DAMASK_EICMD/src/phase_damage.f90

489 lines
16 KiB
Fortran

!----------------------------------------------------------------------------------------------------
!> @brief internal microstructure state for all damage sources and kinematics constitutive models
!----------------------------------------------------------------------------------------------------
submodule(phase) damage
type :: tDamageParameters
real(pReal) :: mu = 0.0_pReal !< viscosity
real(pReal), dimension(3,3) :: K = 0.0_pReal !< conductivity/diffusivity
end type tDamageParameters
enum, bind(c); enumerator :: &
DAMAGE_UNDEFINED_ID, &
DAMAGE_ISOBRITTLE_ID, &
DAMAGE_ISODUCTILE_ID, &
DAMAGE_ANISOBRITTLE_ID, &
DAMAGE_ANISODUCTILE_ID
end enum
type :: tDataContainer
real(pReal), dimension(:), allocatable :: phi, d_phi_d_dot_phi
end type tDataContainer
integer(kind(DAMAGE_UNDEFINED_ID)), dimension(:), allocatable :: &
phase_source !< active sources mechanisms of each phase
type(tDataContainer), dimension(:), allocatable :: current
type(tDamageParameters), dimension(:), allocatable :: param
interface
module function anisobrittle_init() result(mySources)
logical, dimension(:), allocatable :: mySources
end function anisobrittle_init
module function anisoductile_init() result(mySources)
logical, dimension(:), allocatable :: mySources
end function anisoductile_init
module function isobrittle_init() result(mySources)
logical, dimension(:), allocatable :: mySources
end function isobrittle_init
module function isoductile_init() result(mySources)
logical, dimension(:), allocatable :: mySources
end function isoductile_init
module subroutine isobrittle_deltaState(C, Fe, ph, me)
integer, intent(in) :: ph,me
real(pReal), intent(in), dimension(3,3) :: &
Fe
real(pReal), intent(in), dimension(6,6) :: &
C
end subroutine isobrittle_deltaState
module subroutine anisobrittle_dotState(S, ph, me)
integer, intent(in) :: ph,me
real(pReal), intent(in), dimension(3,3) :: &
S
end subroutine anisobrittle_dotState
module subroutine anisoductile_dotState(ph,me)
integer, intent(in) :: ph,me
end subroutine anisoductile_dotState
module subroutine isoductile_dotState(ph,me)
integer, intent(in) :: ph,me
end subroutine isoductile_dotState
module subroutine anisobrittle_results(phase,group)
integer, intent(in) :: phase
character(len=*), intent(in) :: group
end subroutine anisobrittle_results
module subroutine anisoductile_results(phase,group)
integer, intent(in) :: phase
character(len=*), intent(in) :: group
end subroutine anisoductile_results
module subroutine isobrittle_results(phase,group)
integer, intent(in) :: phase
character(len=*), intent(in) :: group
end subroutine isobrittle_results
module subroutine isoductile_results(phase,group)
integer, intent(in) :: phase
character(len=*), intent(in) :: group
end subroutine isoductile_results
end interface
contains
!----------------------------------------------------------------------------------------------
!< @brief initialize damage sources and kinematics mechanism
!----------------------------------------------------------------------------------------------
module subroutine damage_init
integer :: &
ph, & !< counter in phase loop
Nmembers
class(tNode), pointer :: &
phases, &
phase, &
sources, &
source
logical:: damage_active
print'(/,a)', ' <<<+- phase:damage init -+>>>'
phases => config_material%get('phase')
allocate(current(phases%length))
allocate(damageState (phases%length))
allocate(param(phases%length))
damage_active = .false.
do ph = 1,phases%length
Nmembers = count(material_phaseID == ph)
allocate(current(ph)%phi(Nmembers),source=1.0_pReal)
allocate(current(ph)%d_phi_d_dot_phi(Nmembers),source=0.0_pReal)
phase => phases%get(ph)
sources => phase%get('damage',defaultVal=emptyList)
if (sources%length > 1) error stop
if (sources%length == 1) then
damage_active = .true.
source => sources%get(1)
param(ph)%mu = source%get_asFloat('M',defaultVal=0.0_pReal)
param(ph)%K(1,1) = source%get_asFloat('D_11',defaultVal=0.0_pReal)
param(ph)%K(2,2) = source%get_asFloat('D_22',defaultVal=0.0_pReal)
param(ph)%K(3,3) = source%get_asFloat('D_33',defaultVal=0.0_pReal)
param(ph)%K = lattice_applyLatticeSymmetry33(param(ph)%K,phase%get_asString('lattice'))
endif
enddo
allocate(phase_source(phases%length), source = DAMAGE_UNDEFINED_ID)
if (damage_active) then
where(isobrittle_init() ) phase_source = DAMAGE_ISOBRITTLE_ID
where(isoductile_init() ) phase_source = DAMAGE_ISODUCTILE_ID
where(anisobrittle_init()) phase_source = DAMAGE_ANISOBRITTLE_ID
where(anisoductile_init()) phase_source = DAMAGE_ANISODUCTILE_ID
endif
end subroutine damage_init
!----------------------------------------------------------------------------------------------
!< @brief returns local part of nonlocal damage driving force
!----------------------------------------------------------------------------------------------
module function phase_f_phi(phi,co,ce) result(f)
integer, intent(in) :: ce,co
real(pReal), intent(in) :: &
phi !< damage parameter
real(pReal) :: &
f
integer :: &
ph, &
en
ph = material_phaseID(co,ce)
en = material_phaseEntry(co,ce)
select case(phase_source(ph))
case(DAMAGE_ISOBRITTLE_ID,DAMAGE_ISODUCTILE_ID,DAMAGE_ANISOBRITTLE_ID,DAMAGE_ANISODUCTILE_ID)
f = 1.0_pReal &
- phi*damageState(ph)%state(1,en)
case default
f = 0.0_pReal
end select
end function phase_f_phi
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
module function integrateDamageState(dt,co,ip,el) result(broken)
real(pReal), intent(in) :: dt
integer, intent(in) :: &
el, & !< element index in element loop
ip, & !< integration point index in ip loop
co !< grain index in grain loop
logical :: broken
integer :: &
NiterationState, & !< number of iterations in state loop
ph, &
me, &
size_so
real(pReal) :: &
zeta
real(pReal), dimension(phase_source_maxSizeDotState) :: &
r ! state residuum
real(pReal), dimension(phase_source_maxSizeDotState,2) :: source_dotState
logical :: &
converged_
ph = material_phaseAt(co,el)
me = material_phaseMemberAt(co,ip,el)
if (damageState(ph)%sizeState == 0) then
broken = .false.
return
endif
converged_ = .true.
broken = phase_damage_collectDotState(ph,me)
if(broken) return
size_so = damageState(ph)%sizeDotState
damageState(ph)%state(1:size_so,me) = damageState(ph)%subState0(1:size_so,me) &
+ damageState(ph)%dotState (1:size_so,me) * dt
source_dotState(1:size_so,2) = 0.0_pReal
iteration: do NiterationState = 1, num%nState
if(nIterationState > 1) source_dotState(1:size_so,2) = source_dotState(1:size_so,1)
source_dotState(1:size_so,1) = damageState(ph)%dotState(:,me)
broken = phase_damage_collectDotState(ph,me)
if(broken) exit iteration
zeta = damper(damageState(ph)%dotState(:,me),source_dotState(1:size_so,1),source_dotState(1:size_so,2))
damageState(ph)%dotState(:,me) = damageState(ph)%dotState(:,me) * zeta &
+ source_dotState(1:size_so,1)* (1.0_pReal - zeta)
r(1:size_so) = damageState(ph)%state (1:size_so,me) &
- damageState(ph)%subState0(1:size_so,me) &
- damageState(ph)%dotState (1:size_so,me) * dt
damageState(ph)%state(1:size_so,me) = damageState(ph)%state(1:size_so,me) - r(1:size_so)
converged_ = converged_ .and. converged(r(1:size_so), &
damageState(ph)%state(1:size_so,me), &
damageState(ph)%atol(1:size_so))
if(converged_) then
broken = phase_damage_deltaState(mechanical_F_e(ph,me),ph,me)
exit iteration
endif
enddo iteration
broken = broken .or. .not. converged_
contains
!--------------------------------------------------------------------------------------------------
!> @brief calculate the damping for correction of state and dot state
!--------------------------------------------------------------------------------------------------
real(pReal) pure function damper(current,previous,previous2)
real(pReal), dimension(:), intent(in) ::&
current, previous, previous2
real(pReal) :: dot_prod12, dot_prod22
dot_prod12 = dot_product(current - previous, previous - previous2)
dot_prod22 = dot_product(previous - previous2, previous - previous2)
if ((dot_product(current,previous) < 0.0_pReal .or. dot_prod12 < 0.0_pReal) .and. dot_prod22 > 0.0_pReal) then
damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else
damper = 1.0_pReal
endif
end function damper
end function integrateDamageState
!----------------------------------------------------------------------------------------------
!< @brief writes damage sources results to HDF5 output file
!----------------------------------------------------------------------------------------------
module subroutine damage_results(group,ph)
character(len=*), intent(in) :: group
integer, intent(in) :: ph
if (phase_source(ph) /= DAMAGE_UNDEFINED_ID) &
call results_closeGroup(results_addGroup(group//'damage'))
sourceType: select case (phase_source(ph))
case (DAMAGE_ISOBRITTLE_ID) sourceType
call isobrittle_results(ph,group//'damage/')
case (DAMAGE_ISODUCTILE_ID) sourceType
call isoductile_results(ph,group//'damage/')
case (DAMAGE_ANISOBRITTLE_ID) sourceType
call anisobrittle_results(ph,group//'damage/')
case (DAMAGE_ANISODUCTILE_ID) sourceType
call anisoductile_results(ph,group//'damage/')
end select sourceType
end subroutine damage_results
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
function phase_damage_collectDotState(ph,me) result(broken)
integer, intent(in) :: &
ph, &
me !< counter in source loop
logical :: broken
broken = .false.
if (damageState(ph)%sizeState > 0) then
sourceType: select case (phase_source(ph))
case (DAMAGE_ISODUCTILE_ID) sourceType
call isoductile_dotState(ph,me)
case (DAMAGE_ANISODUCTILE_ID) sourceType
call anisoductile_dotState(ph,me)
case (DAMAGE_ANISOBRITTLE_ID) sourceType
call anisobrittle_dotState(mechanical_S(ph,me), ph,me) ! correct stress?
end select sourceType
broken = broken .or. any(IEEE_is_NaN(damageState(ph)%dotState(:,me)))
endif
end function phase_damage_collectDotState
!--------------------------------------------------------------------------------------------------
!> @brief Damage viscosity.
!--------------------------------------------------------------------------------------------------
module function phase_mu_phi(co,ce) result(mu)
integer, intent(in) :: co, ce
real(pReal) :: mu
mu = param(material_phaseID(co,ce))%mu
end function phase_mu_phi
!--------------------------------------------------------------------------------------------------
!> @brief Damage conductivity/diffusivity in reference configuration.
!--------------------------------------------------------------------------------------------------
module function phase_K_phi(co,ce) result(K)
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: K
K = crystallite_push33ToRef(co,ce,param(material_phaseID(co,ce))%K)
end function phase_K_phi
!--------------------------------------------------------------------------------------------------
!> @brief for constitutive models having an instantaneous change of state
!> will return false if delta state is not needed/supported by the constitutive model
!--------------------------------------------------------------------------------------------------
function phase_damage_deltaState(Fe, ph, me) result(broken)
integer, intent(in) :: &
ph, &
me
real(pReal), intent(in), dimension(3,3) :: &
Fe !< elastic deformation gradient
integer :: &
myOffset, &
mySize
logical :: &
broken
broken = .false.
if (damageState(ph)%sizeState == 0) return
sourceType: select case (phase_source(ph))
case (DAMAGE_ISOBRITTLE_ID) sourceType
call isobrittle_deltaState(phase_homogenizedC(ph,me), Fe, ph,me)
broken = any(IEEE_is_NaN(damageState(ph)%deltaState(:,me)))
if(.not. broken) then
myOffset = damageState(ph)%offsetDeltaState
mySize = damageState(ph)%sizeDeltaState
damageState(ph)%state(myOffset + 1: myOffset + mySize,me) = &
damageState(ph)%state(myOffset + 1: myOffset + mySize,me) + damageState(ph)%deltaState(1:mySize,me)
endif
end select sourceType
end function phase_damage_deltaState
!--------------------------------------------------------------------------------------------------
!> @brief checks if a source mechanism is active or not
!--------------------------------------------------------------------------------------------------
function source_active(source_label) result(active_source)
character(len=*), intent(in) :: source_label !< name of source mechanism
logical, dimension(:), allocatable :: active_source
class(tNode), pointer :: &
phases, &
phase, &
sources, &
src
integer :: ph
phases => config_material%get('phase')
allocate(active_source(phases%length))
do ph = 1, phases%length
phase => phases%get(ph)
sources => phase%get('damage',defaultVal=emptyList)
src => sources%get(1)
active_source(ph) = src%get_asString('type',defaultVal = 'x') == source_label
enddo
end function source_active
!----------------------------------------------------------------------------------------------
!< @brief Set damage parameter
!----------------------------------------------------------------------------------------------
module subroutine phase_set_phi(phi,co,ce)
real(pReal), intent(in) :: phi
integer, intent(in) :: ce, co
current(material_phaseID(co,ce))%phi(material_phaseEntry(co,ce)) = phi
end subroutine phase_set_phi
module function damage_phi(ph,me) result(phi)
integer, intent(in) :: ph, me
real(pReal) :: phi
phi = current(ph)%phi(me)
end function damage_phi
!--------------------------------------------------------------------------------------------------
!> @brief Forward data after successful increment.
!--------------------------------------------------------------------------------------------------
module subroutine damage_forward()
integer :: ph
do ph = 1, size(damageState)
if (damageState(ph)%sizeState > 0) &
damageState(ph)%state0 = damageState(ph)%state
enddo
end subroutine damage_forward
end submodule damage