------------------
!> @brief Module initialization
!--------------------------------------------------------------------------------------------------
subroutine lattice_init
print'(/,1x,a)', '<<<+- lattice init -+>>>'; flush(IO_STDOUT)
call selfTest
end subroutine lattice_init
!--------------------------------------------------------------------------------------------------
!> @brief Characteristic shear for twinning
!--------------------------------------------------------------------------------------------------
function lattice_characteristicShear_Twin(Ntwin,lattice,CoverA) result(characteristicShear)
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(sum(Ntwin)) :: characteristicShear
integer :: &
a, & !< index of active system
p, & !< index in potential system list
f, & !< index of my family
s !< index of my system in current family
integer, dimension(HEX_NTWIN), parameter :: &
HEX_SHEARTWIN = reshape( [&
1, & ! <-10.1>{10.2}
1, &
1, &
1, &
1, &
1, &
2, & ! <11.6>{-1-1.1}
2, &
2, &
2, &
2, &
2, &
3, & ! <10.-2>{10.1}
3, &
3, &
3, &
3, &
3, &
4, & ! <11.-3>{11.2}
4, &
4, &
4, &
4, &
4 &
],[HEX_NTWIN]) ! indicator to formulas below
a = 0
myFamilies: do f = 1,size(Ntwin,1)
mySystems: do s = 1,Ntwin(f)
a = a + 1
select case(lattice)
case('cF','cI')
characteristicShear(a) = 0.5_pReal*sqrt(2.0_pReal)
case('hP')
if (cOverA < 1.0_pReal .or. cOverA > 2.0_pReal) &
call IO_error(131,ext_msg='lattice_characteristicShear_Twin')
p = sum(HEX_NTWINSYSTEM(1:f-1))+s
select case(HEX_SHEARTWIN(p)) ! from Christian & Mahajan 1995 p.29
case (1) ! <-10.1>{10.2}
characteristicShear(a) = (3.0_pReal-cOverA**2)/sqrt(3.0_pReal)/CoverA
case (2) ! <11.6>{-1-1.1}
characteristicShear(a) = 1.0_pReal/cOverA
case (3) ! <10.-2>{10.1}
characteristicShear(a) = (4.0_pReal*cOverA**2-9.0_pReal)/sqrt(48.0_pReal)/cOverA
case (4) ! <11.-3>{11.2}
characteristicShear(a) = 2.0_pReal*(cOverA**2-2.0_pReal)/3.0_pReal/cOverA
end select
case default
call IO_error(137,ext_msg='lattice_characteristicShear_Twin: '//trim(lattice))
end select
enddo mySystems
enddo myFamilies
end function lattice_characteristicShear_Twin
!--------------------------------------------------------------------------------------------------
!> @brief Rotated elasticity matrices for twinning in 6x6-matrix notation
!--------------------------------------------------------------------------------------------------
function lattice_C66_twin(Ntwin,C66,lattice,CoverA)
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), dimension(6,6), intent(in) :: C66 !< unrotated parent stiffness matrix
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(6,6,sum(Ntwin)) :: lattice_C66_twin
real(pReal), dimension(3,3,sum(Ntwin)):: coordinateSystem
type(rotation) :: R
integer :: i
select case(lattice)
case('cF')
coordinateSystem = buildCoordinateSystem(Ntwin,FCC_NSLIPSYSTEM,FCC_SYSTEMTWIN,&
lattice,0.0_pReal)
case('cI')
coordinateSystem = buildCoordinateSystem(Ntwin,BCC_NSLIPSYSTEM,BCC_SYSTEMTWIN,&
lattice,0.0_pReal)
case('hP')
coordinateSystem = buildCoordinateSystem(Ntwin,HEX_NSLIPSYSTEM,HEX_SYSTEMTWIN,&
lattice,cOverA)
case default
call IO_error(137,ext_msg='lattice_C66_twin: '//trim(lattice))
end select
do i = 1, sum(Ntwin)
call R%fromAxisAngle([coordinateSystem(1:3,2,i),PI],P=1) ! ToDo: Why always 180 deg?
lattice_C66_twin(1:6,1:6,i) = R%rotStiffness(C66)
enddo
end function lattice_C66_twin
!--------------------------------------------------------------------------------------------------
!> @brief Rotated elasticity matrices for transformation in 6x6-matrix notation
!--------------------------------------------------------------------------------------------------
function lattice_C66_trans(Ntrans,C_parent66,lattice_target, &
cOverA_trans,a_bcc,a_fcc)
integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family
character(len=2), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol)
real(pReal), dimension(6,6), intent(in) :: C_parent66
real(pReal), dimension(6,6,sum(Ntrans)) :: lattice_C66_trans
real(pReal), dimension(6,6) :: C_bar66, C_target_unrotated66
real(pReal), dimension(3,3,sum(Ntrans)) :: Q,S
type(rotation) :: R
real(pReal) :: a_bcc, a_fcc, cOverA_trans
integer :: i
!--------------------------------------------------------------------------------------------------
! elasticity matrix of the target phase in cube orientation
if (lattice_target == 'hP') then
! https://doi.org/10.1063/1.1663858 eq. (16), eq. (18), eq. (19)
! https://doi.org/10.1016/j.actamat.2016.07.032 eq. (47), eq. (48)
if (cOverA_trans < 1.0_pReal .or. cOverA_trans > 2.0_pReal) &
call IO_error(131,ext_msg='lattice_C66_trans: '//trim(lattice_target))
C_bar66(1,1) = (C_parent66(1,1) + C_parent66(1,2) + 2.0_pReal*C_parent66(4,4))/2.0_pReal
C_bar66(1,2) = (C_parent66(1,1) + 5.0_pReal*C_parent66(1,2) - 2.0_pReal*C_parent66(4,4))/6.0_pReal
C_bar66(3,3) = (C_parent66(1,1) + 2.0_pReal*C_parent66(1,2) + 4.0_pReal*C_parent66(4,4))/3.0_pReal
C_bar66(1,3) = (C_parent66(1,1) + 2.0_pReal*C_parent66(1,2) - 2.0_pReal*C_parent66(4,4))/3.0_pReal
C_bar66(4,4) = (C_parent66(1,1) - C_parent66(1,2) + C_parent66(4,4))/3.0_pReal
C_bar66(1,4) = (C_parent66(1,1) - C_parent66(1,2) - 2.0_pReal*C_parent66(4,4)) /(3.0_pReal*sqrt(2.0_pReal))
C_target_unrotated66 = 0.0_pReal
C_target_unrotated66(1,1) = C_bar66(1,1) - C_bar66(1,4)**2/C_bar66(4,4)
C_target_unrotated66(1,2) = C_bar66(1,2) + C_bar66(1,4)**2/C_bar66(4,4)
C_target_unrotated66(1,3) = C_bar66(1,3)
C_target_unrotated66(3,3) = C_bar66(3,3)
C_target_unrotated66(4,4) = C_bar66(4,4) - C_bar66(1,4)**2/(0.5_pReal*(C_bar66(1,1) - C_bar66(1,2)))
C_target_unrotated66 = lattice_symmetrize_C66(C_target_unrotated66,'hP')
elseif (lattice_target == 'cI') then
if (a_bcc <= 0.0_pReal .or. a_fcc <= 0.0_pReal) &
call IO_error(134,ext_msg='lattice_C66_trans: '//trim(lattice_target))
C_target_unrotated66 = C_parent66
else
call IO_error(137,ext_msg='lattice_C66_trans : '//trim(lattice_target))
endif
do i = 1,6
if (abs(C_target_unrotated66(i,i))<tol_math_check) &
call IO_error(135,el=i,ext_msg='matrix diagonal "el"ement in transformation')
enddo
call buildTransformationSystem(Q,S,Ntrans,cOverA_trans,a_fcc,a_bcc)
do i = 1,sum(Ntrans)
call R%fromMatrix(Q(1:3,1:3,i))
lattice_C66_trans(1:6,1:6,i) = R%rotStiffness(C_target_unrotated66)
enddo
end function lattice_C66_trans
!--------------------------------------------------------------------------------------------------
!> @brief Non-schmid projections for bcc with up to 6 coefficients
! Koester et al. 2012, Acta Materialia 60 (2012) 38943901, eq. (17)
! Gröger et al. 2008, Acta Materialia 56 (2008) 54125425, table 1
!--------------------------------------------------------------------------------------------------
function lattice_nonSchmidMatrix(Nslip,nonSchmidCoefficients,sense) result(nonSchmidMatrix)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
real(pReal), dimension(:), intent(in) :: nonSchmidCoefficients !< non-Schmid coefficients for projections
integer, intent(in) :: sense !< sense (-1,+1)
real(pReal), dimension(1:3,1:3,sum(Nslip)) :: nonSchmidMatrix
real(pReal), dimension(1:3,1:3,sum(Nslip)) :: coordinateSystem !< coordinate system of slip system
real(pReal), dimension(3) :: direction, normal, np
type(rotation) :: R
integer :: i
if (abs(sense) /= 1) error stop 'Sense in lattice_nonSchmidMatrix'
coordinateSystem = buildCoordinateSystem(Nslip,BCC_NSLIPSYSTEM,BCC_SYSTEMSLIP,'cI',0.0_pReal)
coordinateSystem(1:3,1,1:sum(Nslip)) = coordinateSystem(1:3,1,1:sum(Nslip))*real(sense,pReal) ! convert unidirectional coordinate system
nonSchmidMatrix = lattice_SchmidMatrix_slip(Nslip,'cI',0.0_pReal) ! Schmid contribution
do i = 1,sum(Nslip)
direction = coordinateSystem(1:3,1,i)
normal = coordinateSystem(1:3,2,i)
call R%fromAxisAngle([direction,60.0_pReal],degrees=.true.,P=1)
np = R%rotate(normal)
if (size(nonSchmidCoefficients)>0) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
+ nonSchmidCoefficients(1) * math_outer(direction, np)
if (size(nonSchmidCoefficients)>1) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
+ nonSchmidCoefficients(2) * math_outer(math_cross(normal, direction), normal)
if (size(nonSchmidCoefficients)>2) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
+ nonSchmidCoefficients(3) * math_outer(math_cross(np, direction), np)
if (size(nonSchmidCoefficients)>3) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
+ nonSchmidCoefficients(4) * math_outer(normal, normal)
if (size(nonSchmidCoefficients)>4) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
+ nonSchmidCoefficients(5) * math_outer(math_cross(normal, direction), &
math_cross(normal, direction))
if (size(nonSchmidCoefficients)>5) nonSchmidMatrix(1:3,1:3,i) = nonSchmidMatrix(1:3,1:3,i) &
+ nonSchmidCoefficients(6) * math_outer(direction, direction)
enddo
end function lattice_nonSchmidMatrix
!--------------------------------------------------------------------------------------------------
!> @brief Slip-slip interaction matrix
!> details only active slip systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_interaction_SlipBySlip(Nslip,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
real(pReal), dimension(:), intent(in) :: interactionValues !< values for slip-slip interaction
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: interactionMatrix
integer, dimension(:), allocatable :: NslipMax
integer, dimension(:,:), allocatable :: interactionTypes
integer, dimension(FCC_NSLIP,FCC_NSLIP), parameter :: &
FCC_INTERACTIONSLIPSLIP = reshape( [&
1, 2, 2, 4, 7, 5, 3, 5, 5, 4, 6, 7, 10,11,10,11,12,13, & ! -----> acting (forest)
2, 1, 2, 7, 4, 5, 6, 4, 7, 5, 3, 5, 10,11,12,13,10,11, & ! |
2, 2, 1, 5, 5, 3, 6, 7, 4, 7, 6, 4, 12,13,10,11,10,11, & ! |
4, 7, 6, 1, 2, 2, 4, 6, 7, 3, 5, 5, 10,11,11,10,13,12, & ! v
7, 4, 6, 2, 1, 2, 5, 3, 5, 6, 4, 7, 10,11,13,12,11,10, & ! reacting (primary)
5, 5, 3, 2, 2, 1, 7, 6, 4, 6, 7, 4, 12,13,11,10,11,10, &
3, 5, 5, 4, 6, 7, 1, 2, 2, 4, 7, 6, 11,10,11,10,12,13, &
6, 4, 7, 5, 3, 5, 2, 1, 2, 7, 4, 6, 11,10,13,12,10,11, &
6, 7, 4, 7, 6, 4, 2, 2, 1, 5, 5, 3, 13,12,11,10,10,11, &
4, 6, 7, 3, 5, 5, 4, 7, 6, 1, 2, 2, 11,10,10,11,13,12, &
5, 3, 5, 6, 4, 7, 7, 4, 6, 2, 1, 2, 11,10,12,13,11,10, &
7, 6, 4, 6, 7, 4, 5, 5, 3, 2, 2, 1, 13,12,10,11,11,10, &
10,10,12,10,10,12,11,11,13,11,11,13, 1, 8, 9, 9, 9, 9, &
11,11,13,11,11,13,10,10,12,10,10,12, 8, 1, 9, 9, 9, 9, &
10,12,10,11,13,11,11,13,11,10,12,10, 9, 9, 1, 8, 9, 9, &
11,13,11,10,12,10,10,12,10,11,13,11, 9, 9, 8, 1, 9, 9, &
12,10,10,13,11,11,12,10,10,13,11,11, 9, 9, 9, 9, 1, 8, &
13,11,11,12,10,10,13,11,11,12,10,10, 9, 9, 9, 9, 8, 1 &
],shape(FCC_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for fcc / Madec 2017 (https://doi.org/10.1016/j.actamat.2016.12.040)
!< 1: self interaction --> alpha 0
!< 2: coplanar interaction --> alpha copla
!< 3: collinear interaction --> alpha coli
!< 4: Hirth locks --> alpha 1
!< 5: glissile junctions I --> alpha 2
!< 6: glissile junctions II --> alpha 2*
!< 7: Lomer locks --> alpha 3
!< 8: crossing (similar to Hirth locks in <110>{111} for two {110} planes)
!< 9: similar to Lomer locks in <110>{111} for two {110} planes
!<10: similar to Lomer locks in <110>{111} btw one {110} and one {111} plane
!<11: similar to glissile junctions in <110>{111} btw one {110} and one {111} plane
!<12: crossing btw one {110} and one {111} plane
!<13: collinear btw one {110} and one {111} plane
integer, dimension(BCC_NSLIP,BCC_NSLIP), parameter :: &
BCC_INTERACTIONSLIPSLIP = reshape( [&
1, 3, 6, 6, 7, 5, 4, 2, 4, 2, 7, 5, 18,18,11, 8, 9,13,17,14,13, 9,17,14, 28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,28,28,25,28,28,28,25, &! -----> acting (forest)
3, 1, 6, 6, 4, 2, 7, 5, 7, 5, 4, 2, 18,18, 8,11,13, 9,14,17, 9,13,14,17, 25,28,28,28,28,25,28,28,25,28,28,28,28,25,28,28,28,28,25,28,28,28,25,28, &! |
6, 6, 1, 3, 5, 7, 2, 4, 5, 7, 2, 4, 11, 8,18,18,17,14, 9,13,17,14,13, 9, 28,28,28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,25,28,28,28,25,28,28, &! |
6, 6, 3, 1, 2, 4, 5, 7, 2, 4, 5, 7, 8,11,18,18,14,17,13, 9,14,17, 9,13, 28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,25,25,28,28,28,25,28,28,28, &! v
7, 5, 4, 2, 1, 3, 6, 6, 2, 4, 7, 5, 9,17,13,14,18,11,18, 8,13,17, 9,14, 28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,25,25,28,28,28,25,28,28,28, &! reacting (primary)
4, 2, 7, 5, 3, 1, 6, 6, 5, 7, 4, 2, 13,14, 9,17,18, 8,18,11, 9,14,13,17, 25,28,28,28,28,25,28,28,25,28,28,28,28,25,28,28,28,28,25,28,28,28,25,28, &
5, 7, 2, 4, 6, 6, 1, 3, 7, 5, 2, 4, 17, 9,14,13,11,18, 8,18,17,13,14, 9, 28,28,28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,25,28,28,28,25,28,28, &
2, 4, 5, 7, 6, 6, 3, 1, 4, 2, 5, 7, 14,13,17, 9, 8,18,11,18,14, 9,17,13, 28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,28,28,25,28,28,28,25, &
5, 7, 4, 2, 2, 4, 7, 5, 1, 3, 6, 6, 9,17,14,13,13,17,14, 9,18,11, 8,18, 28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,25,25,28,28,28,25,28,28,28, &
2, 4, 7, 5, 5, 7, 4, 2, 3, 1, 6, 6, 13,14,17, 9, 9,14,17,13,18, 8,11,18, 28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,28,28,28,28,25,28,28,28,25, &
7, 5, 2, 4, 7, 5, 2, 4, 6, 6, 1, 3, 17, 9,13,14,17,13, 9,14,11,18,18, 8, 28,28,28,25,28,28,25,28,28,28,28,25,28,28,25,28,28,25,28,28,28,25,28,28, &
4, 2, 5, 7, 4, 2, 5, 7, 6, 6, 3, 1, 14,13, 9,17,14, 9,13,17, 8,18,18,11, 25,28,28,28,28,25,28,28,25,28,28,28,28,25,28,28,28,28,25,28,28,28,25,28, &
19,19,10, 8, 9,12,16,15, 9,12,16,15, 1,20,24,24,23,22,21, 2,23,22, 2,21, 28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,26,26,28,28,28,26,28,28,28, &
19,19, 8,10,16,15, 9,12,16,15, 9,12, 20, 1,24,24,22,23, 2,21,22,23,21, 2, 28,28,28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,26,28,28,28,26,28,28, &
10, 8,19,19,12, 9,15,16,15,16,12, 9, 24,24, 1,20,21, 2,23,22, 2,21,23,22, 26,28,28,28,28,26,28,28,26,28,28,28,28,26,28,28,28,28,26,28,28,28,26,28, &
8,10,19,19,15,16,12, 9,12, 9,15,16, 24,24,20, 1, 2,21,22,23,21, 2,22,23, 28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,28,28,26,28,28,28,26, &
9,12,16,15,19,19,10, 8,12, 9,16,15, 23,21,22, 2, 1,24,20,24,23, 2,22,21, 28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,28,28,26,28,28,28,26, &
12, 9,15,16,10, 8,19,19,16,15,12, 9, 21,23, 2,21,24, 1,24,20, 2,23,21,22, 26,28,28,28,28,26,28,28,26,28,28,28,28,26,28,28,28,28,26,28,28,28,26,28, &
16,15, 9,12,19,19, 8,10,15,16, 9,12, 22, 2,23,22,20,24, 1,24,22,21,23, 2, 28,28,28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,26,28,28,28,26,28,28, &
15,16,12, 9, 8,10,19,19, 9,12,15,16, 2,22,21,23,24,20,24, 1,21,22, 2,23, 28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,26,26,28,28,28,26,28,28,28, &
12, 9,16,15,12, 9,16,15,19,19,10, 8, 23,21, 2,22,23, 2,21,22, 1,24,24,20, 26,28,28,28,28,26,28,28,26,28,28,28,28,26,28,28,28,28,26,28,28,28,26,28, &
9,12,15,16,16,15,12, 9,10, 8,19,19, 21,23,22, 2, 2,23,22,21,24, 1,20,24, 28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,28,28,26,28,28,28,26, &
16,15,12, 9, 9,12,15,16, 8,10,19,19, 2,22,23,21,21,22,23, 2,24,20, 1,24, 28,28,26,28,28,28,28,26,28,28,26,28,28,28,28,26,26,28,28,28,26,28,28,28, &
15,16, 9,12,15,16, 9,12,19,19, 8,10, 22, 2,21,23,22,21, 2,23,20,24,24, 1, 28,28,28,26,28,28,26,28,28,28,28,26,28,28,26,28,28,26,28,28,28,26,28,28, &
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 1,28,28,28,28,27,28,28,27,28,28,28,28,27,28,28,28,28,27,28,28,28,27,28, &
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28, 1,28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,28,28,27,28,28,28,27, &
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28, 1,28,28,28,28,27,28,28,27,28,28,28,28,27,27,28,28,28,27,28,28,28, &
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28, 1,28,28,27,28,28,28,28,27,28,28,27,28,28,27,28,28,28,27,28,28, &
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28, 1,28,28,28,28,27,28,28,27,28,28,28,28,28,28,27,28,28,28,27, &
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28, 1,28,28,27,28,28,28,28,27,28,28,28,28,27,28,28,28,27,28, &
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28, 1,28,28,28,28,27,28,28,27,28,28,27,28,28,28,27,28,28, &
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28, 1,28,28,27,28,28,28,28,27,27,28,28,28,27,28,28,28, &
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28,27,28,28, 1,28,28,28,28,27,28,28,28,28,27,28,28,28,27,28, &
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28,27,28,28,28,28, 1,28,28,27,28,28,28,28,28,28,27,28,28,28,27, &
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28,27,28,28, 1,28,28,28,28,27,27,28,28,28,27,28,28,28, &
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28,27,28,28,28,28, 1,28,28,27,28,28,27,28,28,28,27,28,28, &
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28,27,28,28,28,28,27,28,28, 1,28,28,28,28,28,28,27,28,28,28,27, &
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28,27,28,28,27,28,28,28,28, 1,28,28,28,28,27,28,28,28,27,28, &
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28,27,28,28,28,28,27,28,28, 1,28,28,27,28,28,28,27,28,28, &
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28,27,28,28,27,28,28,28,28, 1,27,28,28,28,27,28,28,28, &
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,27, 1,28,28,28,27,28,28,28, &
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28,27,28,28,28,28,27,28,28,27,28,28, 1,28,28,28,27,28,28, &
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28,27,28,28,27,28,28,28,28,27,28,28,28,28, 1,28,28,28,27,28, &
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,28,28, 1,28,28,28,27, &
28,28,28,25,25,28,28,28,25,28,28,28, 26,28,28,28,28,28,28,26,28,28,26,28, 28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,27,27,28,28,28, 1,28,28,28, &
28,28,25,28,28,28,25,28,28,28,25,28, 28,26,28,28,28,28,26,28,28,28,28,26, 28,28,28,27,28,28,27,28,28,28,28,27,28,28,27,28,28,27,28,28,28, 1,28,28, &
28,25,28,28,28,25,28,28,28,28,28,25, 28,28,26,28,28,26,28,28,26,28,28,28, 27,28,28,28,28,27,28,28,27,28,28,28,28,27,28,28,28,28,27,28,28,28, 1,28, &
25,28,28,28,28,28,28,25,28,25,28,28, 28,28,28,26,26,28,28,28,28,26,28,28, 28,27,28,28,27,28,28,28,28,27,28,28,27,28,28,28,28,28,28,27,28,28,28, 1 &
],shape(BCC_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for bcc / Madec 2017 (https://doi.org/10.1016/j.actamat.2016.12.040)
!< 1: self interaction --> alpha 0
!< 2: collinear interaction --> alpha 1
!< 3: coplanar interaction --> alpha 2
!< 4-7: other coefficients
!< 8: {110}-{112} collinear and perpendicular planes --> alpha 6
!< 9: {110}-{112} collinear --> alpha 7
!< 10-24: other coefficients
!< 25: {110}-{123} collinear
!< 26: {112}-{123} collinear
!< 27: {123}-{123} collinear
!< 28: other interaction
integer, dimension(HEX_NSLIP,HEX_NSLIP), parameter :: &
HEX_INTERACTIONSLIPSLIP = reshape( [&
! basal prism 2. prism 1. pyr<a> 1. pyr<c+a> 2. pyr<c+a>
1, 2, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! -----> acting (forest)
2, 1, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! | basal
2, 2, 1, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! |
! v
6, 6, 6, 4, 5, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, & ! reacting (primary)
6, 6, 6, 5, 4, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, & ! prism
6, 6, 6, 5, 5, 4, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
12,12,12, 11,11,11, 9,10,10, 15,15,15,15,15,15, 23,23,23,23,23,23,23,23,23,23,23,23, 33,33,33,33,33,33, &
12,12,12, 11,11,11, 10, 9,10, 15,15,15,15,15,15, 23,23,23,23,23,23,23,23,23,23,23,23, 33,33,33,33,33,33, & ! 2. prism
12,12,12, 11,11,11, 10,10, 9, 15,15,15,15,15,15, 23,23,23,23,23,23,23,23,23,23,23,23, 33,33,33,33,33,33, &
20,20,20, 19,19,19, 18,18,18, 16,17,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,16,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,16,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,16,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, & ! 1. pyr<a>
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,16,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,17,16, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 25,26,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,25,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,25,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,25,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,25,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,25,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,25,26,26,26,26,26, 35,35,35,35,35,35, & ! 1. pyr<c+a>
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,25,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,25,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,25,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,25,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,26,25, 35,35,35,35,35,35, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 36,37,37,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,36,37,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,36,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,36,37,37, & ! 2. pyr<c+a>
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,36,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,37,36 &
],shape(HEX_INTERACTIONSLIPSLIP)) !< Slip-slip interaction types for hex (onion peel naming scheme)
integer, dimension(BCT_NSLIP,BCT_NSLIP), parameter :: &
BCT_INTERACTIONSLIPSLIP = reshape( [&
1, 2, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, 111, 111, 111, 111, 133,133,133,133,133,133,133,133, 157,157,157,157,157,157,157,157, & ! -----> acting
2, 1, 3, 3, 7, 7, 13, 13, 13, 13, 21, 21, 31, 31, 31, 31, 43, 43, 57, 57, 73, 73, 73, 73, 91, 91, 91, 91, 91, 91, 91, 91, 111, 111, 111, 111, 133,133,133,133,133,133,133,133, 157,157,157,157,157,157,157,157, & ! |
! |
6, 6, 4, 5, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, 112, 112, 112, 112, 134,134,134,134,134,134,134,134, 158,158,158,158,158,158,158,158, & ! v
6, 6, 5, 4, 8, 8, 14, 14, 14, 14, 22, 22, 32, 32, 32, 32, 44, 44, 58, 58, 74, 74, 74, 74, 92, 92, 92, 92, 92, 92, 92, 92, 112, 112, 112, 112, 134,134,134,134,134,134,134,134, 158,158,158,158,158,158,158,158, & ! reacting
12, 12, 11, 11, 9, 10, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, 113, 113, 113, 113, 135,135,135,135,135,135,135,135, 159,159,159,159,159,159,159,159, &
12, 12, 11, 11, 10, 9, 15, 15, 15, 15, 23, 23, 33, 33, 33, 33, 45, 45, 59, 59, 75, 75, 75, 75, 93, 93, 93, 93, 93, 93, 93, 93, 113, 113, 113, 113, 135,135,135,135,135,135,135,135, 159,159,159,159,159,159,159,159, &
20, 20, 19, 19, 18, 18, 16, 17, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
20, 20, 19, 19, 18, 18, 17, 16, 17, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
20, 20, 19, 19, 18, 18, 17, 17, 16, 17, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
20, 20, 19, 19, 18, 18, 17, 17, 17, 16, 24, 24, 34, 34, 34, 34, 46, 46, 60, 60, 76, 76, 76, 76, 94, 94, 94, 94, 94, 94, 94, 94, 114, 114, 114, 114, 136,136,136,136,136,136,136,136, 160,160,160,160,160,160,160,160, &
30, 30, 29, 29, 28, 28, 27, 27, 27, 27, 25, 26, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, 115, 115, 115, 115, 137,137,137,137,137,137,137,137, 161,161,161,161,161,161,161,161, &
30, 30, 29, 29, 28, 28, 27, 27, 27, 27, 26, 25, 35, 35, 35, 35, 47, 47, 61, 61, 77, 77, 77, 77, 95, 95, 95, 95, 95, 95, 95, 95, 115, 115, 115, 115, 137,137,137,137,137,137,137,137, 161,161,161,161,161,161,161,161, &
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 36, 37, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 36, 37, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 37, 36, 37, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
42, 42, 41, 41, 40, 40, 39, 39, 39, 39, 38, 38, 37, 37, 37, 36, 48, 48, 62, 62, 78, 78, 78, 78, 96, 96, 96, 96, 96, 96, 96, 96, 116, 116, 116, 116, 138,138,138,138,138,138,138,138, 162,162,162,162,162,162,162,162, &
56, 56, 55, 55, 54, 54, 53, 53, 53, 53, 52, 52, 51, 51, 51, 51, 49, 50, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, 117, 117, 117, 117, 139,139,139,139,139,139,139,139, 163,163,163,163,163,163,163,163, &
56, 56, 55, 55, 54, 54, 53, 53, 53, 53, 52, 52, 51, 51, 51, 51, 50, 49, 63, 63, 79, 79, 79, 79, 97, 97, 97, 97, 97, 97, 97, 97, 117, 117, 117, 117, 139,139,139,139,139,139,139,139, 163,163,163,163,163,163,163,163, &
72, 72, 71, 71, 70, 70, 69, 69, 69, 69, 68, 68, 67, 67, 67, 67, 66, 66, 64, 65, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, 118, 118, 118, 118, 140,140,140,140,140,140,140,140, 164,164,164,164,164,164,164,164, &
72, 72, 71, 71, 70, 70, 69, 69, 69, 69, 68, 68, 67, 67, 67, 67, 66, 66, 65, 64, 80, 80, 80, 80, 98, 98, 98, 98, 98, 98, 98, 98, 118, 118, 118, 118, 140,140,140,140,140,140,140,140, 164,164,164,164,164,164,164,164, &
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 81, 82, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 81, 82, 82, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 81, 82, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
90, 90, 89, 89, 88, 88, 87, 87, 87, 87, 86, 86, 85, 85, 85, 85, 84, 84, 83, 83, 82, 82, 82, 81, 99, 99, 99, 99, 99, 99, 99, 99, 119, 119, 119, 119, 141,141,141,141,141,141,141,141, 165,165,165,165,165,165,165,165, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 100,101,101,101,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,100,101,101,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,100,101,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,100,101,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,100,101,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,100,101,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,101,100,101, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
110,110, 109,109, 108,108, 107,107,107,107, 106,106, 105,105,105,105, 104,104, 103,103, 102,102,102,102, 101,101,101,101,101,101,101,100, 120, 120, 120, 120, 142,142,142,142,142,142,142,142, 166,166,166,166,166,166,166,166, &
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 122, 122, 122, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 121, 122, 122, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 122, 121, 122, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
132,132, 131,131, 130,130, 129,129,129,129, 128,128, 127,127,127,127, 126,126, 125,125, 124,124,124,124, 123,123,123,123,123,123,123,123, 121, 122, 122, 121, 143,143,143,143,143,143,143,143, 167,167,167,167,167,167,167,167, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 144,145,145,145,145,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,144,145,145,145,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,144,145,145,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,144,145,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,144,145,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,145,144,145,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,145,145,144,145, 168,168,168,168,168,168,168,168, &
156,156, 155,155, 154,154, 153,153,153,153, 152,152, 151,151,151,151, 150,150, 149,149, 148,148,148,148, 147,147,147,147,147,147,147,147, 146, 146, 146, 146, 145,145,145,145,145,145,145,144, 168,168,168,168,168,168,168,168, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,169,170,170,170,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,170,169,170,170,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,170,170,169,170,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 170,170,170,170,169,170,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,169,170,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,170,169,170, &
182,182, 181,181, 180,180, 179,179,179,179, 178,178, 177,177,177,177, 176,176, 175,175, 174,174,174,174, 173,173,173,173,173,173,173,173, 172, 172, 172, 172, 171,171,171,171,171,171,171,171, 169,170,170,170,170,170,170,169 &
],shape(BCT_INTERACTIONSLIPSLIP))
select case(lattice)
case('cF')
interactionTypes = FCC_INTERACTIONSLIPSLIP
NslipMax = FCC_NSLIPSYSTEM
case('cI')
interactionTypes = BCC_INTERACTIONSLIPSLIP
NslipMax = BCC_NSLIPSYSTEM
case('hP')
interactionTypes = HEX_INTERACTIONSLIPSLIP
NslipMax = HEX_NSLIPSYSTEM
case('tI')
interactionTypes = BCT_INTERACTIONSLIPSLIP
NslipMax = BCT_NSLIPSYSTEM
case default
call IO_error(137,ext_msg='lattice_interaction_SlipBySlip: '//trim(lattice))
end select
interactionMatrix = buildInteraction(Nslip,Nslip,NslipMax,NslipMax,interactionValues,interactionTypes)
end function lattice_interaction_SlipBySlip
!--------------------------------------------------------------------------------------------------
!> @brief Twin-twin interaction matrix
!> details only active twin systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_interaction_TwinByTwin(Ntwin,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
real(pReal), dimension(:), intent(in) :: interactionValues !< values for twin-twin interaction
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), dimension(sum(Ntwin),sum(Ntwin)) :: interactionMatrix
integer, dimension(:), allocatable :: NtwinMax
integer, dimension(:,:), allocatable :: interactionTypes
integer, dimension(FCC_NTWIN,FCC_NTWIN), parameter :: &
FCC_INTERACTIONTWINTWIN = reshape( [&
1,1,1,2,2,2,2,2,2,2,2,2, & ! -----> acting
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
2,2,2,1,1,1,2,2,2,2,2,2, & ! v
2,2,2,1,1,1,2,2,2,2,2,2, & ! reacting
2,2,2,1,1,1,2,2,2,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1 &
],shape(FCC_INTERACTIONTWINTWIN)) !< Twin-twin interaction types for fcc
integer, dimension(BCC_NTWIN,BCC_NTWIN), parameter :: &
BCC_INTERACTIONTWINTWIN = reshape( [&
1,3,3,3,3,3,3,2,3,3,2,3, & ! -----> acting
3,1,3,3,3,3,2,3,3,3,3,2, & ! |
3,3,1,3,3,2,3,3,2,3,3,3, & ! |
3,3,3,1,2,3,3,3,3,2,3,3, & ! v
3,3,3,2,1,3,3,3,3,2,3,3, & ! reacting
3,3,2,3,3,1,3,3,2,3,3,3, &
3,2,3,3,3,3,1,3,3,3,3,2, &
2,3,3,3,3,3,3,1,3,3,2,3, &
3,3,2,3,3,2,3,3,1,3,3,3, &
3,3,3,2,2,3,3,3,3,1,3,3, &
2,3,3,3,3,3,3,2,3,3,1,3, &
3,2,3,3,3,3,2,3,3,3,3,1 &
],shape(BCC_INTERACTIONTWINTWIN)) !< Twin-twin interaction types for bcc
!< 1: self interaction
!< 2: collinear interaction
!< 3: other interaction
integer, dimension(HEX_NTWIN,HEX_NTWIN), parameter :: &
HEX_INTERACTIONTWINTWIN = reshape( [&
! <-10.1>{10.2} <11.6>{-1-1.1} <10.-2>{10.1} <11.-3>{11.2}
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! -----> acting
2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
2, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
2, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! v <-10.1>{10.2}
2, 2, 2, 2, 1, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! reacting
2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, &
6, 6, 6, 6, 6, 6, 4, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 4, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 4, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, & ! <11.6>{-1-1.1}
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
12,12,12,12,12,12, 11,11,11,11,11,11, 9,10,10,10,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10, 9,10,10,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10, 9,10,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10, 9,10,10, 15,15,15,15,15,15, & ! <10.-2>{10.1}
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10, 9,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10,10, 9, 15,15,15,15,15,15, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 16,17,17,17,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,16,17,17,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,16,17,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,16,17,17, & ! <11.-3>{11.2}
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,16,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,16 &
],shape(HEX_INTERACTIONTWINTWIN)) !< Twin-twin interaction types for hex
select case(lattice)
case('cF')
interactionTypes = FCC_INTERACTIONTWINTWIN
NtwinMax = FCC_NTWINSYSTEM
case('cI')
interactionTypes = BCC_INTERACTIONTWINTWIN
NtwinMax = BCC_NTWINSYSTEM
case('hP')
interactionTypes = HEX_INTERACTIONTWINTWIN
NtwinMax = HEX_NTWINSYSTEM
case default
call IO_error(137,ext_msg='lattice_interaction_TwinByTwin: '//trim(lattice))
end select
interactionMatrix = buildInteraction(Ntwin,Ntwin,NtwinMax,NtwinMax,interactionValues,interactionTypes)
end function lattice_interaction_TwinByTwin
!--------------------------------------------------------------------------------------------------
!> @brief Trans-trans interaction matrix
!> details only active trans systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_interaction_TransByTrans(Ntrans,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Ntrans !< number of active trans systems per family
real(pReal), dimension(:), intent(in) :: interactionValues !< values for trans-trans interaction
character(len=2), intent(in) :: lattice !<Bravais lattice (Pearson symbol) (parent crystal)
real(pReal), dimension(sum(Ntrans),sum(Ntrans)) :: interactionMatrix
integer, dimension(:), allocatable :: NtransMax
integer, dimension(:,:), allocatable :: interactionTypes
integer, dimension(FCC_NTRANS,FCC_NTRANS), parameter :: &
FCC_INTERACTIONTRANSTRANS = reshape( [&
1,1,1,2,2,2,2,2,2,2,2,2, & ! -----> acting
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
2,2,2,1,1,1,2,2,2,2,2,2, & ! v
2,2,2,1,1,1,2,2,2,2,2,2, & ! reacting
2,2,2,1,1,1,2,2,2,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1 &
],shape(FCC_INTERACTIONTRANSTRANS)) !< Trans-trans interaction types for fcc
if (lattice == 'cF') then
interactionTypes = FCC_INTERACTIONTRANSTRANS
NtransMax = FCC_NTRANSSYSTEM
else
call IO_error(137,ext_msg='lattice_interaction_TransByTrans: '//trim(lattice))
end if
interactionMatrix = buildInteraction(Ntrans,Ntrans,NtransMax,NtransMax,interactionValues,interactionTypes)
end function lattice_interaction_TransByTrans
!--------------------------------------------------------------------------------------------------
!> @brief Slip-twin interaction matrix
!> details only active slip and twin systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_interaction_SlipByTwin(Nslip,Ntwin,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family
Ntwin !< number of active twin systems per family
real(pReal), dimension(:), intent(in) :: interactionValues !< values for slip-twin interaction
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), dimension(sum(Nslip),sum(Ntwin)) :: interactionMatrix
integer, dimension(:), allocatable :: NslipMax, &
NtwinMax
integer, dimension(:,:), allocatable :: interactionTypes
integer, dimension(FCC_NTWIN,FCC_NSLIP), parameter :: &
FCC_INTERACTIONSLIPTWIN = reshape( [&
1,1,1,3,3,3,2,2,2,3,3,3, & ! -----> twin (acting)
1,1,1,3,3,3,3,3,3,2,2,2, & ! |
1,1,1,2,2,2,3,3,3,3,3,3, & ! |
3,3,3,1,1,1,3,3,3,2,2,2, & ! v
3,3,3,1,1,1,2,2,2,3,3,3, & ! slip (reacting)
2,2,2,1,1,1,3,3,3,3,3,3, &
2,2,2,3,3,3,1,1,1,3,3,3, &
3,3,3,2,2,2,1,1,1,3,3,3, &
3,3,3,3,3,3,1,1,1,2,2,2, &
3,3,3,2,2,2,3,3,3,1,1,1, &
2,2,2,3,3,3,3,3,3,1,1,1, &
3,3,3,3,3,3,2,2,2,1,1,1, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4 &
],shape(FCC_INTERACTIONSLIPTWIN)) !< Slip-twin interaction types for fcc
!< 1: coplanar interaction
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 3: other interaction
integer, dimension(BCC_NTWIN,BCC_NSLIP), parameter :: &
BCC_INTERACTIONSLIPTWIN = reshape( [&
3,3,3,2,2,3,3,3,3,2,3,3, & ! -----> twin (acting)
3,3,2,3,3,2,3,3,2,3,3,3, & ! |
3,2,3,3,3,3,2,3,3,3,3,2, & ! |
2,3,3,3,3,3,3,2,3,3,2,3, & ! v
2,3,3,3,3,3,3,2,3,3,2,3, & ! slip (reacting)
3,3,2,3,3,2,3,3,2,3,3,3, &
3,2,3,3,3,3,2,3,3,3,3,2, &
3,3,3,2,2,3,3,3,3,2,3,3, &
2,3,3,3,3,3,3,2,3,3,2,3, &
3,3,3,2,2,3,3,3,3,2,3,3, &
3,2,3,3,3,3,2,3,3,3,3,2, &
3,3,2,3,3,2,3,3,2,3,3,3, &
1,3,3,3,3,3,3,2,3,3,2,3, &
3,1,3,3,3,3,2,3,3,3,3,2, &
3,3,1,3,3,2,3,3,2,3,3,3, &
3,3,3,1,2,3,3,3,3,2,3,3, &
3,3,3,2,1,3,3,3,3,2,3,3, &
3,3,2,3,3,1,3,3,2,3,3,3, &
3,2,3,3,3,3,1,3,3,3,3,2, &
2,3,3,3,3,3,3,1,3,3,2,3, &
3,3,2,3,3,2,3,3,1,3,3,3, &
3,3,3,2,2,3,3,3,3,1,3,3, &
2,3,3,3,3,3,3,2,3,3,1,3, &
3,2,3,3,3,3,2,3,3,3,3,1, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4 &
],shape(BCC_INTERACTIONSLIPTWIN)) !< Slip-twin interaction types for bcc
!< 1: coplanar interaction
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 3: other interaction
!< 4: other interaction with slip family {123}
integer, dimension(HEX_NTWIN,HEX_NSLIP), parameter :: &
HEX_INTERACTIONSLIPTWIN = reshape( [&
! <-10.1>{10.2} <11.6>{-1-1.1} <10.-2>{10.1} <11.-3>{11.2}
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! ----> twin (acting)
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! | basal
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! |
! v
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, & ! slip (reacting)
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, & ! prism
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, & ! 2.prism
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, & ! 1. pyr<a>
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, & ! 1. pyr<c+a>
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, & ! 2. pyr<c+a>
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24 &
],shape(HEX_INTERACTIONSLIPTWIN)) !< Slip-twin interaction types for hex
select case(lattice)
case('cF')
interactionTypes = FCC_INTERACTIONSLIPTWIN
NslipMax = FCC_NSLIPSYSTEM
NtwinMax = FCC_NTWINSYSTEM
case('cI')
interactionTypes = BCC_INTERACTIONSLIPTWIN
NslipMax = BCC_NSLIPSYSTEM
NtwinMax = BCC_NTWINSYSTEM
case('hP')
interactionTypes = HEX_INTERACTIONSLIPTWIN
NslipMax = HEX_NSLIPSYSTEM
NtwinMax = HEX_NTWINSYSTEM
case default
call IO_error(137,ext_msg='lattice_interaction_SlipByTwin: '//trim(lattice))
end select
interactionMatrix = buildInteraction(Nslip,Ntwin,NslipMax,NtwinMax,interactionValues,interactionTypes)
end function lattice_interaction_SlipByTwin
!--------------------------------------------------------------------------------------------------
!> @brief Slip-trans interaction matrix
!> details only active slip and trans systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_interaction_SlipByTrans(Nslip,Ntrans,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Nslip, & !< number of active slip systems per family
Ntrans !< number of active trans systems per family
real(pReal), dimension(:), intent(in) :: interactionValues !< values for slip-trans interaction
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol) (parent crystal)
real(pReal), dimension(sum(Nslip),sum(Ntrans)) :: interactionMatrix
integer, dimension(:), allocatable :: NslipMax, &
NtransMax
integer, dimension(:,:), allocatable :: interactionTypes
integer, dimension(FCC_NTRANS,FCC_NSLIP), parameter :: &
FCC_INTERACTIONSLIPTRANS = reshape( [&
1,1,1,3,3,3,2,2,2,3,3,3, & ! -----> trans (acting)
1,1,1,3,3,3,3,3,3,2,2,2, & ! |
1,1,1,2,2,2,3,3,3,3,3,3, & ! |
3,3,3,1,1,1,3,3,3,2,2,2, & ! v
3,3,3,1,1,1,2,2,2,3,3,3, & ! slip (reacting)
2,2,2,1,1,1,3,3,3,3,3,3, &
2,2,2,3,3,3,1,1,1,3,3,3, &
3,3,3,2,2,2,1,1,1,3,3,3, &
3,3,3,3,3,3,1,1,1,2,2,2, &
3,3,3,2,2,2,3,3,3,1,1,1, &
2,2,2,3,3,3,3,3,3,1,1,1, &
3,3,3,3,3,3,2,2,2,1,1,1, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4, &
4,4,4,4,4,4,4,4,4,4,4,4 &
],shape(FCC_INTERACTIONSLIPTRANS)) !< Slip-trans interaction types for fcc
select case(lattice)
case('cF')
interactionTypes = FCC_INTERACTIONSLIPTRANS
NslipMax = FCC_NSLIPSYSTEM
NtransMax = FCC_NTRANSSYSTEM
case default
call IO_error(137,ext_msg='lattice_interaction_SlipByTrans: '//trim(lattice))
end select
interactionMatrix = buildInteraction(Nslip,Ntrans,NslipMax,NtransMax,interactionValues,interactionTypes)
end function lattice_interaction_SlipByTrans
!--------------------------------------------------------------------------------------------------
!> @brief Twin-slip interaction matrix
!> details only active twin and slip systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_interaction_TwinBySlip(Ntwin,Nslip,interactionValues,lattice) result(interactionMatrix)
integer, dimension(:), intent(in) :: Ntwin, & !< number of active twin systems per family
Nslip !< number of active slip systems per family
real(pReal), dimension(:), intent(in) :: interactionValues !< values for twin-twin interaction
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), dimension(sum(Ntwin),sum(Nslip)) :: interactionMatrix
integer, dimension(:), allocatable :: NtwinMax, &
NslipMax
integer, dimension(:,:), allocatable :: interactionTypes
integer, dimension(FCC_NSLIP,FCC_NTWIN), parameter :: &
FCC_INTERACTIONTWINSLIP = 1 !< Twin-slip interaction types for fcc
integer, dimension(BCC_NSLIP,BCC_NTWIN), parameter :: &
BCC_INTERACTIONTWINSLIP = 1 !< Twin-slip interaction types for bcc
integer, dimension(HEX_NSLIP,HEX_NTWIN), parameter :: &
HEX_INTERACTIONTWINSLIP = reshape( [&
! basal prism 2. prism 1. pyr<a> 1. pyr<c+a> 2. pyr<c+a>
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! ----> slip (acting)
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! |
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! |
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! v <-10.1>{10.2}
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! twin (reacting)
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, & ! <11.6>{-1-1.1}
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, & ! <10.-2>{10.1}
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, & ! <11.-3>{11.2}
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24 &
],shape(HEX_INTERACTIONTWINSLIP)) !< Twin-slip interaction types for hex
select case(lattice)
case('cF')
interactionTypes = FCC_INTERACTIONTWINSLIP
NtwinMax = FCC_NTWINSYSTEM
NslipMax = FCC_NSLIPSYSTEM
case('cI')
interactionTypes = BCC_INTERACTIONTWINSLIP
NtwinMax = BCC_NTWINSYSTEM
NslipMax = BCC_NSLIPSYSTEM
case('hP')
interactionTypes = HEX_INTERACTIONTWINSLIP
NtwinMax = HEX_NTWINSYSTEM
NslipMax = HEX_NSLIPSYSTEM
case default
call IO_error(137,ext_msg='lattice_interaction_TwinBySlip: '//trim(lattice))
end select
interactionMatrix = buildInteraction(Ntwin,Nslip,NtwinMax,NslipMax,interactionValues,interactionTypes)
end function lattice_interaction_TwinBySlip
!--------------------------------------------------------------------------------------------------
!> @brief Schmid matrix for slip
!> details only active slip systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_SchmidMatrix_slip(Nslip,lattice,cOverA) result(SchmidMatrix)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA
real(pReal), dimension(3,3,sum(Nslip)) :: SchmidMatrix
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
real(pReal), dimension(:,:), allocatable :: slipSystems
integer, dimension(:), allocatable :: NslipMax
integer :: i
select case(lattice)
case('cF')
NslipMax = FCC_NSLIPSYSTEM
slipSystems = FCC_SYSTEMSLIP
case('cI')
NslipMax = BCC_NSLIPSYSTEM
slipSystems = BCC_SYSTEMSLIP
case('hP')
NslipMax = HEX_NSLIPSYSTEM
slipSystems = HEX_SYSTEMSLIP
case('tI')
NslipMax = BCT_NSLIPSYSTEM
slipSystems = BCT_SYSTEMSLIP
case default
allocate(NslipMax(0))
call IO_error(137,ext_msg='lattice_SchmidMatrix_slip: '//trim(lattice))
end select
if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) &
call IO_error(145,ext_msg='Nslip '//trim(lattice))
if (any(Nslip < 0)) &
call IO_error(144,ext_msg='Nslip '//trim(lattice))
coordinateSystem = buildCoordinateSystem(Nslip,NslipMax,slipSystems,lattice,cOverA)
do i = 1, sum(Nslip)
SchmidMatrix(1:3,1:3,i) = math_outer(coordinateSystem(1:3,1,i),coordinateSystem(1:3,2,i))
if (abs(math_trace33(SchmidMatrix(1:3,1:3,i))) > tol_math_check) &
call IO_error(0,i,ext_msg = 'dilatational Schmid matrix for slip')
enddo
end function lattice_SchmidMatrix_slip
!--------------------------------------------------------------------------------------------------
!> @brief Schmid matrix for twinning
!> details only active twin systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_SchmidMatrix_twin(Ntwin,lattice,cOverA) result(SchmidMatrix)
integer, dimension(:), intent(in) :: Ntwin !< number of active twin systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(3,3,sum(Ntwin)) :: SchmidMatrix
real(pReal), dimension(3,3,sum(Ntwin)) :: coordinateSystem
real(pReal), dimension(:,:), allocatable :: twinSystems
integer, dimension(:), allocatable :: NtwinMax
integer :: i
select case(lattice)
case('cF')
NtwinMax = FCC_NTWINSYSTEM
twinSystems = FCC_SYSTEMTWIN
case('cI')
NtwinMax = BCC_NTWINSYSTEM
twinSystems = BCC_SYSTEMTWIN
case('hP')
NtwinMax = HEX_NTWINSYSTEM
twinSystems = HEX_SYSTEMTWIN
case default
allocate(NtwinMax(0))
call IO_error(137,ext_msg='lattice_SchmidMatrix_twin: '//trim(lattice))
end select
if (any(NtwinMax(1:size(Ntwin)) - Ntwin < 0)) &
call IO_error(145,ext_msg='Ntwin '//trim(lattice))
if (any(Ntwin < 0)) &
call IO_error(144,ext_msg='Ntwin '//trim(lattice))
coordinateSystem = buildCoordinateSystem(Ntwin,NtwinMax,twinSystems,lattice,cOverA)
do i = 1, sum(Ntwin)
SchmidMatrix(1:3,1:3,i) = math_outer(coordinateSystem(1:3,1,i),coordinateSystem(1:3,2,i))
if (abs(math_trace33(SchmidMatrix(1:3,1:3,i))) > tol_math_check) &
call IO_error(0,i,ext_msg = 'dilatational Schmid matrix for twin')
enddo
end function lattice_SchmidMatrix_twin
!--------------------------------------------------------------------------------------------------
!> @brief Schmid matrix for transformation
!> details only active twin systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_SchmidMatrix_trans(Ntrans,lattice_target,cOverA,a_bcc,a_fcc) result(SchmidMatrix)
integer, dimension(:), intent(in) :: Ntrans !< number of active twin systems per family
character(len=2), intent(in) :: lattice_target !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(3,3,sum(Ntrans)) :: SchmidMatrix
real(pReal), dimension(3,3,sum(Ntrans)) :: devNull
real(pReal) :: a_bcc, a_fcc
if (lattice_target /= 'cI' .and. lattice_target /= 'hP') &
call IO_error(137,ext_msg='lattice_SchmidMatrix_trans: '//trim(lattice_target))
if (lattice_target == 'hP' .and. (cOverA < 1.0_pReal .or. cOverA > 2.0_pReal)) &
call IO_error(131,ext_msg='lattice_SchmidMatrix_trans: '//trim(lattice_target))
if (lattice_target == 'cI' .and. (a_bcc <= 0.0_pReal .or. a_fcc <= 0.0_pReal)) &
call IO_error(134,ext_msg='lattice_SchmidMatrix_trans: '//trim(lattice_target))
call buildTransformationSystem(devNull,SchmidMatrix,Ntrans,cOverA,a_fcc,a_bcc)
end function lattice_SchmidMatrix_trans
!--------------------------------------------------------------------------------------------------
!> @brief Schmid matrix for cleavage
!> details only active cleavage systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_SchmidMatrix_cleavage(Ncleavage,lattice,cOverA) result(SchmidMatrix)
integer, dimension(:), intent(in) :: Ncleavage !< number of active cleavage systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(3,3,3,sum(Ncleavage)) :: SchmidMatrix
real(pReal), dimension(3,3,sum(Ncleavage)) :: coordinateSystem
real(pReal), dimension(:,:), allocatable :: cleavageSystems
integer, dimension(:), allocatable :: NcleavageMax
integer :: i
select case(lattice)
case('cF')
NcleavageMax = FCC_NCLEAVAGESYSTEM
cleavageSystems = FCC_SYSTEMCLEAVAGE
case('cI')
NcleavageMax = BCC_NCLEAVAGESYSTEM
cleavageSystems = BCC_SYSTEMCLEAVAGE
case default
allocate(NcleavageMax(0))
call IO_error(137,ext_msg='lattice_SchmidMatrix_cleavage: '//trim(lattice))
end select
if (any(NcleavageMax(1:size(Ncleavage)) - Ncleavage < 0)) &
call IO_error(145,ext_msg='Ncleavage '//trim(lattice))
if (any(Ncleavage < 0)) &
call IO_error(144,ext_msg='Ncleavage '//trim(lattice))
coordinateSystem = buildCoordinateSystem(Ncleavage,NcleavageMax,cleavageSystems,lattice,cOverA)
do i = 1, sum(Ncleavage)
SchmidMatrix(1:3,1:3,1,i) = math_outer(coordinateSystem(1:3,1,i),coordinateSystem(1:3,2,i))
SchmidMatrix(1:3,1:3,2,i) = math_outer(coordinateSystem(1:3,3,i),coordinateSystem(1:3,2,i))
SchmidMatrix(1:3,1:3,3,i) = math_outer(coordinateSystem(1:3,2,i),coordinateSystem(1:3,2,i))
enddo
end function lattice_SchmidMatrix_cleavage
!--------------------------------------------------------------------------------------------------
!> @brief Slip direction of slip systems (|| b)
!--------------------------------------------------------------------------------------------------
function lattice_slip_direction(Nslip,lattice,cOverA) result(d)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(3,sum(Nslip)) :: d
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA)
d = coordinateSystem(1:3,1,1:sum(Nslip))
end function lattice_slip_direction
!--------------------------------------------------------------------------------------------------
!> @brief Normal direction of slip systems (|| n)
!--------------------------------------------------------------------------------------------------
function lattice_slip_normal(Nslip,lattice,cOverA) result(n)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(3,sum(Nslip)) :: n
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA)
n = coordinateSystem(1:3,2,1:sum(Nslip))
end function lattice_slip_normal
!--------------------------------------------------------------------------------------------------
!> @brief Transverse direction of slip systems (|| t = b x n)
!--------------------------------------------------------------------------------------------------
function lattice_slip_transverse(Nslip,lattice,cOverA) result(t)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(3,sum(Nslip)) :: t
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
coordinateSystem = coordinateSystem_slip(Nslip,lattice,cOverA)
t = coordinateSystem(1:3,3,1:sum(Nslip))
end function lattice_slip_transverse
!--------------------------------------------------------------------------------------------------
!> @brief Labels of slip systems
!> details only active slip systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_labels_slip(Nslip,lattice) result(labels)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
character(len=:), dimension(:), allocatable :: labels
real(pReal), dimension(:,:), allocatable :: slipSystems
integer, dimension(:), allocatable :: NslipMax
select case(lattice)
case('cF')
NslipMax = FCC_NSLIPSYSTEM
slipSystems = FCC_SYSTEMSLIP
case('cI')
NslipMax = BCC_NSLIPSYSTEM
slipSystems = BCC_SYSTEMSLIP
case('hP')
NslipMax = HEX_NSLIPSYSTEM
slipSystems = HEX_SYSTEMSLIP
case('tI')
NslipMax = BCT_NSLIPSYSTEM
slipSystems = BCT_SYSTEMSLIP
case default
call IO_error(137,ext_msg='lattice_labels_slip: '//trim(lattice))
end select
if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) &
call IO_error(145,ext_msg='Nslip '//trim(lattice))
if (any(Nslip < 0)) &
call IO_error(144,ext_msg='Nslip '//trim(lattice))
labels = getLabels(Nslip,NslipMax,slipSystems)
end function lattice_labels_slip
!--------------------------------------------------------------------------------------------------
!> @brief Return 3x3 tensor with symmetry according to given Bravais lattice
!--------------------------------------------------------------------------------------------------
pure function lattice_symmetrize_33(T,lattice) result(T_sym)
real(pReal), dimension(3,3) :: T_sym
real(pReal), dimension(3,3), intent(in) :: T
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
T_sym = 0.0_pReal
select case(lattice)
case('cF','cI')
T_sym(1,1) = T(1,1)
T_sym(2,2) = T(1,1)
T_sym(3,3) = T(1,1)
case('hP','tI')
T_sym(1,1) = T(1,1)
T_sym(2,2) = T(1,1)
T_sym(3,3) = T(3,3)
end select
end function lattice_symmetrize_33
!--------------------------------------------------------------------------------------------------
!> @brief Return stiffness matrix in 6x6 notation with symmetry according to given Bravais lattice
!> @details J. A. Rayne and B. S. Chandrasekhar Phys. Rev. 120, 1658 Erratum Phys. Rev. 122, 1962
!--------------------------------------------------------------------------------------------------
pure function lattice_symmetrize_C66(C66,lattice) result(C66_sym)
real(pReal), dimension(6,6) :: C66_sym
real(pReal), dimension(6,6), intent(in) :: C66
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
integer :: i,j
C66_sym = 0.0_pReal
select case(lattice)
case ('cF','cI')
C66_sym(1,1) = C66(1,1); C66_sym(2,2) = C66(1,1); C66_sym(3,3) = C66(1,1)
C66_sym(1,2) = C66(1,2); C66_sym(1,3) = C66(1,2); C66_sym(2,3) = C66(1,2)
C66_sym(4,4) = C66(4,4); C66_sym(5,5) = C66(4,4); C66_sym(6,6) = C66(4,4) ! isotropic C_44 = (C_11-C_12)/2
case ('hP')
C66_sym(1,1) = C66(1,1); C66_sym(2,2) = C66(1,1)
C66_sym(3,3) = C66(3,3)
C66_sym(1,2) = C66(1,2)
C66_sym(1,3) = C66(1,3); C66_sym(2,3) = C66(1,3)
C66_sym(4,4) = C66(4,4); C66_sym(5,5) = C66(4,4)
C66_sym(6,6) = 0.5_pReal*(C66(1,1)-C66(1,2))
case ('tI')
C66_sym(1,1) = C66(1,1); C66_sym(2,2) = C66(1,1)
C66_sym(3,3) = C66(3,3)
C66_sym(1,2) = C66(1,2)
C66_sym(1,3) = C66(1,3); C66_sym(2,3) = C66(1,3)
C66_sym(4,4) = C66(4,4); C66_sym(5,5) = C66(4,4)
C66_sym(6,6) = C66(6,6)
end select
do i = 1, 6
do j = i+1, 6
C66_sym(j,i) = C66_sym(i,j)
enddo
enddo
end function lattice_symmetrize_C66
!--------------------------------------------------------------------------------------------------
!> @brief Labels for twin systems
!> details only active twin systems are considered
!--------------------------------------------------------------------------------------------------
function lattice_labels_twin(Ntwin,lattice) result(labels)
integer, dimension(:), intent(in) :: Ntwin !< number of active slip systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
character(len=:), dimension(:), allocatable :: labels
real(pReal), dimension(:,:), allocatable :: twinSystems
integer, dimension(:), allocatable :: NtwinMax
select case(lattice)
case('cF')
NtwinMax = FCC_NTWINSYSTEM
twinSystems = FCC_SYSTEMTWIN
case('cI')
NtwinMax = BCC_NTWINSYSTEM
twinSystems = BCC_SYSTEMTWIN
case('hP')
NtwinMax = HEX_NTWINSYSTEM
twinSystems = HEX_SYSTEMTWIN
case default
call IO_error(137,ext_msg='lattice_labels_twin: '//trim(lattice))
end select
if (any(NtwinMax(1:size(Ntwin)) - Ntwin < 0)) &
call IO_error(145,ext_msg='Ntwin '//trim(lattice))
if (any(Ntwin < 0)) &
call IO_error(144,ext_msg='Ntwin '//trim(lattice))
labels = getLabels(Ntwin,NtwinMax,twinSystems)
end function lattice_labels_twin
!--------------------------------------------------------------------------------------------------
!> @brief Projection of the transverse direction onto the slip plane
!> @details: This projection is used to calculate forest hardening for edge dislocations
!--------------------------------------------------------------------------------------------------
function slipProjection_transverse(Nslip,lattice,cOverA) result(projection)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: projection
real(pReal), dimension(3,sum(Nslip)) :: n, t
integer :: i, j
n = lattice_slip_normal (Nslip,lattice,cOverA)
t = lattice_slip_transverse(Nslip,lattice,cOverA)
do i=1, sum(Nslip); do j=1, sum(Nslip)
projection(i,j) = abs(math_inner(n(:,i),t(:,j)))
enddo; enddo
end function slipProjection_transverse
!--------------------------------------------------------------------------------------------------
!> @brief Projection of the slip direction onto the slip plane
!> @details: This projection is used to calculate forest hardening for screw dislocations
!--------------------------------------------------------------------------------------------------
function slipProjection_direction(Nslip,lattice,cOverA) result(projection)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(sum(Nslip),sum(Nslip)) :: projection
real(pReal), dimension(3,sum(Nslip)) :: n, d
integer :: i, j
n = lattice_slip_normal (Nslip,lattice,cOverA)
d = lattice_slip_direction(Nslip,lattice,cOverA)
do i=1, sum(Nslip); do j=1, sum(Nslip)
projection(i,j) = abs(math_inner(n(:,i),d(:,j)))
enddo; enddo
end function slipProjection_direction
!--------------------------------------------------------------------------------------------------
!> @brief build a local coordinate system on slip systems
!> @details Order: Direction, plane (normal), and common perpendicular
!--------------------------------------------------------------------------------------------------
function coordinateSystem_slip(Nslip,lattice,cOverA) result(coordinateSystem)
integer, dimension(:), intent(in) :: Nslip !< number of active slip systems per family
character(len=2), intent(in) :: lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: cOverA !< c/a ratio
real(pReal), dimension(3,3,sum(Nslip)) :: coordinateSystem
real(pReal), dimension(:,:), allocatable :: slipSystems
integer, dimension(:), allocatable :: NslipMax
select case(lattice)
case('cF')
NslipMax = FCC_NSLIPSYSTEM
slipSystems = FCC_SYSTEMSLIP
case('cI')
NslipMax = BCC_NSLIPSYSTEM
slipSystems = BCC_SYSTEMSLIP
case('hP')
NslipMax = HEX_NSLIPSYSTEM
slipSystems = HEX_SYSTEMSLIP
case('tI')
NslipMax = BCT_NSLIPSYSTEM
slipSystems = BCT_SYSTEMSLIP
case default
allocate(NslipMax(0))
call IO_error(137,ext_msg='coordinateSystem_slip: '//trim(lattice))
end select
if (any(NslipMax(1:size(Nslip)) - Nslip < 0)) &
call IO_error(145,ext_msg='Nslip '//trim(lattice))
if (any(Nslip < 0)) &
call IO_error(144,ext_msg='Nslip '//trim(lattice))
coordinateSystem = buildCoordinateSystem(Nslip,NslipMax,slipSystems,lattice,cOverA)
end function coordinateSystem_slip
!--------------------------------------------------------------------------------------------------
!> @brief Populate reduced interaction matrix
!--------------------------------------------------------------------------------------------------
function buildInteraction(reacting_used,acting_used,reacting_max,acting_max,values,matrix)
integer, dimension(:), intent(in) :: &
reacting_used, & !< # of reacting systems per family as specified in material.config
acting_used, & !< # of acting systems per family as specified in material.config
reacting_max, & !< max # of reacting systems per family for given lattice
acting_max !< max # of acting systems per family for given lattice
real(pReal), dimension(:), intent(in) :: values !< interaction values
integer, dimension(:,:), intent(in) :: matrix !< interaction types
real(pReal), dimension(sum(reacting_used),sum(acting_used)) :: buildInteraction
integer :: &
acting_family_index, acting_family, acting_system, &
reacting_family_index, reacting_family, reacting_system, &
i,j,k,l
do acting_family = 1,size(acting_used,1)
acting_family_index = sum(acting_used(1:acting_family-1))
do acting_system = 1,acting_used(acting_family)
do reacting_family = 1,size(reacting_used,1)
reacting_family_index = sum(reacting_used(1:reacting_family-1))
do reacting_system = 1,reacting_used(reacting_family)
i = sum( acting_max(1: acting_family-1)) + acting_system
j = sum(reacting_max(1:reacting_family-1)) + reacting_system
k = acting_family_index + acting_system
l = reacting_family_index + reacting_system
if (matrix(i,j) > size(values)) call IO_error(138,ext_msg='buildInteraction')
buildInteraction(l,k) = values(matrix(i,j))
enddo; enddo
enddo; enddo
end function buildInteraction
!--------------------------------------------------------------------------------------------------
!> @brief Build a local coordinate system on slip, twin, trans, cleavage systems
!> @details Order: Direction, plane (normal), and common perpendicular
!--------------------------------------------------------------------------------------------------
function buildCoordinateSystem(active,potential,system,lattice,cOverA)
integer, dimension(:), intent(in) :: &
active, & !< # of active systems per family
potential !< # of potential systems per family
real(pReal), dimension(:,:), intent(in) :: &
system
character(len=2), intent(in) :: &
lattice !< Bravais lattice (Pearson symbol)
real(pReal), intent(in) :: &
cOverA
real(pReal), dimension(3,3,sum(active)) :: &
buildCoordinateSystem
real(pReal), dimension(3) :: &
direction, normal
integer :: &
a, & !< index of active system
p, & !< index in potential system matrix
f, & !< index of my family
s !< index of my system in current family
if (lattice == 'tI' .and. cOverA > 2.0_pReal) &
call IO_error(131,ext_msg='buildCoordinateSystem:'//trim(lattice))
if (lattice == 'hP' .and. (cOverA < 1.0_pReal .or. cOverA > 2.0_pReal)) &
call IO_error(131,ext_msg='buildCoordinateSystem:'//trim(lattice))
a = 0
activeFamilies: do f = 1,size(active,1)
activeSystems: do s = 1,active(f)
a = a + 1
p = sum(potential(1:f-1))+s
select case(lattice)
case ('cF','cI','tI')
direction = system(1:3,p)
normal = system(4:6,p)
case ('hP')
direction = [ system(1,p)*1.5_pReal, &
(system(1,p)+2.0_pReal*system(2,p))*sqrt(0.75_pReal), &
system(4,p)*cOverA ] ! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(p/a)])
normal = [ system(5,p), &
(system(5,p)+2.0_pReal*system(6,p))/sqrt(3.0_pReal), &
system(8,p)/cOverA ] ! plane (hkil)->(h (h+2k)/sqrt(3) l/(p/a))
case default
call IO_error(137,ext_msg='buildCoordinateSystem: '//trim(lattice))
end select
buildCoordinateSystem(1:3,1,a) = direction/norm2(direction)
buildCoordinateSystem(1:3,2,a) = normal /norm2(normal)
buildCoordinateSystem(1:3,3,a) = math_cross(direction/norm2(direction),&
normal /norm2(normal))
enddo activeSystems
enddo activeFamilies
end function buildCoordinateSystem
!--------------------------------------------------------------------------------------------------
!> @brief Helper function to define transformation systems
! Needed to calculate Schmid matrix and rotated stiffness matrices.
! @details: set c/a = 0.0 for fcc -> bcc transformation
! set a_Xcc = 0.0 for fcc -> hex transformation
!--------------------------------------------------------------------------------------------------
subroutine buildTransformationSystem(Q,S,Ntrans,cOverA,a_fcc,a_bcc)
integer, dimension(:), intent(in) :: &
Ntrans
real(pReal), dimension(3,3,sum(Ntrans)), intent(out) :: &
Q, & !< Total rotation: Q = R*B
S !< Eigendeformation tensor for phase transformation
real(pReal), intent(in) :: &
cOverA, & !< c/a for target hex lattice
a_bcc, & !< lattice parameter a for bcc target lattice
a_fcc !< lattice parameter a for fcc parent lattice
type(rotation) :: &
R, & !< Pitsch rotation
B !< Rotation of fcc to Bain coordinate system
real(pReal), dimension(3,3) :: &
U, & !< Bain deformation
ss, sd
real(pReal), dimension(3) :: &
x, y, z
integer :: &
i
real(pReal), dimension(3+3,FCC_NTRANS), parameter :: &
FCCTOHEX_SYSTEMTRANS = reshape(real( [&
-2, 1, 1, 1, 1, 1, &
1,-2, 1, 1, 1, 1, &
1, 1,-2, 1, 1, 1, &
2,-1, 1, -1,-1, 1, &
-1, 2, 1, -1,-1, 1, &
-1,-1,-2, -1,-1, 1, &
-2,-1,-1, 1,-1,-1, &
1, 2,-1, 1,-1,-1, &
1,-1, 2, 1,-1,-1, &
2, 1,-1, -1, 1,-1, &
-1,-2,-1, -1, 1,-1, &
-1, 1, 2, -1, 1,-1 &
],pReal),shape(FCCTOHEX_SYSTEMTRANS))
real(pReal), dimension(4,fcc_Ntrans), parameter :: &
FCCTOBCC_SYSTEMTRANS = reshape([&
0.0, 1.0, 0.0, 10.26, & ! Pitsch OR (Ma & Hartmaier 2014, Table 3)
0.0,-1.0, 0.0, 10.26, &
0.0, 0.0, 1.0, 10.26, &
0.0, 0.0,-1.0, 10.26, &
1.0, 0.0, 0.0, 10.26, &
-1.0, 0.0, 0.0, 10.26, &
0.0, 0.0, 1.0, 10.26, &
0.0, 0.0,-1.0, 10.26, &
1.0, 0.0, 0.0, 10.26, &
-1.0, 0.0, 0.0, 10.26, &
0.0, 1.0, 0.0, 10.26, &
0.0,-1.0, 0.0, 10.26 &
],shape(FCCTOBCC_SYSTEMTRANS))
integer, dimension(9,fcc_Ntrans), parameter :: &
FCCTOBCC_BAINVARIANT = reshape( [&
1, 0, 0, 0, 1, 0, 0, 0, 1, & ! Pitsch OR (Ma & Hartmaier 2014, Table 3)
1, 0, 0, 0, 1, 0, 0, 0, 1, &
1, 0, 0, 0, 1, 0, 0, 0, 1, &
1, 0, 0, 0, 1, 0, 0, 0, 1, &
0, 1, 0, 1, 0, 0, 0, 0, 1, &
0, 1, 0, 1, 0, 0, 0, 0, 1, &
0, 1, 0, 1, 0, 0, 0, 0, 1, &
0, 1, 0, 1, 0, 0, 0, 0, 1, &
0, 0, 1, 1, 0, 0, 0, 1, 0, &
0, 0, 1, 1, 0, 0, 0, 1, 0, &
0, 0, 1, 1, 0, 0, 0, 1, 0, &
0, 0, 1, 1, 0, 0, 0, 1, 0 &
],shape(FCCTOBCC_BAINVARIANT))
real(pReal), dimension(4,fcc_Ntrans), parameter :: &
FCCTOBCC_BAINROT = reshape([&
1.0, 0.0, 0.0, 45.0, & ! Rotate fcc austensite to bain variant
1.0, 0.0, 0.0, 45.0, &
1.0, 0.0, 0.0, 45.0, &
1.0, 0.0, 0.0, 45.0, &
0.0, 1.0, 0.0, 45.0, &
0.0, 1.0, 0.0, 45.0, &
0.0, 1.0, 0.0, 45.0, &
0.0, 1.0, 0.0, 45.0, &
0.0, 0.0, 1.0, 45.0, &
0.0, 0.0, 1.0, 45.0, &
0.0, 0.0, 1.0, 45.0, &
0.0, 0.0, 1.0, 45.0 &
],shape(FCCTOBCC_BAINROT))
if (a_bcc > 0.0_pReal .and. a_fcc > 0.0_pReal .and. dEq0(cOverA)) then ! fcc -> bcc
do i = 1,sum(Ntrans)
call R%fromAxisAngle(FCCTOBCC_SYSTEMTRANS(:,i),degrees=.true.,P=1)
call B%fromAxisAngle(FCCTOBCC_BAINROT(:,i), degrees=.true.,P=1)
x = real(FCCTOBCC_BAINVARIANT(1:3,i),pReal)
y = real(FCCTOBCC_BAINVARIANT(4:6,i),pReal)
z = real(FCCTOBCC_BAINVARIANT(7:9,i),pReal)
U = (a_bcc/a_fcc)*math_outer(x,x) &
+ (a_bcc/a_fcc)*math_outer(y,y) * sqrt(2.0_pReal) &
+ (a_bcc/a_fcc)*math_outer(z,z) * sqrt(2.0_pReal)
Q(1:3,1:3,i) = matmul(R%asMatrix(),B%asMatrix())
S(1:3,1:3,i) = matmul(R%asMatrix(),U) - MATH_I3
enddo
elseif (cOverA > 0.0_pReal .and. dEq0(a_bcc)) then ! fcc -> hex
ss = MATH_I3
sd = MATH_I3
ss(1,3) = sqrt(2.0_pReal)/4.0_pReal
sd(3,3) = cOverA/sqrt(8.0_pReal/3.0_pReal)
do i = 1,sum(Ntrans)
x = FCCTOHEX_SYSTEMTRANS(1:3,i)/norm2(FCCTOHEX_SYSTEMTRANS(1:3,i))
z = FCCTOHEX_SYSTEMTRANS(4:6,i)/norm2(FCCTOHEX_SYSTEMTRANS(4:6,i))
y = -math_cross(x,z)
Q(1:3,1,i) = x
Q(1:3,2,i) = y
Q(1:3,3,i) = z
S(1:3,1:3,i) = matmul(Q(1:3,1:3,i), matmul(matmul(sd,ss), transpose(Q(1:3,1:3,i)))) - MATH_I3 ! ToDo: This is of interest for the Schmid matrix only
enddo
else
call IO_error(132,ext_msg='buildTransformationSystem')
endif
end subroutine buildTransformationSystem
!--------------------------------------------------------------------------------------------------
!> @brief select active systems as strings
!--------------------------------------------------------------------------------------------------
function getlabels(active,potential,system) result(labels)
integer, dimension(:), intent(in) :: &
active, & !< # of active systems per family
potential !< # of potential systems per family
real(pReal), dimension(:,:), intent(in) :: &
system
character(len=:), dimension(:), allocatable :: labels
character(len=:), allocatable :: label
integer :: i,j
integer :: &
a, & !< index of active system
p, & !< index in potential system matrix
f, & !< index of my family
s !< index of my system in current family
i = 2*size(system,1) + (size(system,1) - 2) + 4 ! 2 letters per index + spaces + brackets
allocate(character(len=i) :: labels(sum(active)), label)
a = 0
activeFamilies: do f = 1,size(active,1)
activeSystems: do s = 1,active(f)
a = a + 1
p = sum(potential(1:f-1))+s
i = 1
label(i:i) = '['
direction: do j = 1, size(system,1)/2
write(label(i+1:i+2),'(I2.1)') int(system(j,p))
label(i+3:i+3) = ' '
i = i + 3
enddo direction
label(i:i) = ']'
i = i +1
label(i:i) = '('
normal: do j = size(system,1)/2+1, size(system,1)
write(label(i+1:i+2),'(I2.1)') int(system(j,p))
label(i+3:i+3) = ' '
i = i + 3
enddo normal
label(i:i) = ')'
labels(a) = label
enddo activeSystems
enddo activeFamilies
end function getlabels
!--------------------------------------------------------------------------------------------------
!> @brief Equivalent Poisson's ratio (ν)
!> @details https://doi.org/10.1143/JPSJ.20.635
!--------------------------------------------------------------------------------------------------
function lattice_equivalent_nu(C,assumption) result(nu)
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
real(pReal) :: nu
real(pReal) :: K, mu
logical :: error
real(pReal), dimension(6,6) :: S
if (IO_lc(assumption) == 'voigt') then
K = (C(1,1)+C(2,2)+C(3,3) +2.0_pReal*(C(1,2)+C(2,3)+C(1,3))) &
/ 9.0_pReal
elseif (IO_lc(assumption) == 'reuss') then
call math_invert(S,error,C)
if (error) error stop 'matrix inversion failed'
K = 1.0_pReal &
/ (S(1,1)+S(2,2)+S(3,3) +2.0_pReal*(S(1,2)+S(2,3)+S(1,3)))
else
error stop 'invalid assumption'
endif
mu = lattice_equivalent_mu(C,assumption)
nu = (1.5_pReal*K-mu)/(3.0_pReal*K+mu)
end function lattice_equivalent_nu
!--------------------------------------------------------------------------------------------------
!> @brief Equivalent shear modulus (μ)
!> @details https://doi.org/10.1143/JPSJ.20.635
!--------------------------------------------------------------------------------------------------
function lattice_equivalent_mu(C,assumption) result(mu)
real(pReal), dimension(6,6), intent(in) :: C !< Stiffness tensor (Voigt notation)
character(len=5), intent(in) :: assumption !< Assumption ('Voigt' = isostrain, 'Reuss' = isostress)
real(pReal) :: mu
logical :: error
real(pReal), dimension(6,6) :: S
if (IO_lc(assumption) == 'voigt') then
mu = (1.0_pReal*(C(1,1)+C(2,2)+C(3,3)) -1.0_pReal*(C(1,2)+C(2,3)+C(1,3)) +3.0_pReal*(C(4,4)+C(5,5)+C(6,6))) &
/ 15.0_pReal
elseif (IO_lc(assumption) == 'reuss') then
call math_invert(S,error,C)
if (error) error stop 'matrix inversion failed'
mu = 15.0_pReal &
/ (4.0_pReal*(S(1,1)+S(2,2)+S(3,3)) -4.0_pReal*(S(1,2)+S(2,3)+S(1,3)) +3.0_pReal*(S(4,4)+S(5,5)+S(6,6)))
else
error stop 'invalid assumption'
endif
end function lattice_equivalent_mu
!--------------------------------------------------------------------------------------------------
!> @brief Check correctness of some lattice functions.
!--------------------------------------------------------------------------------------------------
subroutine selfTest
real(pReal), dimension(:,:,:), allocatable :: CoSy
real(pReal), dimension(:,:), allocatable :: system
real(pReal), dimension(6,6) :: C, C_cF, C_cI, C_hP, C_tI
real(pReal), dimension(3,3) :: T, T_cF, T_cI, T_hP, T_tI
real(pReal), dimension(2) :: r
real(pReal) :: lambda
integer :: i
call random_number(r)
system = reshape([1.0_pReal+r(1),0.0_pReal,0.0_pReal, 0.0_pReal,1.0_pReal+r(2),0.0_pReal],[6,1])
CoSy = buildCoordinateSystem([1],[1],system,'cF',0.0_pReal)
if (any(dNeq(CoSy(1:3,1:3,1),math_I3))) error stop 'buildCoordinateSystem'
do i = 1, 10
call random_number(C)
C_cF = lattice_symmetrize_C66(C,'cI')
C_cI = lattice_symmetrize_C66(C,'cF')
C_hP = lattice_symmetrize_C66(C,'hP')
C_tI = lattice_symmetrize_C66(C,'tI')
if (any(dNeq(C_cI,transpose(C_cF)))) error stop 'SymmetryC66/cI-cF'
if (any(dNeq(C_cF,transpose(C_cI)))) error stop 'SymmetryC66/cF-cI'
if (any(dNeq(C_hP,transpose(C_hP)))) error stop 'SymmetryC66/hP'
if (any(dNeq(C_tI,transpose(C_tI)))) error stop 'SymmetryC66/tI'
if (any(dNeq(C(1,1),[C_cF(1,1),C_cF(2,2),C_cF(3,3)]))) error stop 'SymmetryC_11-22-33/c'
if (any(dNeq(C(1,2),[C_cF(1,2),C_cF(1,3),C_cF(2,3)]))) error stop 'SymmetryC_12-13-23/c'
if (any(dNeq(C(4,4),[C_cF(4,4),C_cF(5,5),C_cF(6,6)]))) error stop 'SymmetryC_44-55-66/c'
if (any(dNeq(C(1,1),[C_hP(1,1),C_hP(2,2)]))) error stop 'SymmetryC_11-22/hP'
if (any(dNeq(C(1,3),[C_hP(1,3),C_hP(2,3)]))) error stop 'SymmetryC_13-23/hP'
if (any(dNeq(C(4,4),[C_hP(4,4),C_hP(5,5)]))) error stop 'SymmetryC_44-55/hP'
if (any(dNeq(C(1,1),[C_tI(1,1),C_tI(2,2)]))) error stop 'SymmetryC_11-22/tI'
if (any(dNeq(C(1,3),[C_tI(1,3),C_tI(2,3)]))) error stop 'SymmetryC_13-23/tI'
if (any(dNeq(C(4,4),[C_tI(4,4),C_tI(5,5)]))) error stop 'SymmetryC_44-55/tI'
call random_number(T)
T_cF = lattice_symmetrize_33(T,'cI')
T_cI = lattice_symmetrize_33(T,'cF')
T_hP = lattice_symmetrize_33(T,'hP')
T_tI = lattice_symmetrize_33(T,'tI')
if (any(dNeq0(T_cF) .and. math_I3<1.0_pReal)) error stop 'Symmetry33/c'
if (any(dNeq0(T_hP) .and. math_I3<1.0_pReal)) error stop 'Symmetry33/hP'
if (any(dNeq0(T_tI) .and. math_I3<1.0_pReal)) error stop 'Symmetry33/tI'
if (any(dNeq(T(1,1),[T_cI(1,1),T_cI(2,2),T_cI(3,3)]))) error stop 'Symmetry33_11-22-33/c'
if (any(dNeq(T(1,1),[T_hP(1,1),T_hP(2,2)]))) error stop 'Symmetry33_11-22/hP'
if (any(dNeq(T(1,1),[T_tI(1,1),T_tI(2,2)]))) error stop 'Symmetry33_11-22/tI'
enddo
call random_number(C)
C(1,1) = C(1,1) + C(1,2) + 0.1_pReal
C(4,4) = 0.5_pReal * (C(1,1) - C(1,2))
C = lattice_symmetrize_C66(C,'cI')
if (dNeq(C(4,4),lattice_equivalent_mu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_mu/voigt'
if (dNeq(C(4,4),lattice_equivalent_mu(C,'reuss'),1.0e-12_pReal)) error stop 'equivalent_mu/reuss'
lambda = C(1,2)
if (dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'voigt')), &
lattice_equivalent_nu(C,'voigt'),1.0e-12_pReal)) error stop 'equivalent_nu/voigt'
if (dNeq(lambda*0.5_pReal/(lambda+lattice_equivalent_mu(C,'reuss')), &
lattice_equivalent_nu(C,'reuss'),1.0e-12_pReal)) error stop 'equivalent_nu/reuss'
end subroutine selfTest
end module lattice