DAMASK_EICMD/python/tests/conftest.py

141 lines
5.2 KiB
Python

from pathlib import Path
import datetime
import numpy as np
import pytest
import damask
patched_version = '99.99.99-9999-pytest'
@pytest.fixture
def patch_damask_version(monkeypatch):
"""Set damask.version for reproducible tests results."""
monkeypatch.setattr(damask, 'version', patched_version)
patched_date = datetime.datetime(2019, 11, 2, 11, 58, 0)
@pytest.fixture
def patch_datetime_now(monkeypatch):
"""Set datetime.datetime.now for reproducible tests results."""
class mydatetime:
@classmethod
def now(cls):
return patched_date
monkeypatch.setattr(datetime, 'datetime', mydatetime)
@pytest.fixture
def version_date(monkeypatch):
"""Set damask.util.version_date for reproducible tests results."""
def version_date(class_name,function_name=None):
_function_name = '' if function_name is None else f'.{function_name}'
return f'damask.{class_name}{_function_name} v{patched_version} ({patched_date})'
monkeypatch.setattr(damask.util, 'version_date', version_date)
def pytest_addoption(parser):
parser.addoption("--update",
action="store_true",
default=False)
@pytest.fixture
def update(request):
"""Store current results as new reference results."""
return request.config.getoption("--update")
@pytest.fixture
def reference_dir_base():
"""Directory containing reference results."""
return Path(__file__).parent/'reference'
@pytest.fixture
def set_of_quaternions():
"""A set of n random rotations."""
def random_quaternions(N):
r = np.random.rand(N,3)
A = np.sqrt(r[:,2])
B = np.sqrt(1.0-r[:,2])
qu = np.column_stack([np.cos(2.0*np.pi*r[:,0])*A,
np.sin(2.0*np.pi*r[:,1])*B,
np.cos(2.0*np.pi*r[:,1])*B,
np.sin(2.0*np.pi*r[:,0])*A])
qu[:,0]*=np.sign(qu[:,0])
return qu
n = 1100
scatter=1.e-2
specials = np.array([
[1.0, 0.0, 0.0, 0.0],
#----------------------
[0.0, 1.0, 0.0, 0.0],
[0.0, 0.0, 1.0, 0.0],
[0.0, 0.0, 0.0, 1.0],
[0.0,-1.0, 0.0, 0.0],
[0.0, 0.0,-1.0, 0.0],
[0.0, 0.0, 0.0,-1.0],
#----------------------
[1.0, 1.0, 0.0, 0.0],
[1.0, 0.0, 1.0, 0.0],
[1.0, 0.0, 0.0, 1.0],
[0.0, 1.0, 1.0, 0.0],
[0.0, 1.0, 0.0, 1.0],
[0.0, 0.0, 1.0, 1.0],
#----------------------
[1.0,-1.0, 0.0, 0.0],
[1.0, 0.0,-1.0, 0.0],
[1.0, 0.0, 0.0,-1.0],
[0.0, 1.0,-1.0, 0.0],
[0.0, 1.0, 0.0,-1.0],
[0.0, 0.0, 1.0,-1.0],
#----------------------
[0.0, 1.0,-1.0, 0.0],
[0.0, 1.0, 0.0,-1.0],
[0.0, 0.0, 1.0,-1.0],
#----------------------
[0.0,-1.0,-1.0, 0.0],
[0.0,-1.0, 0.0,-1.0],
[0.0, 0.0,-1.0,-1.0],
#----------------------
[1.0, 1.0, 1.0, 0.0],
[1.0, 1.0, 0.0, 1.0],
[1.0, 0.0, 1.0, 1.0],
[1.0,-1.0, 1.0, 0.0],
[1.0,-1.0, 0.0, 1.0],
[1.0, 0.0,-1.0, 1.0],
[1.0, 1.0,-1.0, 0.0],
[1.0, 1.0, 0.0,-1.0],
[1.0, 0.0, 1.0,-1.0],
[1.0,-1.0,-1.0, 0.0],
[1.0,-1.0, 0.0,-1.0],
[1.0, 0.0,-1.0,-1.0],
#----------------------
[0.0, 1.0, 1.0, 1.0],
[0.0, 1.0,-1.0, 1.0],
[0.0, 1.0, 1.0,-1.0],
[0.0,-1.0, 1.0, 1.0],
[0.0,-1.0,-1.0, 1.0],
[0.0,-1.0, 1.0,-1.0],
[0.0,-1.0,-1.0,-1.0],
#----------------------
[1.0, 1.0, 1.0, 1.0],
[1.0,-1.0, 1.0, 1.0],
[1.0, 1.0,-1.0, 1.0],
[1.0, 1.0, 1.0,-1.0],
[1.0,-1.0,-1.0, 1.0],
[1.0,-1.0, 1.0,-1.0],
[1.0, 1.0,-1.0,-1.0],
[1.0,-1.0,-1.0,-1.0],
])
specials /= np.linalg.norm(specials,axis=1).reshape(-1,1)
specials_scatter = specials + np.broadcast_to((np.random.rand(4)*2.-1.)*scatter,specials.shape)
specials_scatter /= np.linalg.norm(specials_scatter,axis=1).reshape(-1,1)
specials_scatter[specials_scatter[:,0]<0]*=-1
return np.array([s for s in specials] + \
[s for s in specials_scatter] + \
[s for s in random_quaternions(n-2*len(specials))])