1773 lines
102 KiB
Fortran
1773 lines
102 KiB
Fortran
!* $Id$
|
||
!***************************************
|
||
!* Module: CRYSTALLITE *
|
||
!***************************************
|
||
!* contains: *
|
||
!* - _init *
|
||
!* - materialpoint_stressAndItsTangent *
|
||
!* - _partitionDeformation *
|
||
!* - _updateState *
|
||
!* - _stressAndItsTangent *
|
||
!* - _postResults *
|
||
!***************************************
|
||
|
||
MODULE crystallite
|
||
|
||
use prec, only: pReal, pInt
|
||
implicit none
|
||
!
|
||
! ****************************************************************
|
||
! *** General variables for the crystallite calculation ***
|
||
! ****************************************************************
|
||
|
||
integer(pInt) crystallite_maxSizePostResults
|
||
integer(pInt), dimension(:), allocatable :: crystallite_sizePostResults
|
||
integer(pInt), dimension(:,:), allocatable :: crystallite_sizePostResult
|
||
character(len=64), dimension(:,:), allocatable :: crystallite_output ! name of each post result output
|
||
integer(pInt), dimension (:,:,:), allocatable :: &
|
||
crystallite_symmetryID ! crystallographic symmetry 1=cubic 2=hexagonal, needed in all orientation calcs
|
||
|
||
real(pReal), dimension (:,:,:), allocatable :: &
|
||
crystallite_dt, & ! requested time increment of each grain
|
||
crystallite_subdt, & ! substepped time increment of each grain
|
||
crystallite_subFrac, & ! already calculated fraction of increment
|
||
crystallite_subStep, & ! size of next integration step
|
||
crystallite_Temperature, & ! Temp of each grain
|
||
crystallite_partionedTemperature0, & ! Temp of each grain at start of homog inc
|
||
crystallite_subTemperature0, & ! Temp of each grain at start of crystallite inc
|
||
crystallite_statedamper ! damping for state update
|
||
real(pReal), dimension (:,:,:,:), allocatable :: &
|
||
crystallite_Tstar_v, & ! current 2nd Piola-Kirchhoff stress vector (end of converged time step)
|
||
crystallite_Tstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of FE inc
|
||
crystallite_partionedTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of homog inc
|
||
crystallite_subTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of crystallite inc
|
||
crystallite_orientation, & ! orientation as quaternion
|
||
crystallite_orientation0, & ! initial orientation as quaternion
|
||
crystallite_rotation ! grain rotation away from initial orientation as axis-angle (in degrees)
|
||
real(pReal), dimension (:,:,:,:,:), allocatable :: &
|
||
crystallite_Fe, & ! current "elastic" def grad (end of converged time step)
|
||
crystallite_Fp, & ! current plastic def grad (end of converged time step)
|
||
crystallite_invFp, & ! inverse of current plastic def grad (end of converged time step)
|
||
crystallite_Fp0, & ! plastic def grad at start of FE inc
|
||
crystallite_partionedFp0,& ! plastic def grad at start of homog inc
|
||
crystallite_subFp0,& ! plastic def grad at start of crystallite inc
|
||
crystallite_F0, & ! def grad at start of FE inc
|
||
crystallite_partionedF, & ! def grad to be reached at end of homog inc
|
||
crystallite_partionedF0, & ! def grad at start of homog inc
|
||
crystallite_subF, & ! def grad to be reached at end of crystallite inc
|
||
crystallite_subF0, & ! def grad at start of crystallite inc
|
||
crystallite_Lp, & ! current plastic velocitiy grad (end of converged time step)
|
||
crystallite_Lp0, & ! plastic velocitiy grad at start of FE inc
|
||
crystallite_partionedLp0,& ! plastic velocity grad at start of homog inc
|
||
crystallite_subLp0,& ! plastic velocity grad at start of crystallite inc
|
||
crystallite_P, & ! 1st Piola-Kirchhoff stress per grain
|
||
crystallite_disorientation ! disorientation between two neighboring ips (only calculated for single grain IPs)
|
||
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: &
|
||
crystallite_dPdF, & ! individual dPdF per grain
|
||
crystallite_fallbackdPdF ! dPdF fallback for non-converged grains (elastic prediction)
|
||
logical, dimension (:,:,:), allocatable :: &
|
||
crystallite_localConstitution, & ! indicates this grain to have purely local constitutive law
|
||
crystallite_requested, & ! flag to request crystallite calculation
|
||
crystallite_todo, & ! flag to indicate ongoing calculation
|
||
crystallite_converged, & ! convergence flag
|
||
crystallite_stateConverged, & ! flag indicating convergence of state
|
||
crystallite_temperatureConverged ! flag indicating convergence of temperature
|
||
|
||
CONTAINS
|
||
|
||
!********************************************************************
|
||
! allocate and initialize per grain variables
|
||
!********************************************************************
|
||
subroutine crystallite_init(Temperature)
|
||
|
||
!*** variables and functions from other modules ***!
|
||
use prec, only: pInt, &
|
||
pReal
|
||
use debug, only: debug_info, &
|
||
debug_reset
|
||
use math, only: math_I3, &
|
||
math_EulerToR
|
||
use FEsolving, only: FEsolving_execElem, &
|
||
FEsolving_execIP
|
||
use mesh, only: mesh_element, &
|
||
mesh_NcpElems, &
|
||
mesh_maxNips, &
|
||
mesh_maxNipNeighbors
|
||
use IO
|
||
use material
|
||
use lattice, only: lattice_symmetryTypes
|
||
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_label, &
|
||
constitutive_phenopowerlaw_structure
|
||
use constitutive_dislotwin, only: constitutive_dislotwin_label, &
|
||
constitutive_dislotwin_structure
|
||
use constitutive_nonlocal, only: constitutive_nonlocal_label, &
|
||
constitutive_nonlocal_structure
|
||
|
||
implicit none
|
||
integer(pInt), parameter :: file = 200
|
||
|
||
!*** input variables ***!
|
||
real(pReal) Temperature
|
||
|
||
!*** output variables ***!
|
||
|
||
!*** local variables ***!
|
||
integer(pInt), parameter :: maxNchunks = 2
|
||
integer(pInt), dimension(1+2*maxNchunks) :: positions
|
||
integer(pInt) g, & ! grain number
|
||
i, & ! integration point number
|
||
e, & ! element number
|
||
gMax, & ! maximum number of grains
|
||
iMax, & ! maximum number of integration points
|
||
eMax, & ! maximum number of elements
|
||
nMax, & ! maximum number of ip neighbors
|
||
myNgrains, & ! number of grains in current IP
|
||
myCrystallite ! crystallite of current elem
|
||
integer(pInt) section, j,p, output, mySize
|
||
character(len=64) tag
|
||
character(len=1024) line
|
||
integer(pInt) myStructure, & ! lattice structure
|
||
myPhase
|
||
|
||
gMax = homogenization_maxNgrains
|
||
iMax = mesh_maxNips
|
||
eMax = mesh_NcpElems
|
||
nMax = mesh_maxNipNeighbors
|
||
|
||
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature
|
||
allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal
|
||
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
|
||
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
|
||
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
|
||
allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal
|
||
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal
|
||
allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal
|
||
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal
|
||
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
|
||
allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax)); crystallite_Tstar0_v = 0.0_pReal
|
||
allocate(crystallite_partionedTemperature0(gMax,iMax,eMax)); crystallite_partionedTemperature0 = 0.0_pReal
|
||
allocate(crystallite_partionedF(3,3,gMax,iMax,eMax)); crystallite_partionedF = 0.0_pReal
|
||
allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax)); crystallite_partionedF0 = 0.0_pReal
|
||
allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax)); crystallite_partionedFp0 = 0.0_pReal
|
||
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
|
||
allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax)); crystallite_partionedTstar0_v = 0.0_pReal
|
||
allocate(crystallite_subTemperature0(gMax,iMax,eMax)); crystallite_subTemperature0 = 0.0_pReal
|
||
allocate(crystallite_symmetryID(gMax,iMax,eMax)); crystallite_symmetryID = 0.0_pReal !NEW
|
||
allocate(crystallite_subF(3,3,gMax,iMax,eMax)); crystallite_subF = 0.0_pReal
|
||
allocate(crystallite_subF0(3,3,gMax,iMax,eMax)); crystallite_subF0 = 0.0_pReal
|
||
allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crystallite_subFp0 = 0.0_pReal
|
||
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
|
||
allocate(crystallite_orientation(4,gMax,iMax,eMax)); crystallite_orientation = 0.0_pReal
|
||
allocate(crystallite_orientation0(4,gMax,iMax,eMax)); crystallite_orientation = 0.0_pReal
|
||
allocate(crystallite_rotation(4,gMax,iMax,eMax)); crystallite_rotation = 0.0_pReal
|
||
allocate(crystallite_disorientation(4,nMax,gMax,iMax,eMax)); crystallite_disorientation = 0.0_pReal
|
||
allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax)); crystallite_subTstar0_v = 0.0_pReal
|
||
allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF = 0.0_pReal
|
||
allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_fallbackdPdF = 0.0_pReal
|
||
allocate(crystallite_dt(gMax,iMax,eMax)); crystallite_dt = 0.0_pReal
|
||
allocate(crystallite_subdt(gMax,iMax,eMax)); crystallite_subdt = 0.0_pReal
|
||
allocate(crystallite_subFrac(gMax,iMax,eMax)); crystallite_subFrac = 0.0_pReal
|
||
allocate(crystallite_subStep(gMax,iMax,eMax)); crystallite_subStep = 0.0_pReal
|
||
allocate(crystallite_statedamper(gMax,iMax,eMax)); crystallite_statedamper = 1.0_pReal
|
||
allocate(crystallite_localConstitution(gMax,iMax,eMax)); crystallite_localConstitution = .true.
|
||
allocate(crystallite_requested(gMax,iMax,eMax)); crystallite_requested = .false.
|
||
allocate(crystallite_converged(gMax,iMax,eMax)); crystallite_converged = .true.
|
||
allocate(crystallite_stateConverged(gMax,iMax,eMax)); crystallite_stateConverged = .false.
|
||
allocate(crystallite_temperatureConverged(gMax,iMax,eMax)); crystallite_temperatureConverged = .false.
|
||
allocate(crystallite_todo(gMax,iMax,eMax)); crystallite_todo = .true.
|
||
|
||
allocate(crystallite_output(maxval(crystallite_Noutput), &
|
||
material_Ncrystallite)) ; crystallite_output = ''
|
||
allocate(crystallite_sizePostResults(material_Ncrystallite)) ; crystallite_sizePostResults = 0_pInt
|
||
allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), &
|
||
material_Ncrystallite)) ; crystallite_sizePostResult = 0_pInt
|
||
|
||
if(.not. IO_open_file(file,material_configFile)) call IO_error (100) ! corrupt config file
|
||
line = ''
|
||
section = 0
|
||
|
||
do while (IO_lc(IO_getTag(line,'<','>')) /= material_partCrystallite) ! wind forward to <crystallite>
|
||
read(file,'(a1024)',END=100) line
|
||
enddo
|
||
|
||
do ! read thru sections of phase part
|
||
read(file,'(a1024)',END=100) line
|
||
if (IO_isBlank(line)) cycle ! skip empty lines
|
||
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
|
||
if (IO_getTag(line,'[',']') /= '') then ! next section
|
||
section = section + 1
|
||
output = 0 ! reset output counter
|
||
endif
|
||
if (section > 0) then
|
||
positions = IO_stringPos(line,maxNchunks)
|
||
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
|
||
select case(tag)
|
||
case ('(output)')
|
||
output = output + 1
|
||
crystallite_output(output,section) = IO_lc(IO_stringValue(line,positions,2))
|
||
end select
|
||
endif
|
||
enddo
|
||
|
||
100 close(file)
|
||
do i = 1,material_Ncrystallite ! sanity checks
|
||
enddo
|
||
|
||
do i = 1,material_Ncrystallite
|
||
do j = 1,crystallite_Noutput(i)
|
||
select case(crystallite_output(j,i))
|
||
case('phase')
|
||
mySize = 1
|
||
case('volume')
|
||
mySize = 1
|
||
case('orientation') ! orientation as quaternion
|
||
mySize = 4
|
||
case('eulerangles') ! Bunge Euler angles
|
||
mySize = 3
|
||
case('grainrotation') ! Deviation from initial grain orientation in axis-angle form (angle in degrees)
|
||
mySize = 4
|
||
case('defgrad','f','fe','fp','ee','p','firstpiola','1stpiola','s','tstar','secondpiola','2ndpiola')
|
||
mySize = 9
|
||
case default
|
||
mySize = 0
|
||
end select
|
||
|
||
if (mySize > 0_pInt) then ! any meaningful output found
|
||
crystallite_sizePostResult(j,i) = mySize
|
||
crystallite_sizePostResults(i) = crystallite_sizePostResults(i) + mySize
|
||
endif
|
||
enddo
|
||
enddo
|
||
crystallite_maxSizePostResults = maxval(crystallite_sizePostResults)
|
||
|
||
! write description file for crystallite output
|
||
|
||
if(.not. IO_open_jobFile(file,'outputCrystallite')) call IO_error (50) ! problems in writing file
|
||
|
||
do p = 1,material_Ncrystallite
|
||
write(file,*)
|
||
write(file,'(a)') '['//trim(crystallite_name(p))//']'
|
||
write(file,*)
|
||
do e = 1,crystallite_Noutput(p)
|
||
write(file,'(a,i4)') trim(crystallite_output(e,p))//char(9),crystallite_sizePostResult(e,p)
|
||
enddo
|
||
enddo
|
||
|
||
close(file)
|
||
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e)) ! look up homogenization-->grainCount
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element
|
||
do g = 1,myNgrains
|
||
crystallite_partionedTemperature0(g,i,e) = Temperature ! isothermal assumption
|
||
crystallite_Fp0(:,:,g,i,e) = math_EulerToR(material_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation
|
||
crystallite_Fe(:,:,g,i,e) = transpose(crystallite_Fp0(:,:,g,i,e))
|
||
crystallite_F0(:,:,g,i,e) = math_I3
|
||
crystallite_partionedFp0(:,:,g,i,e) = crystallite_Fp0(:,:,g,i,e)
|
||
crystallite_partionedF0(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
|
||
crystallite_partionedF(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
|
||
crystallite_requested(g,i,e) = .true.
|
||
crystallite_localConstitution(g,i,e) = phase_localConstitution(material_phase(g,i,e))
|
||
enddo
|
||
enddo
|
||
enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
! Initialize crystallite_symmetryID(g,i,e)
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,homogenization_Ngrains(mesh_element(3,e))
|
||
myPhase = material_phase(g,i,e)
|
||
select case (phase_constitution(myPhase))
|
||
case (constitutive_phenopowerlaw_label)
|
||
myStructure = constitutive_phenopowerlaw_structure(phase_constitutionInstance(myPhase))
|
||
case (constitutive_dislotwin_label)
|
||
myStructure = constitutive_dislotwin_structure(phase_constitutionInstance(myPhase))
|
||
case (constitutive_nonlocal_label)
|
||
myStructure = constitutive_nonlocal_structure(phase_constitutionInstance(myPhase))
|
||
case default
|
||
myStructure = -1_pInt ! does this happen for j2 material?
|
||
end select
|
||
if (myStructure>0_pInt) then
|
||
crystallite_symmetryID(g,i,e)=lattice_symmetryTypes(myStructure) ! structure = 1(fcc) or 2(bcc) => 1; 3(hex)=>2
|
||
endif
|
||
enddo
|
||
enddo
|
||
enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
call crystallite_orientations()
|
||
crystallite_orientation0=crystallite_orientation ! Store initial orientations for calculation of grain rotations
|
||
|
||
call crystallite_stressAndItsTangent(.true.) ! request elastic answers
|
||
crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback
|
||
|
||
! *** Output to MARC output file ***
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,*)
|
||
write(6,*) '<<<+- crystallite init -+>>>'
|
||
write(6,*) '$Id$'
|
||
write(6,*)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_Temperature: ', shape(crystallite_Temperature)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_Fe: ', shape(crystallite_Fe)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_Fp: ', shape(crystallite_Fp)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_Lp: ', shape(crystallite_Lp)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_F0: ', shape(crystallite_F0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_Fp0: ', shape(crystallite_Fp0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_Lp0: ', shape(crystallite_Lp0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedF: ', shape(crystallite_partionedF)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedTemp0: ', shape(crystallite_partionedTemperature0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_subF: ', shape(crystallite_subF)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID) !NEW
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_subF0: ', shape(crystallite_subF0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_P: ', shape(crystallite_P)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_dPdF: ', shape(crystallite_dPdF)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_orientation: ', shape(crystallite_orientation)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_orientation0: ', shape(crystallite_orientation0)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_rotation: ', shape(crystallite_rotation)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_disorientation: ', shape(crystallite_disorientation)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_dt: ', shape(crystallite_dt)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_subdt: ', shape(crystallite_subdt)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_subFrac: ', shape(crystallite_subFrac)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_subStep: ', shape(crystallite_subStep)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_localConstitution: ', shape(crystallite_localConstitution)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_requested: ', shape(crystallite_requested)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_todo: ', shape(crystallite_todo)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_converged: ', shape(crystallite_converged)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_stateConverged: ', shape(crystallite_stateConverged)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_temperatureConverged: ', shape(crystallite_temperatureConverged)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults)
|
||
write(6,'(a35,x,7(i5,x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult)
|
||
write(6,*)
|
||
write(6,*) 'Number of nonlocal grains: ',count(.not. crystallite_localConstitution)
|
||
call flush(6)
|
||
!$OMPEND CRITICAL (write2out)
|
||
|
||
call debug_info()
|
||
call debug_reset()
|
||
|
||
return
|
||
|
||
endsubroutine
|
||
|
||
|
||
|
||
!********************************************************************
|
||
! calculate stress (P) and tangent (dPdF) for crystallites
|
||
!********************************************************************
|
||
subroutine crystallite_stressAndItsTangent(updateJaco)
|
||
|
||
!*** variables and functions from other modules ***!
|
||
use prec, only: pInt, &
|
||
pReal
|
||
use numerics, only: subStepMinCryst, &
|
||
subStepSizeCryst, &
|
||
stepIncreaseCryst, &
|
||
pert_Fg, &
|
||
pert_method, &
|
||
nState, &
|
||
nCryst, &
|
||
iJacoStiffness
|
||
use debug, only: debugger, &
|
||
selectiveDebugger, &
|
||
verboseDebugger, &
|
||
debug_e, &
|
||
debug_i, &
|
||
debug_g, &
|
||
debug_CrystalliteLoopDistribution, &
|
||
debug_CrystalliteStateLoopDistribution, &
|
||
debug_StiffnessStateLoopDistribution
|
||
use IO, only: IO_warning
|
||
use math, only: math_inv3x3, &
|
||
math_mul33x33, &
|
||
math_mul66x6, &
|
||
math_Mandel6to33, &
|
||
math_Mandel33to6, &
|
||
math_I3, &
|
||
math_Plain3333to99
|
||
use FEsolving, only: FEsolving_execElem, &
|
||
FEsolving_execIP, &
|
||
theInc, &
|
||
cycleCounter
|
||
use mesh, only: mesh_element, &
|
||
mesh_NcpElems, &
|
||
mesh_maxNips
|
||
use material, only: homogenization_Ngrains, &
|
||
homogenization_maxNgrains
|
||
use constitutive, only: constitutive_maxSizeState, &
|
||
constitutive_maxSizeDotState, &
|
||
constitutive_sizeState, &
|
||
constitutive_sizeDotState, &
|
||
constitutive_state, &
|
||
constitutive_subState0, &
|
||
constitutive_partionedState0, &
|
||
constitutive_homogenizedC, &
|
||
constitutive_dotState, &
|
||
constitutive_previousDotState, &
|
||
constitutive_previousDotState2, &
|
||
constitutive_collectDotState, &
|
||
constitutive_dotTemperature, &
|
||
constitutive_microstructure
|
||
|
||
implicit none
|
||
|
||
!*** input variables ***!
|
||
logical, intent(in) :: updateJaco ! flag indicating wehther we want to update the Jacobian (stiffness) or not
|
||
|
||
!*** output variables ***!
|
||
|
||
!*** local variables ***!
|
||
real(pReal) myTemperature, & ! local copy of the temperature
|
||
myPert ! perturbation with correct sign
|
||
real(pReal), dimension(3,3) :: invFp, & ! inverse of the plastic deformation gradient
|
||
Fe_guess, & ! guess for elastic deformation gradient
|
||
Tstar ! 2nd Piola-Kirchhoff stress tensor
|
||
integer(pInt) NiterationCrystallite, & ! number of iterations in crystallite loop
|
||
NiterationState ! number of iterations in state loop
|
||
integer(pInt) e, ee, & ! element index
|
||
i, ii, & ! integration point index
|
||
g, gg, & ! grain index
|
||
k, &
|
||
l, &
|
||
perturbation , & ! loop counter for forward,backward perturbation mode
|
||
comp, &
|
||
myNgrains, &
|
||
mySizeState, &
|
||
mySizeDotState
|
||
integer(pInt), dimension(2,9,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
||
kl
|
||
logical onTrack, & ! flag indicating whether we are still on track
|
||
temperatureConverged, & ! flag indicating if temperature converged
|
||
stateConverged, & ! flag indicating if state converged
|
||
converged ! flag indicating if iteration converged
|
||
real(pReal), dimension(9,9) :: dPdF99
|
||
real(pReal), dimension(3,3,3,3,2) :: dPdF_perturbation
|
||
real(pReal), dimension(constitutive_maxSizeDotState) :: delta_dotState1, & ! difference between current and previous dotstate
|
||
delta_dotState2 ! difference between previousDotState and previousDotState2
|
||
real(pReal) dot_prod12, &
|
||
dot_prod22, &
|
||
formerSubStep
|
||
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
||
storedF, &
|
||
storedFp, &
|
||
storedInvFp, &
|
||
storedFe, &
|
||
storedLp, &
|
||
storedP
|
||
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
||
storedTstar_v
|
||
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
||
storedTemperature
|
||
real(pReal), dimension(constitutive_maxSizeState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
||
storedState
|
||
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
||
storedDotState
|
||
logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
||
storedConvergenceFlag
|
||
logical, dimension(3,3) :: mask
|
||
logical forceLocalStiffnessCalculation ! flag indicating that stiffness calculation is always done locally
|
||
forceLocalStiffnessCalculation = .false.
|
||
|
||
|
||
! ------ initialize to starting condition ------
|
||
|
||
!$OMP CRITICAL (write2out)
|
||
! write (6,*)
|
||
! write (6,*) 'Crystallite request from Materialpoint'
|
||
! write (6,'(a,/,(f12.7,x))') 'crystallite_partionedTemp0 of 1 1 1' ,crystallite_partionedTemperature0(1,1,1)
|
||
! write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedF0 of 1 1 1' ,crystallite_partionedF0(1:3,:,1,1,1)
|
||
! write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedFp0 of 1 1 1' ,crystallite_partionedFp0(1:3,:,1,1,1)
|
||
! write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedF of 1 1 1' ,crystallite_partionedF(1:3,:,1,1,1)
|
||
! write (6,'(a,/,3(3(f12.7,x)/))') 'crystallite_partionedLp0 of 1 1 1' ,crystallite_partionedLp0(1:3,:,1,1,1)
|
||
!$OMPEND CRITICAL (write2out)
|
||
|
||
crystallite_subStep = 0.0_pReal
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
if (crystallite_requested(g,i,e)) then ! initialize restoration point of ...
|
||
crystallite_subTemperature0(g,i,e) = crystallite_partionedTemperature0(g,i,e) ! ...temperature
|
||
constitutive_subState0(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructure
|
||
crystallite_subFp0(:,:,g,i,e) = crystallite_partionedFp0(:,:,g,i,e) ! ...plastic def grad
|
||
crystallite_subLp0(:,:,g,i,e) = crystallite_partionedLp0(:,:,g,i,e) ! ...plastic velocity grad
|
||
crystallite_subF0(:,:,g,i,e) = crystallite_partionedF0(:,:,g,i,e) ! ...def grad
|
||
crystallite_subTstar0_v(:,g,i,e) = crystallite_partionedTstar0_v(:,g,i,e) !...2nd PK stress
|
||
|
||
crystallite_subFrac(g,i,e) = 0.0_pReal
|
||
crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst
|
||
crystallite_todo(g,i,e) = .true.
|
||
crystallite_converged(g,i,e) = .false. ! pretend failed step of twice the required size
|
||
endif
|
||
enddo
|
||
enddo
|
||
enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
|
||
! --+>> crystallite loop <<+--
|
||
|
||
NiterationCrystallite = 0_pInt
|
||
|
||
do while (any(crystallite_subStep(:,:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinCryst)) ! cutback loop for crystallites
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
|
||
if (crystallite_converged(g,i,e)) then
|
||
if (debugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,'(a21,f10.8,a32,f10.8,a35)') 'winding forward from ', &
|
||
crystallite_subFrac(g,i,e),' to current crystallite_subfrac ', &
|
||
crystallite_subFrac(g,i,e)+crystallite_subStep(g,i,e),' in crystallite_stressAndItsTangent'
|
||
write(6,*)
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
crystallite_subFrac(g,i,e) = crystallite_subFrac(g,i,e) + crystallite_subStep(g,i,e)
|
||
formerSubStep = crystallite_subStep(g,i,e)
|
||
crystallite_subStep(g,i,e) = min(1.0_pReal-crystallite_subFrac(g,i,e), stepIncreaseCryst*crystallite_subStep(g,i,e))
|
||
if (crystallite_subStep(g,i,e) > subStepMinCryst) then
|
||
crystallite_subTemperature0(g,i,e) = crystallite_Temperature(g,i,e) ! wind forward...
|
||
crystallite_subF0(:,:,g,i,e) = crystallite_subF(:,:,g,i,e) ! ...def grad
|
||
crystallite_subFp0(:,:,g,i,e) = crystallite_Fp(:,:,g,i,e) ! ...plastic def grad
|
||
crystallite_subLp0(:,:,g,i,e) = crystallite_Lp(:,:,g,i,e) ! ...plastic velocity gradient
|
||
constitutive_subState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructure
|
||
crystallite_subTstar0_v(:,g,i,e) = crystallite_Tstar_v(:,g,i,e) ! ...2nd PK stress
|
||
elseif (formerSubStep > subStepMinCryst) then ! this crystallite just converged
|
||
!$OMP CRITICAL (distributionCrystallite)
|
||
debug_CrystalliteLoopDistribution(min(nCryst+1,NiterationCrystallite)) = &
|
||
debug_CrystalliteLoopDistribution(min(nCryst+1,NiterationCrystallite)) + 1
|
||
!$OMPEND CRITICAL (distributionCrystallite)
|
||
endif
|
||
else
|
||
crystallite_subStep(g,i,e) = subStepSizeCryst*crystallite_subStep(g,i,e) ! cut step in half and restore...
|
||
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) ! ...temperature
|
||
crystallite_Fp(:,:,g,i,e) = crystallite_subFp0(:,:,g,i,e) ! ...plastic def grad
|
||
crystallite_invFp(:,:,g,i,e) = math_inv3x3(crystallite_Fp(:,:,g,i,e))
|
||
crystallite_Lp(:,:,g,i,e) = crystallite_subLp0(:,:,g,i,e) ! ...plastic velocity grad
|
||
constitutive_state(g,i,e)%p = constitutive_subState0(g,i,e)%p ! ...microstructure
|
||
crystallite_Tstar_v(:,g,i,e) = crystallite_subTstar0_v(:,g,i,e) ! ...2nd PK stress
|
||
if (debugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,'(a78,f10.8)') 'cutback step in crystallite_stressAndItsTangent with new crystallite_subStep: ',&
|
||
crystallite_subStep(g,i,e)
|
||
write(6,*)
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
endif
|
||
|
||
crystallite_todo(g,i,e) = crystallite_subStep(g,i,e) > subStepMinCryst ! still on track or already done (beyond repair)
|
||
if (crystallite_todo(g,i,e)) then ! specify task (according to substep)
|
||
crystallite_subF(:,:,g,i,e) = crystallite_subF0(:,:,g,i,e) + &
|
||
crystallite_subStep(g,i,e) * &
|
||
(crystallite_partionedF(:,:,g,i,e) - crystallite_partionedF0(:,:,g,i,e))
|
||
crystallite_Fe(:,:,g,i,e) = math_mul33x33(crystallite_subF(:,:,g,i,e),crystallite_invFp(:,:,g,i,e))
|
||
crystallite_subdt(g,i,e) = crystallite_subStep(g,i,e) * crystallite_dt(g,i,e)
|
||
crystallite_converged(g,i,e) = .false. ! start out non-converged
|
||
endif
|
||
enddo
|
||
enddo
|
||
enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
! --+>> preguess for state <<+--
|
||
!
|
||
! incrementing by crystallite_subdt
|
||
! based on constitutive_subState0
|
||
! results in constitutive_state
|
||
! first loop for collection of state evolution based on old state
|
||
! second loop for updating to new state
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
|
||
if (crystallite_todo(g,i,e)) then ! all undone crystallites
|
||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
|
||
crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
||
constitutive_previousDotState2(g,i,e)%p = 0.0_pReal
|
||
constitutive_previousDotState(g,i,e)%p = 0.0_pReal
|
||
constitutive_dotState(g,i,e)%p = 0.0_pReal ! zero out dotStates
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
|
||
if (crystallite_todo(g,i,e)) then ! all undone crystallites
|
||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g, i, e)
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
crystallite_statedamper = 1.0_pReal
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
|
||
if (crystallite_todo(g,i,e)) then ! all undone crystallites
|
||
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! update state
|
||
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e) ! update temperature
|
||
if ( .not. crystallite_localConstitution(g,i,e) &
|
||
.and. .not. crystallite_todo(g,i,e)) & ! if broken non-local...
|
||
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
! --+>> state loop <<+--
|
||
|
||
NiterationState = 0_pInt
|
||
|
||
do while ( any(crystallite_todo(:,:,FEsolving_execELem(1):FEsolving_execElem(2))) &
|
||
.and. NiterationState < nState) ! convergence loop for crystallite
|
||
|
||
NiterationState = NiterationState + 1_pInt
|
||
! --+>> stress integration <<+--
|
||
!
|
||
! incrementing by crystallite_subdt
|
||
! based on crystallite_subF0,.._subFp0,.._subLp0
|
||
! constitutive_state is internally interpolated with .._subState0
|
||
! to account for substepping within _integrateStress
|
||
! results in crystallite_Fp,.._Lp
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
|
||
if (crystallite_todo(g,i,e)) then ! all undone crystallites
|
||
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
|
||
if ( .not. crystallite_localConstitution(g,i,e) &
|
||
.and. .not. crystallite_todo(g,i,e)) & ! if broken non-local...
|
||
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
if (verboseDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,*) count(crystallite_todo(:,:,:)),'grains todo after stress integration'
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
|
||
! --+>> state integration <<+--
|
||
!
|
||
! incrementing by crystallite_subdt
|
||
! based on constitutive_subState0
|
||
! results in constitutive_state
|
||
! first loop for collection of state evolution based on old state
|
||
! second loop for updating to new state
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
if (crystallite_todo(g,i,e)) then ! all undone crystallites
|
||
constitutive_previousDotState2(g,i,e)%p = constitutive_previousDotState(g,i,e)%p
|
||
constitutive_previousDotState(g,i,e)%p = constitutive_dotState(g,i,e)%p
|
||
constitutive_dotState(g,i,e)%p = 0.0_pReal ! zero out dotState
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
crystallite_statedamper = 1.0_pReal
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
|
||
if (crystallite_todo(g,i,e)) then ! all undone crystallites
|
||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), g, i, e)
|
||
delta_dotState1 = constitutive_dotState(g,i,e)%p - constitutive_previousDotState(g,i,e)%p
|
||
delta_dotState2 = constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p
|
||
dot_prod12 = dot_product(delta_dotState1, delta_dotState2)
|
||
dot_prod22 = dot_product(delta_dotState2, delta_dotState2)
|
||
if ( dot_prod22 > 0.0_pReal &
|
||
.and. ( dot_prod12 < 0.0_pReal &
|
||
.or. dot_product(constitutive_dotState(g,i,e)%p, constitutive_previousDotState(g,i,e)%p) < 0.0_pReal) ) &
|
||
crystallite_statedamper(g,i,e) = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
|
||
if (crystallite_todo(g,i,e)) then ! all undone crystallites
|
||
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! update state
|
||
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e) ! update temperature
|
||
crystallite_converged(g,i,e) = crystallite_stateConverged(g,i,e) .and. crystallite_temperatureConverged(g,i,e)
|
||
if ( .not. crystallite_localConstitution(g,i,e) &
|
||
.and. .not. crystallite_todo(g,i,e)) & ! if updateState signals broken non-local...
|
||
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
||
if (crystallite_converged(g,i,e)) then
|
||
!$OMP CRITICAL (distributionState)
|
||
debug_CrystalliteStateLoopDistribution(NiterationState) = &
|
||
debug_CrystalliteStateLoopDistribution(NiterationState) + 1
|
||
!$OMPEND CRITICAL (distributionState)
|
||
endif
|
||
endif
|
||
enddo
|
||
enddo
|
||
enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
if (verboseDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,*) count(crystallite_converged(:,:,:)),'grains converged after state integration no.', NiterationState
|
||
write(6,*)
|
||
! write(6,'(8(L,x))') crystallite_converged(:,:,:)
|
||
! do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
! if (any(.not. crystallite_converged(:,:,e))) &
|
||
! write(6,'(i4,8(x,L))') e, crystallite_converged(:,:,e)
|
||
! enddo
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
|
||
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) & ! any non-local not yet converged (or broken)...
|
||
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
|
||
|
||
crystallite_todo = crystallite_todo .and. .not. crystallite_converged ! skip all converged
|
||
|
||
if (verboseDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,*) count(crystallite_converged(:,:,:)),'grains converged after non-local check'
|
||
write(6,*) count(crystallite_todo(:,:,:)),'grains todo after state integration no.', NiterationState
|
||
write(6,*)
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
|
||
enddo ! crystallite convergence loop
|
||
NiterationCrystallite = NiterationCrystallite + 1
|
||
|
||
enddo ! cutback loop
|
||
|
||
! ------ check for non-converged crystallites ------
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
if (.not. crystallite_converged(g,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway)
|
||
! call IO_warning(600,e,i,g)
|
||
invFp = math_inv3x3(crystallite_partionedFp0(:,:,g,i,e))
|
||
Fe_guess = math_mul33x33(crystallite_partionedF(:,:,g,i,e),invFp)
|
||
Tstar = math_Mandel6to33( math_mul66x6( 0.5_pReal*constitutive_homogenizedC(g,i,e), &
|
||
math_Mandel33to6( math_mul33x33(transpose(Fe_guess),Fe_guess) - math_I3 ) ) )
|
||
crystallite_P(:,:,g,i,e) = math_mul33x33(Fe_guess,math_mul33x33(Tstar,transpose(invFp)))
|
||
endif
|
||
enddo
|
||
enddo
|
||
enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
|
||
! --+>> stiffness calculation <<+--
|
||
|
||
if(updateJaco) then ! Jacobian required
|
||
|
||
crystallite_statedamper = 1.0_pReal
|
||
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
mySizeState = constitutive_sizeState(g,i,e) ! number of state variables for this grain
|
||
mySizeDotState = constitutive_sizeDotState(g,i,e) ! number of dotStates for this grain
|
||
storedState(1:mySizeState,g,i,e) = constitutive_state(g,i,e)%p ! remember unperturbed, converged state, ...
|
||
storedDotState(1:mySizeDotState,g,i,e) = constitutive_dotState(g,i,e)%p ! ... dotStates, ...
|
||
enddo; enddo; enddo
|
||
storedTemperature = crystallite_Temperature ! ... Temperature, ...
|
||
storedF = crystallite_subF ! ... and kinematics
|
||
storedFp = crystallite_Fp
|
||
storedInvFp = crystallite_invFp
|
||
storedFe = crystallite_Fe
|
||
storedLp = crystallite_Lp
|
||
storedTstar_v = crystallite_Tstar_v
|
||
storedP = crystallite_P
|
||
storedConvergenceFlag = crystallite_converged
|
||
|
||
if (all(crystallite_localConstitution) .or. theInc < 1 .or. forceLocalStiffnessCalculation) then ! all grains have local constitution, so local convergence of perturbed grain is sufficient
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
||
do g = 1,myNgrains
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
|
||
if (crystallite_requested(g,i,e)) then ! first check whether is requested at all!
|
||
if (crystallite_converged(g,i,e)) then ! grain converged in above iteration
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write (6,*) '#############'
|
||
write (6,*) 'central solution of cryst_StressAndTangent'
|
||
write (6,*) '#############'
|
||
write (6,'(a8,3(x,i4),/,3(3(f12.4,x)/))') ' P of', g, i, e, storedP(1:3,:,g,i,e)/1e6
|
||
write (6,'(a8,3(x,i4),/,3(3(f12.8,x)/))') ' Fp of', g, i, e, storedFp(1:3,:,g,i,e)
|
||
write (6,'(a8,3(x,i4),/,3(3(f12.8,x)/))') ' Lp of', g, i, e, storedLp(1:3,:,g,i,e)
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
|
||
do perturbation = 1,2
|
||
if (iand(pert_method,perturbation) > 0) then
|
||
myPert = -pert_Fg * (-1.0_pReal)**perturbation ! forward or backward perturbation
|
||
do k = 1,3 ! perturbation...
|
||
do l = 1,3 ! ...components to the positive direction
|
||
crystallite_subF(k,l,g,i,e) = crystallite_subF(k,l,g,i,e) + myPert ! perturb single component (either forward or backward)
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write (6,'(i1,x,i1)') k,l
|
||
write (6,'(a8,3(x,i4),/,3(3(f12.6,x)/))') 'pertF of', g, i, e, crystallite_subF(1:3,:,g,i,e)
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
onTrack = .true.
|
||
converged = .false.
|
||
NiterationState = 0_pInt
|
||
do while(.not. converged .and. onTrack .and. NiterationState < nState) ! keep cycling until done (potentially non-converged)
|
||
NiterationState = NiterationState + 1_pInt
|
||
onTrack = crystallite_integrateStress(g,i,e) ! stress of perturbed situation (overwrites _P,_Tstar_v,_Fp,_Lp,_Fe)
|
||
if (onTrack) then
|
||
constitutive_dotState(g,i,e)%p = 0.0_pReal
|
||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), &
|
||
g,i,e)
|
||
stateConverged = crystallite_updateState(g,i,e) ! update state
|
||
temperatureConverged = crystallite_updateTemperature(g,i,e) ! update temperature
|
||
converged = stateConverged .and. temperatureConverged
|
||
endif
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write (6,*) '-------------'
|
||
write (6,'(a,x,l,x,l)') 'ontrack + converged:',onTrack,converged
|
||
write (6,'(a12,3(x,i4),/,3(3(f12.4,x)/))') 'pertP/MPa of', g, i, e, crystallite_P(1:3,:,g,i,e)/1e6
|
||
write (6,'(a12,3(x,i4),/,3(3(f12.4,x)/))') 'DP/MPa of', g, i, e, &
|
||
(crystallite_P(1:3,:,g,i,e)-storedP(1:3,:,g,i,e))/1e6
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
enddo
|
||
if (converged) & ! converged state warrants stiffness update
|
||
dPdF_perturbation(:,:,k,l,perturbation) = (crystallite_P(:,:,g,i,e) - storedP(:,:,g,i,e))/myPert ! tangent dP_ij/dFg_kl
|
||
|
||
mySizeState = constitutive_sizeState(g,i,e) ! number of state variables for this grain
|
||
mySizeDotState = constitutive_sizeDotState(g,i,e) ! number of dotStates for this grain
|
||
constitutive_state(g,i,e)%p = storedState(1:mySizeState,g,i,e)
|
||
constitutive_dotState(g,i,e)%p = storedDotState(1:mySizeDotState,g,i,e)
|
||
crystallite_Temperature(g,i,e) = storedTemperature(g,i,e)
|
||
crystallite_subF(:,:,g,i,e) = storedF(:,:,g,i,e)
|
||
crystallite_Fp(:,:,g,i,e) = storedFp(:,:,g,i,e)
|
||
crystallite_invFp(:,:,g,i,e) = storedInvFp(:,:,g,i,e)
|
||
crystallite_Fe(:,:,g,i,e) = storedFe(:,:,g,i,e)
|
||
crystallite_Lp(:,:,g,i,e) = storedLp(:,:,g,i,e)
|
||
crystallite_Tstar_v(:,g,i,e) = storedTstar_v(:,g,i,e)
|
||
crystallite_P(:,:,g,i,e) = storedP(:,:,g,i,e)
|
||
!$OMP CRITICAL (out)
|
||
debug_StiffnessStateLoopDistribution(NiterationState) = &
|
||
debug_StiffnessstateLoopDistribution(NiterationState) + 1
|
||
!$OMPEND CRITICAL (out)
|
||
enddo; enddo
|
||
endif
|
||
enddo ! perturbation direction
|
||
select case(pert_method)
|
||
case (1)
|
||
crystallite_dPdF(:,:,:,:,g,i,e) = dPdF_perturbation(:,:,:,:,1)
|
||
case (2)
|
||
crystallite_dPdF(:,:,:,:,g,i,e) = dPdF_perturbation(:,:,:,:,2)
|
||
case (3)
|
||
crystallite_dPdF(:,:,:,:,g,i,e) = 0.5_pReal*(dPdF_perturbation(:,:,:,:,1)+dPdF_perturbation(:,:,:,:,2))
|
||
end select
|
||
else ! grain did not converge
|
||
crystallite_dPdF(:,:,:,:,g,i,e) = crystallite_fallbackdPdF(:,:,:,:,g,i,e) ! use (elastic) fallback
|
||
endif ! grain convergence
|
||
endif ! grain request
|
||
enddo ! grain loop
|
||
enddo ! ip loop
|
||
enddo ! element loop
|
||
!$OMPEND PARALLEL DO
|
||
|
||
elseif (any(.not. crystallite_localConstitution)) then ! if any nonlocal grain present, we have to do a full loop over all grains after each perturbance
|
||
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,myNgrains
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
|
||
mask = .true.
|
||
do comp = 1,9
|
||
kl(:,comp,g,i,e) = maxloc(abs(crystallite_subF(:,:,g,i,e)-crystallite_F0(:,:,g,i,e)), mask) ! map from component to array indices for F (sorted in descending order of abs(deltaF))
|
||
mask(kl(1,comp,g,i,e),kl(2,comp,g,i,e)) = .false.
|
||
enddo
|
||
k = kl(1,mod(cycleCounter/iJacoStiffness,9)+1,g,i,e) ! perturb components in the descending order of change in F (-> component with biggest change in F is perturbed in first cycle, component with second biggest change in next cycle, ...)
|
||
l = kl(2,mod(cycleCounter/iJacoStiffness,9)+1,g,i,e)
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write (6,*) 'perturb component ',k,l
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
crystallite_subF(k,l,g,i,e) = crystallite_subF(k,l,g,i,e) + pert_Fg ! perturb single component
|
||
enddo; enddo; enddo
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,myNgrains
|
||
if (crystallite_todo(g,i,e)) then
|
||
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! preguess for state
|
||
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e)
|
||
if ( .not. crystallite_localConstitution(g,i,e) &
|
||
.and. .not. crystallite_todo(g,i,e)) & ! if broken non-local...
|
||
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
NiterationState = 0_pInt
|
||
crystallite_todo = .true.
|
||
do while ( any(crystallite_todo(:,:,FEsolving_execELem(1):FEsolving_execElem(2))) .and. NiterationState < nState)
|
||
NiterationState = NiterationState + 1_pInt
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,myNgrains
|
||
if (crystallite_todo(g,i,e)) then
|
||
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e) ! stress integration
|
||
if ( .not. crystallite_localConstitution(g,i,e) &
|
||
.and. .not. crystallite_todo(g,i,e)) & ! if broken non-local...
|
||
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,myNgrains
|
||
if (crystallite_todo(g,i,e)) &
|
||
constitutive_dotState(g,i,e)%p = 0.0_pReal ! zero out dotState
|
||
enddo; enddo; enddo
|
||
|
||
crystallite_statedamper = 1.0_pReal
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,myNgrains
|
||
if (crystallite_todo(g,i,e)) then
|
||
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
||
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
||
crystallite_disorientation(:,:,g,i,e), crystallite_subdt(g,i,e), &
|
||
g,i,e) ! collect dot state
|
||
delta_dotState1 = constitutive_dotState(g,i,e)%p - constitutive_previousDotState(g,i,e)%p
|
||
delta_dotState2 = constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p
|
||
dot_prod12 = dot_product(delta_dotState1, delta_dotState2)
|
||
dot_prod22 = dot_product(delta_dotState2, delta_dotState2)
|
||
if ( dot_prod22 > 0.0_pReal &
|
||
.and. ( dot_prod12 < 0.0_pReal &
|
||
.or. dot_product(constitutive_dotState(g,i,e)%p, constitutive_previousDotState(g,i,e)%p) < 0.0_pReal))&
|
||
crystallite_statedamper(g,i,e) = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,myNgrains
|
||
if (crystallite_todo(g,i,e)) then
|
||
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! update state
|
||
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e) ! update temperature
|
||
crystallite_converged(g,i,e) = crystallite_stateConverged(g,i,e) &
|
||
.and. crystallite_temperatureConverged(g,i,e)
|
||
if ( .not. crystallite_localConstitution(g,i,e) &
|
||
.and. .not. crystallite_todo(g,i,e)) & ! if updateState signals broken non-local...
|
||
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
||
endif
|
||
enddo; enddo; enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) & ! any non-local not yet converged?
|
||
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! all non-local not converged
|
||
|
||
crystallite_todo = crystallite_todo .and. .not. crystallite_converged ! skip all converged
|
||
|
||
enddo
|
||
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,myNgrains
|
||
if (crystallite_converged(g,i,e)) then ! if stiffness calculation converged...
|
||
k = kl(1,mod(cycleCounter/iJacoStiffness,9)+1,g,i,e)
|
||
l = kl(2,mod(cycleCounter/iJacoStiffness,9)+1,g,i,e)
|
||
crystallite_dPdF(:,:,k,l,g,i,e) = (crystallite_P(:,:,g,i,e) - storedP(:,:,g,i,e))/pert_Fg ! ... use tangent dP_ij/dFg_kl
|
||
elseif (.not. storedConvergenceFlag(g,i,e)) then ! if crystallite didn<64>t converge before...
|
||
crystallite_dPdF(:,:,:,:,g,i,e) = crystallite_fallbackdPdF(:,:,:,:,g,i,e) ! ... use (elastic) fallback
|
||
endif
|
||
enddo; enddo; enddo
|
||
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,myNgrains
|
||
mySizeState = constitutive_sizeState(g,i,e)
|
||
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
||
constitutive_state(g,i,e)%p = storedState(1:mySizeState,g,i,e)
|
||
constitutive_dotState(g,i,e)%p = storedDotState(1:mySizeDotState,g,i,e)
|
||
enddo; enddo; enddo
|
||
crystallite_Temperature = storedTemperature
|
||
crystallite_subF = storedF
|
||
crystallite_Fp = storedFp
|
||
crystallite_invFp = storedInvFp
|
||
crystallite_Fe = storedFe
|
||
crystallite_Lp = storedLp
|
||
crystallite_Tstar_v = storedTstar_v
|
||
crystallite_P = storedP
|
||
|
||
!$OMP CRITICAL (out)
|
||
debug_StiffnessStateLoopDistribution(NiterationState) = debug_StiffnessstateLoopDistribution(NiterationState) + 1
|
||
!$OMPEND CRITICAL (out)
|
||
|
||
crystallite_converged = storedConvergenceFlag
|
||
|
||
endif
|
||
|
||
endif ! jacobian calculation
|
||
|
||
endsubroutine
|
||
|
||
|
||
|
||
!********************************************************************
|
||
! update the internal state of the constitutive law
|
||
! and tell whether state has converged
|
||
!********************************************************************
|
||
function crystallite_updateState(&
|
||
g,& ! grain number
|
||
i,& ! integration point number
|
||
e & ! element number
|
||
)
|
||
|
||
!*** variables and functions from other modules ***!
|
||
use prec, only: pReal, &
|
||
pInt, &
|
||
pLongInt
|
||
use numerics, only: rTol_crystalliteState
|
||
use constitutive, only: constitutive_dotState, &
|
||
constitutive_previousDotState, &
|
||
constitutive_sizeDotState, &
|
||
constitutive_subState0, &
|
||
constitutive_state, &
|
||
constitutive_relevantState, &
|
||
constitutive_microstructure
|
||
use debug, only: debugger, &
|
||
selectiveDebugger, &
|
||
verboseDebugger
|
||
use FEsolving, only: cycleCounter, theInc
|
||
|
||
!*** input variables ***!
|
||
integer(pInt), intent(in):: e, & ! element index
|
||
i, & ! integration point index
|
||
g ! grain index
|
||
|
||
!*** output variables ***!
|
||
logical crystallite_updateState ! flag indicating if integration suceeded
|
||
|
||
!*** local variables ***!
|
||
real(pReal), dimension(constitutive_sizeDotState(g,i,e)) :: residuum ! residuum from evolution of microstructure
|
||
integer(pInt) mySize
|
||
|
||
|
||
mySize = constitutive_sizeDotState(g,i,e)
|
||
|
||
! correct my dotState
|
||
constitutive_dotState(g,i,e)%p(1:mySize) = constitutive_dotState(g,i,e)%p(1:mySize) * crystallite_statedamper(g,i,e) &
|
||
+ constitutive_previousDotState(g,i,e)%p(1:mySize) * (1.0_pReal-crystallite_statedamper(g,i,e))
|
||
! calculate the residuum
|
||
residuum = constitutive_state(g,i,e)%p(1:mySize) - constitutive_subState0(g,i,e)%p(1:mySize) &
|
||
- constitutive_dotState(g,i,e)%p(1:mySize) * crystallite_subdt(g,i,e)
|
||
|
||
if (any(residuum/=residuum)) then ! if NaN occured then return without changing the state...
|
||
crystallite_updateState = .false. ! ...indicate state update failed
|
||
crystallite_todo(g,i,e) = .false. ! ...no need to calculate any further
|
||
if (verboseDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,*) '::: updateState encountered NaN',g,i,e
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
return
|
||
endif
|
||
|
||
! update the microstructure
|
||
constitutive_state(g,i,e)%p(1:mySize) = constitutive_state(g,i,e)%p(1:mySize) - residuum
|
||
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, crystallite_Fp, &
|
||
g, i, e)
|
||
|
||
|
||
! setting flag to true if state is below relative tolerance, otherwise set it to false
|
||
crystallite_updateState = all( constitutive_state(g,i,e)%p(1:mySize) < constitutive_relevantState(g,i,e)%p(1:mySize) &
|
||
.or. abs(residuum) < rTol_crystalliteState*abs(constitutive_state(g,i,e)%p(1:mySize)) )
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
if (crystallite_updateState) then
|
||
write(6,*) '::: updateState converged',g,i,e
|
||
else
|
||
write(6,*) '::: updateState did not converge',g,i,e
|
||
endif
|
||
write(6,*)
|
||
write(6,'(a,f6.1)') 'crystallite_statedamper',crystallite_statedamper(g,i,e)
|
||
write(6,*)
|
||
write(6,'(a,/,12(e12.5,x))') 'dotState',constitutive_dotState(g,i,e)%p(1:mySize)
|
||
write(6,*)
|
||
write(6,'(a,/,12(e12.5,x))') 'new state',constitutive_state(g,i,e)%p(1:mySize)
|
||
write(6,*)
|
||
write(6,'(a,/,12(f12.1,x))') 'resid tolerance',abs(residuum/rTol_crystalliteState/constitutive_state(g,i,e)%p(1:mySize))
|
||
write(6,*)
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
return
|
||
|
||
endfunction
|
||
|
||
|
||
!********************************************************************
|
||
! update the temperature of the grain
|
||
! and tell whether it has converged
|
||
!********************************************************************
|
||
function crystallite_updateTemperature(&
|
||
g,& ! grain number
|
||
i,& ! integration point number
|
||
e & ! element number
|
||
)
|
||
|
||
!*** variables and functions from other modules ***!
|
||
use prec, only: pReal, &
|
||
pInt, &
|
||
pLongInt
|
||
use numerics, only: rTol_crystalliteTemperature
|
||
use constitutive, only: constitutive_dotTemperature
|
||
use debug, only: debugger, &
|
||
debug_cumDotTemperatureCalls, &
|
||
debug_cumDotTemperatureTicks
|
||
|
||
!*** input variables ***!
|
||
integer(pInt), intent(in):: e, & ! element index
|
||
i, & ! integration point index
|
||
g ! grain index
|
||
|
||
!*** output variables ***!
|
||
logical crystallite_updateTemperature ! flag indicating if integration suceeded
|
||
|
||
!*** local variables ***!
|
||
real(pReal) residuum ! residuum from evolution of temperature
|
||
integer(pLongInt) tick, &
|
||
tock, &
|
||
tickrate, &
|
||
maxticks
|
||
|
||
! calculate the residuum
|
||
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
|
||
residuum = crystallite_Temperature(g,i,e) - crystallite_subTemperature0(g,i,e) - &
|
||
crystallite_subdt(g,i,e) * &
|
||
constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e),crystallite_Temperature(g,i,e),g,i,e)
|
||
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
|
||
debug_cumDotTemperatureCalls = debug_cumDotTemperatureCalls + 1_pInt
|
||
debug_cumDotTemperatureTicks = debug_cumDotTemperatureTicks + tock-tick
|
||
if (tock < tick) debug_cumDotTemperatureTicks = debug_cumDotTemperatureTicks + maxticks
|
||
|
||
! if NaN occured then return without changing the state
|
||
if (residuum/=residuum) then
|
||
crystallite_updateTemperature = .false. ! indicate update failed
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,*) '::: updateTemperature encountered NaN',g,i,e
|
||
!$OMPEND CRITICAL (write2out)
|
||
return
|
||
endif
|
||
|
||
! update the microstructure
|
||
crystallite_Temperature(g,i,e) = crystallite_Temperature(g,i,e) - residuum
|
||
|
||
! setting flag to true if residuum is below relative tolerance (or zero Kelvin), otherwise set it to false
|
||
crystallite_updateTemperature = crystallite_Temperature(g,i,e) == 0.0_pReal .or. &
|
||
abs(residuum) < rTol_crystalliteTemperature*crystallite_Temperature(g,i,e)
|
||
|
||
return
|
||
|
||
endfunction
|
||
|
||
|
||
|
||
!***********************************************************************
|
||
!*** calculation of stress (P) with time integration ***
|
||
!*** based on a residuum in Lp and intermediate ***
|
||
!*** acceleration of the Newton-Raphson correction ***
|
||
!***********************************************************************
|
||
function crystallite_integrateStress(&
|
||
g,& ! grain number
|
||
i,& ! integration point number
|
||
e) ! element number
|
||
|
||
!*** variables and functions from other modules ***!
|
||
use prec, only: pReal, &
|
||
pInt, &
|
||
pLongInt
|
||
use numerics, only: nStress, &
|
||
aTol_crystalliteStress, &
|
||
rTol_crystalliteStress, &
|
||
iJacoLpresiduum, &
|
||
relevantStrain
|
||
use debug, only: debugger, &
|
||
selectiveDebugger, &
|
||
verboseDebugger, &
|
||
debug_cumLpCalls, &
|
||
debug_cumLpTicks, &
|
||
debug_StressLoopDistribution
|
||
use constitutive, only: constitutive_homogenizedC, &
|
||
constitutive_LpAndItsTangent
|
||
use math, only: math_mul33x33, &
|
||
math_mul66x6, &
|
||
math_mul99x99, &
|
||
math_inv3x3, &
|
||
math_invert3x3, &
|
||
math_invert, &
|
||
math_det3x3, &
|
||
math_I3, &
|
||
math_identity2nd, &
|
||
math_Mandel66to3333, &
|
||
math_Mandel6to33, &
|
||
math_mandel33to6
|
||
|
||
implicit none
|
||
|
||
!*** input variables ***!
|
||
integer(pInt), intent(in):: e, & ! element index
|
||
i, & ! integration point index
|
||
g ! grain index
|
||
|
||
!*** output variables ***!
|
||
logical crystallite_integrateStress ! flag indicating if integration suceeded
|
||
|
||
!*** local variables ***!
|
||
real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep
|
||
Fp_current, & ! plastic deformation gradient at start of timestep
|
||
Fp_new, & ! plastic deformation gradient at end of timestep
|
||
Fe_new, & ! elastic deformation gradient at end of timestep
|
||
invFp_new, & ! inverse of Fp_new
|
||
invFp_current, & ! inverse of Fp_current
|
||
Lpguess, & ! current guess for plastic velocity gradient
|
||
Lpguess_old, & ! known last good guess for plastic velocity gradient
|
||
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
|
||
residuum, & ! current residuum of plastic velocity gradient
|
||
residuum_old, & ! last residuum of plastic velocity gradient
|
||
A, &
|
||
B, &
|
||
BT, &
|
||
AB, &
|
||
BTA
|
||
real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation
|
||
real(pReal), dimension(9,9):: dLpdT_constitutive, & ! partial derivative of plastic velocity gradient calculated by constitutive law
|
||
dTdLp, & ! partial derivative of 2nd Piola-Kirchhoff stress
|
||
dRdLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
|
||
invdRdLp ! inverse of dRdLp
|
||
real(pReal), dimension(3,3,3,3):: C ! 4th rank elasticity tensor
|
||
real(pReal), dimension(6,6):: C_66 ! simplified 2nd rank elasticity tensor
|
||
real(pReal) p_hydro, & ! volumetric part of 2nd Piola-Kirchhoff Stress
|
||
det, & ! determinant
|
||
leapfrog, & ! acceleration factor for Newton-Raphson scheme
|
||
maxleap ! maximum acceleration factor
|
||
logical error ! flag indicating an error
|
||
integer(pInt) NiterationStress, & ! number of stress integrations
|
||
dummy, &
|
||
h, &
|
||
j, &
|
||
k, &
|
||
l, &
|
||
m, &
|
||
n, &
|
||
jacoCounter ! counter to check for Jacobian update
|
||
integer(pLongInt) tick, &
|
||
tock, &
|
||
tickrate, &
|
||
maxticks
|
||
|
||
! be pessimistic
|
||
crystallite_integrateStress = .false.
|
||
|
||
! feed local variables
|
||
Fg_new = crystallite_subF(:,:,g,i,e)
|
||
Fp_current = crystallite_subFp0(:,:,g,i,e)
|
||
Tstar_v = crystallite_Tstar_v(:,g,i,e)
|
||
Lpguess_old = crystallite_Lp(:,:,g,i,e) ! consider present Lp good (i.e. worth remembering) ...
|
||
Lpguess = crystallite_Lp(:,:,g,i,e) ! ... and take it as first guess
|
||
|
||
|
||
! inversion of Fp_current...
|
||
invFp_current = math_inv3x3(Fp_current)
|
||
if (all(invFp_current == 0.0_pReal)) then ! ... failed?
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,*) '::: integrateStress failed on invFp_current inversion',g,i,e
|
||
write(6,*)
|
||
write(6,'(a11,i3,x,i2,x,i5,/,3(3(f12.7,x)/))') 'invFp_new at ',g,i,e,invFp_new
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
return
|
||
endif
|
||
|
||
A = math_mul33x33(transpose(invFp_current), math_mul33x33(transpose(Fg_new),math_mul33x33(Fg_new,invFp_current)))
|
||
|
||
! get elasticity tensor
|
||
C_66 = constitutive_homogenizedC(g,i,e)
|
||
! if (debugger) write(6,'(a,/,6(6(f10.4,x)/))') 'elasticity',C_66(1:6,:)/1e9
|
||
C = math_Mandel66to3333(C_66)
|
||
|
||
! start LpLoop with no acceleration
|
||
NiterationStress = 0_pInt
|
||
leapfrog = 1.0_pReal
|
||
maxleap = 1024.0_pReal
|
||
jacoCounter = 0_pInt
|
||
|
||
LpLoop: do
|
||
|
||
! increase loop counter
|
||
NiterationStress = NiterationStress + 1
|
||
|
||
! too many loops required ?
|
||
if (NiterationStress > nStress) then
|
||
if (verboseDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,*) '::: integrateStress reached loop limit at ',g,i,e
|
||
write(6,*)
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
return
|
||
endif
|
||
|
||
B = math_I3 - crystallite_subdt(g,i,e)*Lpguess
|
||
BT = transpose(B)
|
||
AB = math_mul33x33(A,B)
|
||
BTA = math_mul33x33(BT,A)
|
||
|
||
! calculate 2nd Piola-Kirchhoff stress tensor
|
||
Tstar_v = 0.5_pReal*math_mul66x6(C_66,math_mandel33to6(math_mul33x33(BT,AB)-math_I3))
|
||
p_hydro = sum(Tstar_v(1:3))/3.0_pReal
|
||
forall(n=1:3) Tstar_v(n) = Tstar_v(n) - p_hydro ! get deviatoric stress tensor
|
||
|
||
! calculate plastic velocity gradient and its tangent according to constitutive law
|
||
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
|
||
call constitutive_LpAndItsTangent(Lp_constitutive, dLpdT_constitutive, Tstar_v, crystallite_Temperature(g,i,e), g, i, e)
|
||
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
|
||
debug_cumLpCalls = debug_cumLpCalls + 1_pInt
|
||
debug_cumLpTicks = debug_cumLpTicks + tock-tick
|
||
if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress at ' ,g,i,e, ' ; iteration ', NiterationStress
|
||
write(6,*)
|
||
write(6,'(a,/,3(3(e20.7,x)/))') 'Lp_constitutive', Lp_constitutive
|
||
write(6,'(a,/,3(3(e20.7,x)/))') 'Lpguess', Lpguess
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
|
||
! update current residuum
|
||
residuum = Lpguess - Lp_constitutive
|
||
|
||
! Check for convergence of loop
|
||
if (.not.(any(residuum/=residuum)) .and. & ! exclude any NaN in residuum
|
||
( maxval(abs(residuum)) < aTol_crystalliteStress .or. & ! below absolute tolerance .or.
|
||
( any(abs(crystallite_subdt(g,i,e)*Lpguess) > relevantStrain) .and. & ! worth checking? .and.
|
||
maxval(abs(residuum/Lpguess), abs(crystallite_subdt(g,i,e)*Lpguess) > relevantStrain) < rTol_crystalliteStress & ! below relative tolerance
|
||
) &
|
||
) &
|
||
) &
|
||
exit LpLoop
|
||
|
||
! NaN occured at regular speed?
|
||
if (any(residuum/=residuum) .and. leapfrog == 1.0) then
|
||
if (verboseDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress encountered NaN at ',g,i,e,' ; iteration ', NiterationStress
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
return
|
||
|
||
! something went wrong at accelerated speed?
|
||
elseif (leapfrog > 1.0_pReal .and. & ! at fast pace .and.
|
||
( sum(residuum*residuum) > sum(residuum_old*residuum_old) .or. & ! worse residuum .or.
|
||
sum(residuum*residuum_old) < 0.0_pReal .or. & ! residuum changed sign (overshoot) .or.
|
||
any(residuum/=residuum) & ! NaN occured
|
||
) &
|
||
) then
|
||
maxleap = 0.5_pReal * leapfrog ! limit next acceleration
|
||
leapfrog = 1.0_pReal ! grinding halt
|
||
jacoCounter = 0_pInt ! reset counter for Jacobian update (we want to do an update next time!)
|
||
|
||
! restore old residuum and Lp
|
||
Lpguess = Lpguess_old
|
||
residuum = residuum_old
|
||
|
||
! residuum got better
|
||
else
|
||
! calculate Jacobian for correction term
|
||
if (mod(jacoCounter, iJacoLpresiduum) == 0_pInt) then
|
||
dTdLp = 0.0_pReal
|
||
forall (h=1:3,j=1:3,k=1:3,l=1:3,m=1:3) &
|
||
dTdLp(3*(h-1)+j,3*(k-1)+l) = dTdLp(3*(h-1)+j,3*(k-1)+l) + C(h,j,l,m)*AB(k,m)+C(h,j,m,l)*BTA(m,k)
|
||
dTdLp = -0.5_pReal*crystallite_subdt(g,i,e)*dTdLp
|
||
dRdLp = math_identity2nd(9) - math_mul99x99(dLpdT_constitutive,dTdLp)
|
||
invdRdLp = 0.0_pReal
|
||
call math_invert(9,dRdLp,invdRdLp,dummy,error) ! invert dR/dLp --> dLp/dR
|
||
if (error) then
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress failed on dR/dLp inversion at ',g,i,e,' ; iteration ', NiterationStress
|
||
write(6,*)
|
||
write(6,'(a,/,9(9(e15.3,x)/))') 'dRdLp',dRdLp
|
||
write(6,'(a,/,9(9(e15.3,x)/))') 'dLpdT_constitutive',dLpdT_constitutive
|
||
write(6,'(a,/,3(3(e20.7,x)/))') 'Lp_constitutive',Lp_constitutive
|
||
write(6,'(a,/,3(3(e20.7,x)/))') 'Lpguess',Lpguess
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
return
|
||
endif
|
||
endif
|
||
jacoCounter = jacoCounter + 1_pInt ! increase counter for jaco update
|
||
|
||
! remember current residuum and Lpguess
|
||
residuum_old = residuum
|
||
Lpguess_old = Lpguess
|
||
|
||
! accelerate?
|
||
if (NiterationStress > 1 .and. leapfrog < maxleap) leapfrog = 2.0_pReal * leapfrog
|
||
endif
|
||
|
||
! leapfrog to updated Lp
|
||
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
||
Lpguess(k,l) = Lpguess(k,l) - leapfrog*invdRdLp(3*(k-1)+l,3*(m-1)+n)*residuum(m,n)
|
||
enddo LpLoop
|
||
|
||
! calculate new plastic and elastic deformation gradient
|
||
invFp_new = math_mul33x33(invFp_current,B)
|
||
invFp_new = invFp_new/math_det3x3(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det
|
||
call math_invert3x3(invFp_new,Fp_new,det,error)
|
||
if (error) then
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress failed on invFp_new inversion at ',g,i,e,' ; iteration ', NiterationStress
|
||
write(6,*)
|
||
write(6,'(a11,3(i3,x),/,3(3(f12.7,x)/))') 'invFp_new at ',g,i,e,invFp_new
|
||
!$OMPEND CRITICAL (write2out)
|
||
endif
|
||
return
|
||
endif
|
||
Fe_new = math_mul33x33(Fg_new,invFp_new) ! calc resulting Fe
|
||
|
||
! add volumetric component to 2nd Piola-Kirchhoff stress
|
||
forall (n=1:3) Tstar_v(n) = Tstar_v(n) + p_hydro
|
||
|
||
! calculate 1st Piola-Kirchhoff stress
|
||
crystallite_P(:,:,g,i,e) = math_mul33x33(Fe_new,math_mul33x33(math_Mandel6to33(Tstar_v),transpose(invFp_new)))
|
||
|
||
! store local values in global variables
|
||
crystallite_Lp(:,:,g,i,e) = Lpguess
|
||
crystallite_Tstar_v(:,g,i,e) = Tstar_v
|
||
crystallite_Fp(:,:,g,i,e) = Fp_new
|
||
crystallite_Fe(:,:,g,i,e) = Fe_new
|
||
crystallite_invFp(:,:,g,i,e) = invFp_new
|
||
|
||
! set return flag to true
|
||
crystallite_integrateStress = .true.
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress converged at ',g,i,e,' ; iteration ', NiterationStress
|
||
write(6,*)
|
||
write(6,'(a,/,3(3(f12.7,x)/))') 'P / MPa',crystallite_P(:,:,g,i,e)/1e6
|
||
write(6,'(a,/,3(3(f12.7,x)/))') 'Lp',crystallite_Lp(:,:,g,i,e)
|
||
write(6,'(a,/,3(3(f12.7,x)/))') 'Fp',crystallite_Fp(:,:,g,i,e)
|
||
!$OMP END CRITICAL (write2out)
|
||
endif
|
||
|
||
!$OMP CRITICAL (distributionStress)
|
||
debug_StressLoopDistribution(NiterationStress) = debug_StressLoopDistribution(NiterationStress) + 1
|
||
!$OMPEND CRITICAL (distributionStress)
|
||
|
||
return
|
||
|
||
endfunction
|
||
|
||
|
||
|
||
!********************************************************************
|
||
! calculates orientations and disorientations (in case of single grain ips)
|
||
!********************************************************************
|
||
subroutine crystallite_orientations()
|
||
|
||
!*** variables and functions from other modules ***!
|
||
use prec, only: pInt, &
|
||
pReal
|
||
use math, only: math_pDecomposition, &
|
||
math_RtoQuaternion, &
|
||
math_QuaternionDisorientation, &
|
||
inDeg, &
|
||
math_qConj
|
||
use FEsolving, only: FEsolving_execElem, &
|
||
FEsolving_execIP
|
||
use IO, only: IO_warning
|
||
use material, only: material_phase, &
|
||
homogenization_Ngrains, &
|
||
phase_constitution
|
||
use mesh, only: mesh_element, &
|
||
mesh_ipNeighborhood, &
|
||
FE_NipNeighbors
|
||
use debug, only: debugger, &
|
||
debug_e, debug_i, debug_g, &
|
||
verboseDebugger, &
|
||
selectiveDebugger
|
||
use constitutive_nonlocal, only: constitutive_nonlocal_label
|
||
|
||
implicit none
|
||
|
||
!*** input variables ***!
|
||
|
||
!*** output variables ***!
|
||
|
||
!*** local variables ***!
|
||
integer(pInt) e, & ! element index
|
||
i, & ! integration point index
|
||
g, & ! grain index
|
||
n, & ! neighbor index
|
||
myPhase, & ! phase
|
||
neighboring_e, & ! element index of my neighbor
|
||
neighboring_i, & ! integration point index of my neighbor
|
||
neighboringPhase, & ! phase of my neighbor
|
||
neighboringStructure ! lattice structure of my neighbor
|
||
real(pReal), dimension(3,3) :: U, R
|
||
logical error
|
||
|
||
|
||
!$OMP PARALLEL DO
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
do g = 1,homogenization_Ngrains(mesh_element(3,e))
|
||
|
||
! calculate orientation in terms of rotation matrix and euler angles
|
||
call math_pDecomposition(crystallite_Fe(:,:,g,i,e), U, R, error) ! polar decomposition of Fe
|
||
if (error) then
|
||
call IO_warning(650, e, i, g)
|
||
crystallite_orientation(:,g,i,e) = (/1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! fake orientation
|
||
else
|
||
crystallite_orientation(:,g,i,e) = math_RtoQuaternion(transpose(R))
|
||
endif
|
||
|
||
crystallite_rotation(:,g,i,e) = &
|
||
math_QuaternionDisorientation( math_qConj(crystallite_orientation(:,g,i,e)), & ! calculate grainrotation
|
||
math_qConj(crystallite_orientation0(:,g,i,e)), &
|
||
0_pInt ) ! we don't want symmetry here
|
||
|
||
enddo
|
||
enddo
|
||
enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
!$OMP PARALLEL DO
|
||
! Another loop for nonlocal material which uses the orientations from the first one.
|
||
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
||
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
||
selectiveDebugger = (e == debug_e .and. i == debug_i)
|
||
myPhase = material_phase(1,i,e) ! get my crystal structure
|
||
if (phase_constitution(myPhase) == constitutive_nonlocal_label) then ! if nonlocal model
|
||
|
||
do n = 1,FE_NipNeighbors(mesh_element(2,e)) ! loop through my neighbors
|
||
|
||
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
||
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
||
|
||
if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists
|
||
|
||
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's crystal structure
|
||
if (myPhase == neighboringPhase) then ! if my neighbor has same phase like me
|
||
|
||
crystallite_disorientation(:,n,1,i,e) = &
|
||
math_QuaternionDisorientation( crystallite_orientation(:,1,i,e), &
|
||
crystallite_orientation(:,1,neighboring_i,neighboring_e), &
|
||
crystallite_symmetryID(1,i,e)) ! calculate disorientation
|
||
|
||
else ! for neighbor with different phase
|
||
crystallite_disorientation(:,n,1,i,e) = (/0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal/) ! 180 degree rotation about 100 axis
|
||
|
||
endif
|
||
else ! no existing neighbor
|
||
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
|
||
endif
|
||
if (verboseDebugger .and. selectiveDebugger) then
|
||
!$OMP CRITICAL (write2out)
|
||
write(6,'(a27,i2,a3,4(f12.5,x))') 'disorientation to neighbor ',n,' : ',crystallite_disorientation(:,n,1,i,e)
|
||
!$OMP END CRITICAL (write2out)
|
||
endif
|
||
enddo
|
||
endif
|
||
enddo
|
||
enddo
|
||
!$OMPEND PARALLEL DO
|
||
|
||
endsubroutine
|
||
|
||
|
||
|
||
!********************************************************************
|
||
! return results of particular grain
|
||
!********************************************************************
|
||
function crystallite_postResults(&
|
||
dt,& ! time increment
|
||
g,& ! grain number
|
||
i,& ! integration point number
|
||
e & ! element number
|
||
)
|
||
|
||
!*** variables and functions from other modules ***!
|
||
use prec, only: pInt, &
|
||
pReal
|
||
use math, only: math_QuaternionToEuler, &
|
||
math_QuaternionToAxisAngle, &
|
||
math_mul33x33, &
|
||
math_I3, &
|
||
inDeg, &
|
||
math_Mandel6to33
|
||
use mesh, only: mesh_element
|
||
use material, only: microstructure_crystallite, &
|
||
crystallite_Noutput, &
|
||
material_phase, &
|
||
material_volume
|
||
use constitutive, only: constitutive_sizePostResults, &
|
||
constitutive_postResults
|
||
|
||
implicit none
|
||
|
||
!*** input variables ***!
|
||
integer(pInt), intent(in):: e, & ! element index
|
||
i, & ! integration point index
|
||
g ! grain index
|
||
real(pReal), intent(in):: dt ! time increment
|
||
|
||
!*** output variables ***!
|
||
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,e)))+ &
|
||
1+constitutive_sizePostResults(g,i,e)) :: crystallite_postResults
|
||
|
||
!*** local variables ***!
|
||
real(pReal), dimension(3,3) :: Ee
|
||
integer(pInt) k,l,o,c,crystID,mySize
|
||
logical error
|
||
|
||
crystID = microstructure_crystallite(mesh_element(4,e))
|
||
|
||
crystallite_postResults = 0.0_pReal
|
||
c = 0_pInt
|
||
crystallite_postResults(c+1) = crystallite_sizePostResults(crystID); c = c+1_pInt ! size of results from cryst
|
||
|
||
do o = 1,crystallite_Noutput(crystID)
|
||
select case(crystallite_output(o,crystID))
|
||
case ('phase')
|
||
crystallite_postResults(c+1) = material_phase(g,i,e) ! phaseID of grain
|
||
c = c + 1_pInt
|
||
case ('volume')
|
||
crystallite_postResults(c+1) = material_volume(g,i,e) ! grain volume (not fraction but absolute, right?)
|
||
c = c + 1_pInt
|
||
case ('orientation')
|
||
crystallite_postResults(c+1:c+4) = &
|
||
crystallite_orientation(:,g,i,e) ! grain orientation as quaternion
|
||
c = c + 4_pInt
|
||
case ('eulerangles')
|
||
crystallite_postResults(c+1:c+3) = inDeg * &
|
||
math_QuaternionToEuler(crystallite_orientation(:,g,i,e)) ! grain orientation as Euler angles in degree
|
||
c = c + 3_pInt
|
||
case ('grainrotation')
|
||
crystallite_postResults(c+1:c+4) = &
|
||
math_QuaternionToAxisAngle(crystallite_rotation(1:4,g,i,e)) ! grain rotation away from initial orientation as axis-angle
|
||
crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree
|
||
c = c + 4_pInt
|
||
case ('defgrad','f')
|
||
mySize = 9_pInt
|
||
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_partionedF(:,:,g,i,e),(/mySize/))
|
||
c = c + mySize
|
||
case ('fe')
|
||
mySize = 9_pInt
|
||
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_Fe(:,:,g,i,e),(/mySize/))
|
||
c = c + mySize
|
||
case ('ee')
|
||
Ee = 0.5_pReal * (math_mul33x33(transpose(crystallite_Fe(:,:,g,i,e)), crystallite_Fe(:,:,g,i,e)) - math_I3)
|
||
mySize = 9_pInt
|
||
crystallite_postResults(c+1:c+1+mySize) = reshape(Ee(:,:),(/mySize/))
|
||
c = c + mySize
|
||
case ('fp')
|
||
mySize = 9_pInt
|
||
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_Fp(:,:,g,i,e),(/mySize/))
|
||
c = c + mySize
|
||
case ('p','firstpiola','1stpiola')
|
||
mySize = 9_pInt
|
||
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_P(:,:,g,i,e),(/mySize/))
|
||
c = c + mySize
|
||
case ('s','tstar','secondpiola','2ndpiola')
|
||
mySize = 9_pInt
|
||
crystallite_postResults(c+1:c+1+mySize) = reshape(math_Mandel6to33(crystallite_Tstar_v(:,g,i,e)),(/mySize/))
|
||
c = c + mySize
|
||
end select
|
||
enddo
|
||
|
||
crystallite_postResults(c+1) = constitutive_sizePostResults(g,i,e); c = c+1_pInt ! size of constitutive results
|
||
crystallite_postResults(c+1:c+constitutive_sizePostResults(g,i,e)) = &
|
||
constitutive_postResults(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, crystallite_Fp, &
|
||
crystallite_Temperature(g,i,e), crystallite_disorientation(:,:,g,i,e), dt, &
|
||
crystallite_subdt(g,i,e), g, i, e)
|
||
c = c + constitutive_sizePostResults(g,i,e)
|
||
|
||
return
|
||
|
||
endfunction
|
||
|
||
|
||
END MODULE
|
||
!##############################################################
|
||
|