DAMASK_EICMD/src/source_vacancy_thermalfluc.f90

250 lines
12 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for vacancy generation due to thermal fluctuations
!> @details to be done
!--------------------------------------------------------------------------------------------------
module source_vacancy_thermalfluc
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
source_vacancy_thermalfluc_sizePostResults, & !< cumulative size of post results
source_vacancy_thermalfluc_offset, & !< which source is my current damage mechanism?
source_vacancy_thermalfluc_instance !< instance of damage source mechanism
integer(pInt), dimension(:,:), allocatable, target, public :: &
source_vacancy_thermalfluc_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
source_vacancy_thermalfluc_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
source_vacancy_thermalfluc_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, private :: &
source_vacancy_thermalfluc_amplitude, &
source_vacancy_thermalfluc_normVacancyEnergy
public :: &
source_vacancy_thermalfluc_init, &
source_vacancy_thermalfluc_deltaState, &
source_vacancy_thermalfluc_getRateAndItsTangent
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_thermalfluc_init(fileUnit)
#if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800
use, intrinsic :: iso_fortran_env, only: &
compiler_version, &
compiler_options
#endif
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use lattice, only: &
lattice_vacancyFormationEnergy
use material, only: &
phase_source, &
phase_Nsources, &
phase_Noutput, &
SOURCE_vacancy_thermalfluc_label, &
SOURCE_vacancy_thermalfluc_ID, &
material_Nphase, &
material_phase, &
sourceState, &
MATERIAL_partPhase
use numerics,only: &
numerics_integrator
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: maxNinstance,phase,instance,source,sourceOffset
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
write(6,'(/,a)') ' <<<+- source_'//SOURCE_vacancy_thermalfluc_label//' init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = int(count(phase_source == SOURCE_vacancy_thermalfluc_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(source_vacancy_thermalfluc_offset(material_Nphase), source=0_pInt)
allocate(source_vacancy_thermalfluc_instance(material_Nphase), source=0_pInt)
do phase = 1, material_Nphase
source_vacancy_thermalfluc_instance(phase) = count(phase_source(:,1:phase) == source_vacancy_thermalfluc_ID)
do source = 1, phase_Nsources(phase)
if (phase_source(source,phase) == source_vacancy_thermalfluc_ID) &
source_vacancy_thermalfluc_offset(phase) = source
enddo
enddo
allocate(source_vacancy_thermalfluc_sizePostResults(maxNinstance), source=0_pInt)
allocate(source_vacancy_thermalfluc_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(source_vacancy_thermalfluc_output(maxval(phase_Noutput),maxNinstance))
source_vacancy_thermalfluc_output = ''
allocate(source_vacancy_thermalfluc_Noutput(maxNinstance), source=0_pInt)
allocate(source_vacancy_thermalfluc_amplitude(maxNinstance), source=0.0_pReal)
allocate(source_vacancy_thermalfluc_normVacancyEnergy(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (any(phase_source(:,phase) == SOURCE_vacancy_thermalfluc_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = source_vacancy_thermalfluc_instance(phase) ! which instance of my vacancy is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('thermalfluctuation_amplitude')
source_vacancy_thermalfluc_amplitude(instance) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, material_Nphase
if (any(phase_source(:,phase) == SOURCE_vacancy_thermalfluc_ID)) then
NofMyPhase=count(material_phase==phase)
instance = source_vacancy_thermalfluc_instance(phase)
source_vacancy_thermalfluc_normVacancyEnergy(instance) = &
lattice_vacancyFormationEnergy(phase)/1.3806488e-23_pReal
sourceOffset = source_vacancy_thermalfluc_offset(phase)
sizeDotState = 1_pInt
sizeDeltaState = 1_pInt
sizeState = 1_pInt
sourceState(phase)%p(sourceOffset)%sizeState = sizeState
sourceState(phase)%p(sourceOffset)%sizeDotState = sizeDotState
sourceState(phase)%p(sourceOffset)%sizeDeltaState = sizeDeltaState
sourceState(phase)%p(sourceOffset)%sizePostResults = source_vacancy_thermalfluc_sizePostResults(instance)
allocate(sourceState(phase)%p(sourceOffset)%aTolState (sizeState), source=0.1_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 1_pInt)) then
allocate(sourceState(phase)%p(sourceOffset)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(sourceState(phase)%p(sourceOffset)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(sourceState(phase)%p(sourceOffset)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
endif
enddo initializeInstances
end subroutine source_vacancy_thermalfluc_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_thermalfluc_deltaState(ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
integer(pInt) :: &
phase, constituent, sourceOffset
real(pReal) :: &
randNo
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
sourceOffset = source_vacancy_thermalfluc_offset(phase)
call random_number(randNo)
sourceState(phase)%p(sourceOffset)%deltaState(1,constituent) = &
randNo - 0.5_pReal - sourceState(phase)%p(sourceOffset)%state(1,constituent)
end subroutine source_vacancy_thermalfluc_deltaState
!--------------------------------------------------------------------------------------------------
!> @brief returns local vacancy generation rate
!--------------------------------------------------------------------------------------------------
subroutine source_vacancy_thermalfluc_getRateAndItsTangent(CvDot, dCvDot_dCv, ipc, ip, el)
use material, only: &
phaseAt, phasememberAt, &
material_homog, &
temperature, &
thermalMapping, &
sourceState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(out) :: &
CvDot, dCvDot_dCv
integer(pInt) :: &
instance, phase, constituent, sourceOffset
phase = phaseAt(ipc,ip,el)
constituent = phasememberAt(ipc,ip,el)
instance = source_vacancy_thermalfluc_instance(phase)
sourceOffset = source_vacancy_thermalfluc_offset(phase)
CvDot = source_vacancy_thermalfluc_amplitude(instance)* &
sourceState(phase)%p(sourceOffset)%state0(2,constituent)* &
exp(-source_vacancy_thermalfluc_normVacancyEnergy(instance)/ &
temperature(material_homog(ip,el))%p(thermalMapping(material_homog(ip,el))%p(ip,el)))
dCvDot_dCv = 0.0_pReal
end subroutine source_vacancy_thermalfluc_getRateAndItsTangent
end module source_vacancy_thermalfluc