221 lines
9.2 KiB
Python
Executable File
221 lines
9.2 KiB
Python
Executable File
#!/usr/bin/env python
|
|
|
|
import os,re,sys,math,numpy,string,damask
|
|
from scipy import ndimage
|
|
from optparse import OptionParser, Option
|
|
|
|
# -----------------------------
|
|
class extendableOption(Option):
|
|
# -----------------------------
|
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
|
|
|
ACTIONS = Option.ACTIONS + ("extend",)
|
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
|
|
|
def take_action(self, action, dest, opt, value, values, parser):
|
|
if action == "extend":
|
|
lvalue = value.split(",")
|
|
values.ensure_value(dest, []).extend(lvalue)
|
|
else:
|
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
|
|
|
|
def periodic_3Dpad(array, rimdim=(1,1,1)):
|
|
|
|
rimdim = numpy.array(rimdim,'i')
|
|
size = numpy.array(array.shape,'i')
|
|
padded = numpy.empty(size+2*rimdim,array.dtype)
|
|
padded[rimdim[0]:rimdim[0]+size[0],
|
|
rimdim[1]:rimdim[1]+size[1],
|
|
rimdim[2]:rimdim[2]+size[2]] = array
|
|
|
|
p = numpy.zeros(3,'i')
|
|
for side in xrange(3):
|
|
for p[(side+2)%3] in xrange(padded.shape[(side+2)%3]):
|
|
for p[(side+1)%3] in xrange(padded.shape[(side+1)%3]):
|
|
for p[side%3] in xrange(rimdim[side%3]):
|
|
spot = (p-rimdim)%size
|
|
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
|
|
for p[side%3] in xrange(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]):
|
|
spot = (p-rimdim)%size
|
|
padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]]
|
|
return padded
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
features = [ \
|
|
{'aliens': 1, 'names': ['boundary','biplane'],},
|
|
{'aliens': 2, 'names': ['tripleline',],},
|
|
{'aliens': 3, 'names': ['quadruplepoint',],}
|
|
]
|
|
|
|
neighborhoods = {
|
|
'neumann':numpy.array([
|
|
[-1, 0, 0],
|
|
[ 1, 0, 0],
|
|
[ 0,-1, 0],
|
|
[ 0, 1, 0],
|
|
[ 0, 0,-1],
|
|
[ 0, 0, 1],
|
|
]),
|
|
'moore':numpy.array([
|
|
[-1,-1,-1],
|
|
[ 0,-1,-1],
|
|
[ 1,-1,-1],
|
|
[-1, 0,-1],
|
|
[ 0, 0,-1],
|
|
[ 1, 0,-1],
|
|
[-1, 1,-1],
|
|
[ 0, 1,-1],
|
|
[ 1, 1,-1],
|
|
[-1,-1, 0],
|
|
[ 0,-1, 0],
|
|
[ 1,-1, 0],
|
|
[-1, 0, 0],
|
|
#
|
|
[ 1, 0, 0],
|
|
[-1, 1, 0],
|
|
[ 0, 1, 0],
|
|
[ 1, 1, 0],
|
|
[-1,-1, 1],
|
|
[ 0,-1, 1],
|
|
[ 1,-1, 1],
|
|
[-1, 0, 1],
|
|
[ 0, 0, 1],
|
|
[ 1, 0, 1],
|
|
[-1, 1, 1],
|
|
[ 0, 1, 1],
|
|
[ 1, 1, 1],
|
|
])
|
|
}
|
|
|
|
parser = OptionParser(option_class=extendableOption, usage='%prog options [file[s]]', description = """
|
|
Add column(s) containing Euclidean distance to grain structural features:
|
|
boundaries, triple lines, and quadruple points.
|
|
|
|
""" + string.replace('$Id$','\n','\\n')
|
|
)
|
|
|
|
parser.add_option('-i','--identifier', dest='id', action='store', type='string', \
|
|
help='heading of column containing grain identifier [%default]', \
|
|
metavar='<label>')
|
|
parser.add_option('-t','--type', dest='type', action='extend', type='string', \
|
|
help='feature type (%s)'%(', '.join(map(lambda x:', '.join(x['names']),features))))
|
|
parser.add_option('-n','--neighborhood', dest='neigborhood', action='store', type='string', \
|
|
help='type of neighborhood (%s)'%(', '.join(neighborhoods.keys())), \
|
|
metavar='<int>')
|
|
|
|
parser.set_defaults(type = [])
|
|
parser.set_defaults(id = 'texture')
|
|
parser.set_defaults(neighborhood = 'neumann')
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
options.neighborhood = options.neighborhood.lower()
|
|
if options.neighborhood not in neighborhoods:
|
|
parser.error('unknown neighborhood %s!'%options.neighborhood)
|
|
|
|
feature_list = []
|
|
for i,feature in enumerate(features):
|
|
for name in feature['names']:
|
|
for type in options.type:
|
|
if name.startswith(type):
|
|
feature_list.append(i) # remember valid features
|
|
break
|
|
|
|
# ------------------------------------------ setup file handles ---------------------------------------
|
|
|
|
files = []
|
|
if filenames == []:
|
|
files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr})
|
|
else:
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
|
|
|
# ------------------------------------------ loop over input files ---------------------------------------
|
|
|
|
for file in files:
|
|
if file['name'] != 'STDIN': file['croak'].write(file['name']+'\n')
|
|
|
|
table = damask.ASCIItable(file['input'],file['output'],False) # make unbuffered ASCII_table
|
|
table.head_read() # read ASCII header info
|
|
table.info_append(string.replace('$Id$','\n','\\n') + \
|
|
'\t' + ' '.join(sys.argv[1:]))
|
|
|
|
# ------------------------------------------ assemble header ---------------------------------------
|
|
|
|
if options.id not in table.labels:
|
|
file['croak'].write('column %s not found...\n'%options.id)
|
|
continue
|
|
|
|
for feature in feature_list:
|
|
table.labels_append('ED_%s(%s)'%(features[feature]['names'][0],options.id)) # extend ASCII header with new labels
|
|
|
|
table.head_write()
|
|
|
|
# ------------------------------------------ process data ---------------------------------------
|
|
|
|
table.data_readArray(['ip.x','ip.y','ip.z',options.id])
|
|
|
|
grid = [{},{},{}]
|
|
for i in xrange(len(table.data)):
|
|
for j in xrange(3):
|
|
grid[j][str(table.data[i,j])] = True
|
|
|
|
resolution = numpy.array(map(len,grid),'i')
|
|
unitlength = 0.0
|
|
for i,r in enumerate(resolution):
|
|
if r > 1: unitlength = max(unitlength,(max(map(float,grid[i].keys()))-min(map(float,grid[i].keys())))/(r-1.0))
|
|
|
|
neighborhood = neighborhoods[options.neighborhood]
|
|
convoluted = numpy.empty([len(neighborhood)]+list(resolution+2),'i')
|
|
microstructure = periodic_3Dpad(numpy.array(table.data[:,3].reshape(resolution),'i'))
|
|
|
|
for i,p in enumerate(neighborhood):
|
|
stencil = numpy.zeros((3,3,3),'i')
|
|
stencil[1,1,1] = -1
|
|
stencil[p[0]+1,
|
|
p[1]+1,
|
|
p[2]+1] = 1
|
|
|
|
convoluted[i,:,:,:] = ndimage.convolve(microstructure,stencil)
|
|
|
|
distance = numpy.ones((len(feature_list),resolution[0],resolution[1],resolution[2]),'d')
|
|
|
|
convoluted = numpy.sort(convoluted,axis=0)
|
|
uniques = numpy.zeros(resolution)
|
|
check = numpy.empty(resolution)
|
|
check[:,:,:] = numpy.nan
|
|
for i in xrange(len(neighborhood)):
|
|
uniques += numpy.where(convoluted[i,1:-1,1:-1,1:-1] == check,0,1)
|
|
check = convoluted[i,1:-1,1:-1,1:-1]
|
|
for i,feature_id in enumerate(feature_list):
|
|
distance[i,:,:,:] = numpy.where(uniques > features[feature_id]['aliens'],0.0,1.0)
|
|
|
|
for i in xrange(len(feature_list)):
|
|
distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[unitlength]*3
|
|
distance.shape = (len(feature_list),resolution.prod())
|
|
|
|
table.data_rewind()
|
|
l = 0
|
|
while table.data_read():
|
|
for i in xrange(len(feature_list)):
|
|
table.data_append(distance[i,l]) # add all distance fields
|
|
table.data_write() # output processed line
|
|
l += 1
|
|
|
|
# ------------------------------------------ output result ---------------------------------------
|
|
|
|
table.output_flush() # just in case of buffered ASCII table
|
|
|
|
if file['name'] != 'STDIN':
|
|
file['input'].close() # close input ASCII table
|
|
file['output'].close() # close output ASCII table
|
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|
|
|