DAMASK_EICMD/src/mesh_abaqus.f90

2815 lines
125 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver
!--------------------------------------------------------------------------------------------------
module mesh
use prec, only: pReal, pInt
use mesh_base
implicit none
private
integer(pInt), public, protected :: &
mesh_NcpElems, & !< total number of CP elements in local mesh
mesh_elemType, & !< Element type of the mesh (only support homogeneous meshes)
mesh_Nnodes, & !< total number of nodes in mesh
mesh_Ncellnodes, & !< total number of cell nodes in mesh (including duplicates)
mesh_Ncells, & !< total number of cells in mesh
mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element
mesh_maxNsharedElems !< max number of CP elements sharing a node
!!!! BEGIN DEPRECATED !!!!!
integer(pInt), public, protected :: &
mesh_maxNips, & !< max number of IPs in any CP element
mesh_maxNcellnodes !< max number of cell nodes in any CP element
!!!! BEGIN DEPRECATED !!!!!
integer(pInt), dimension(:,:), allocatable, public, protected :: &
mesh_element, & !DEPRECATED
mesh_sharedElem, & !< entryCount and list of elements containing node
mesh_nodeTwins !< node twins are surface nodes that lie exactly on opposite sides of the mesh (surfaces nodes with equal coordinate values in two dimensions)
integer(pInt), dimension(:,:,:,:), allocatable, public, protected :: &
mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me]
real(pReal), public, protected :: &
mesh_unitlength !< physical length of one unit in mesh
real(pReal), dimension(:,:), allocatable, public :: &
mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
mesh_cellnode !< cell node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
real(pReal), dimension(:,:), allocatable, public, protected :: &
mesh_ipVolume, & !< volume associated with IP (initially!)
mesh_node0 !< node x,y,z coordinates (initially!)
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
mesh_ipArea !< area of interface to neighboring IP (initially!)
real(pReal), dimension(:,:,:), allocatable, public :: &
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
real(pReal),dimension(:,:,:,:), allocatable, public, protected :: &
mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!)
logical, dimension(3), public, protected :: mesh_periodicSurface !< flag indicating periodic outer surfaces (used for fluxes)
integer(pInt), private :: &
mesh_maxNelemInSet, &
mesh_Nmaterials
integer(pInt), dimension(2), private :: &
mesh_maxValStateVar = 0_pInt
integer(pInt), dimension(:,:), allocatable, private :: &
mesh_cellnodeParent !< cellnode's parent element ID, cellnode's intra-element ID
integer(pInt),dimension(:,:,:), allocatable, private :: &
mesh_cell !< cell connectivity for each element,ip/cell
integer(pInt), dimension(:,:,:), allocatable, private :: &
FE_nodesAtIP, & !< map IP index to node indices in a specific type of element
FE_ipNeighbor, & !< +x,-x,+y,-y,+z,-z list of intra-element IPs and(negative) neighbor faces per own IP in a specific type of element
FE_cell, & !< list of intra-element cell node IDs that constitute the cells in a specific type of element geometry
FE_cellface !< list of intra-cell cell node IDs that constitute the cell faces of a specific type of cell
real(pReal), dimension(:,:,:), allocatable, private :: &
FE_cellnodeParentnodeWeights !< list of node weights for the generation of cell nodes
integer(pInt), dimension(:,:,:,:), allocatable, private :: &
FE_subNodeOnIPFace
! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS)
! Hence, I suggest to prefix with "FE_"
integer(pInt), parameter, public :: &
FE_Nelemtypes = 13_pInt, &
FE_Ngeomtypes = 10_pInt, &
FE_Ncelltypes = 4_pInt, &
FE_maxNnodes = 20_pInt, &
FE_maxNips = 27_pInt, &
FE_maxNipNeighbors = 6_pInt, &
FE_maxmaxNnodesAtIP = 8_pInt, & !< max number of (equivalent) nodes attached to an IP
FE_maxNmatchingNodesPerFace = 4_pInt, &
FE_maxNfaces = 6_pInt, &
FE_maxNcellnodes = 64_pInt, &
FE_maxNcellnodesPerCell = 8_pInt, &
FE_maxNcellfaces = 6_pInt, &
FE_maxNcellnodesPerCellface = 4_pInt
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_geomtype = & !< geometry type of particular element type
int([ &
1, & ! element 6 (2D 3node 1ip)
2, & ! element 125 (2D 6node 3ip)
3, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
3, & ! element 54 (2D 8node 4ip)
5, & ! element 134 (3D 4node 1ip)
6, & ! element 157 (3D 5node 4ip)
6, & ! element 127 (3D 10node 4ip)
7, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
9, & ! element 7 (3D 8node 8ip)
9, & ! element 57 (3D 20node 8ip)
10 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_celltype = & !< cell type that is used by each geometry type
int([ &
1, & ! element 6 (2D 3node 1ip)
2, & ! element 125 (2D 6node 3ip)
2, & ! element 11 (2D 4node 4ip)
2, & ! element 27 (2D 8node 9ip)
3, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
4, & ! element 136 (3D 6node 6ip)
4, & ! element 117 (3D 8node 1ip)
4, & ! element 7 (3D 8node 8ip)
4 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_dimension = & !< dimension of geometry type
int([ &
2, & ! element 6 (2D 3node 1ip)
2, & ! element 125 (2D 6node 3ip)
2, & ! element 11 (2D 4node 4ip)
2, & ! element 27 (2D 8node 9ip)
3, & ! element 134 (3D 4node 1ip)
3, & ! element 127 (3D 10node 4ip)
3, & ! element 136 (3D 6node 6ip)
3, & ! element 117 (3D 8node 1ip)
3, & ! element 7 (3D 8node 8ip)
3 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_Nnodes = & !< number of nodes that constitute a specific type of element
int([ &
3, & ! element 6 (2D 3node 1ip)
6, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
8, & ! element 27 (2D 8node 9ip)
8, & ! element 54 (2D 8node 4ip)
4, & ! element 134 (3D 4node 1ip)
5, & ! element 157 (3D 5node 4ip)
10, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
20, & ! element 57 (3D 20node 8ip)
20 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nfaces = & !< number of faces of a specific type of element geometry
int([ &
3, & ! element 6 (2D 3node 1ip)
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
5, & ! element 136 (3D 6node 6ip)
6, & ! element 117 (3D 8node 1ip)
6, & ! element 7 (3D 8node 8ip)
6 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_NmatchingNodes = & !< number of nodes that are needed for face matching in a specific type of element geometry
int([ &
3, & ! element 6 (2D 3node 1ip)
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
4, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
8 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_maxNfaces,FE_Ngeomtypes), parameter, private :: &
FE_NmatchingNodesPerFace = & !< number of matching nodes per face in a specific type of element geometry
reshape(int([ &
2,2,2,0,0,0, & ! element 6 (2D 3node 1ip)
2,2,2,0,0,0, & ! element 125 (2D 6node 3ip)
2,2,2,2,0,0, & ! element 11 (2D 4node 4ip)
2,2,2,2,0,0, & ! element 27 (2D 8node 9ip)
3,3,3,3,0,0, & ! element 134 (3D 4node 1ip)
3,3,3,3,0,0, & ! element 127 (3D 10node 4ip)
3,4,4,4,3,0, & ! element 136 (3D 6node 6ip)
4,4,4,4,4,4, & ! element 117 (3D 8node 1ip)
4,4,4,4,4,4, & ! element 7 (3D 8node 8ip)
4,4,4,4,4,4 & ! element 21 (3D 20node 27ip)
],pInt),[FE_maxNipNeighbors,FE_Ngeomtypes])
integer(pInt), dimension(FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes), &
parameter, private :: FE_face = & !< List of node indices on each face of a specific type of element geometry
reshape(int([&
1,2,0,0 , & ! element 6 (2D 3node 1ip)
2,3,0,0 , &
3,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,0,0 , & ! element 125 (2D 6node 3ip)
2,3,0,0 , &
3,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,0,0 , & ! element 11 (2D 4node 4ip)
2,3,0,0 , &
3,4,0,0 , &
4,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,0,0 , & ! element 27 (2D 8node 9ip)
2,3,0,0 , &
3,4,0,0 , &
4,1,0,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,3,0 , & ! element 134 (3D 4node 1ip)
1,4,2,0 , &
2,3,4,0 , &
1,3,4,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,3,0 , & ! element 127 (3D 10node 4ip)
1,4,2,0 , &
2,4,3,0 , &
1,3,4,0 , &
0,0,0,0 , &
0,0,0,0 , &
1,2,3,0 , & ! element 136 (3D 6node 6ip)
1,4,5,2 , &
2,5,6,3 , &
1,3,6,4 , &
4,6,5,0 , &
0,0,0,0 , &
1,2,3,4 , & ! element 117 (3D 8node 1ip)
2,1,5,6 , &
3,2,6,7 , &
4,3,7,8 , &
4,1,5,8 , &
8,7,6,5 , &
1,2,3,4 , & ! element 7 (3D 8node 8ip)
2,1,5,6 , &
3,2,6,7 , &
4,3,7,8 , &
4,1,5,8 , &
8,7,6,5 , &
1,2,3,4 , & ! element 21 (3D 20node 27ip)
2,1,5,6 , &
3,2,6,7 , &
4,3,7,8 , &
4,1,5,8 , &
8,7,6,5 &
],pInt),[FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes])
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_Ncellnodes = & !< number of cell nodes in a specific geometry type
int([ &
3, & ! element 6 (2D 3node 1ip)
7, & ! element 125 (2D 6node 3ip)
9, & ! element 11 (2D 4node 4ip)
16, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
15, & ! element 127 (3D 10node 4ip)
21, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
27, & ! element 7 (3D 8node 8ip)
64 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCell = & !< number of cell nodes in a specific cell type
int([ &
3, & ! (2D 3node)
4, & ! (2D 4node)
4, & ! (3D 4node)
8 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCellface = & !< number of cell nodes per cell face in a specific cell type
int([&
2, & ! (2D 3node)
2, & ! (2D 4node)
3, & ! (3D 4node)
4 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nips = & !< number of IPs in a specific type of element
int([ &
1, & ! element 6 (2D 3node 1ip)
3, & ! element 125 (2D 6node 3ip)
4, & ! element 11 (2D 4node 4ip)
9, & ! element 27 (2D 8node 9ip)
1, & ! element 134 (3D 4node 1ip)
4, & ! element 127 (3D 10node 4ip)
6, & ! element 136 (3D 6node 6ip)
1, & ! element 117 (3D 8node 1ip)
8, & ! element 7 (3D 8node 8ip)
27 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), dimension(FE_Ncelltypes), parameter, public :: FE_NipNeighbors = & !< number of ip neighbors / cell faces in a specific cell type
int([&
3, & ! (2D 3node)
4, & ! (2D 4node)
4, & ! (3D 4node)
6 & ! (3D 8node)
],pInt)
integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_maxNnodesAtIP = & !< maximum number of parent nodes that belong to an IP for a specific type of element
int([ &
3, & ! element 6 (2D 3node 1ip)
1, & ! element 125 (2D 6node 3ip)
1, & ! element 11 (2D 4node 4ip)
2, & ! element 27 (2D 8node 9ip)
4, & ! element 134 (3D 4node 1ip)
1, & ! element 127 (3D 10node 4ip)
1, & ! element 136 (3D 6node 6ip)
8, & ! element 117 (3D 8node 1ip)
1, & ! element 7 (3D 8node 8ip)
4 & ! element 21 (3D 20node 27ip)
],pInt)
integer(pInt), private :: &
mesh_Nelems, & !< total number of elements in mesh (including non-DAMASK elements)
mesh_maxNnodes, & !< max number of nodes in any CP element
mesh_NelemSets
character(len=64), dimension(:), allocatable, private :: &
mesh_nameElemSet, & !< names of elementSet
mesh_nameMaterial, & !< names of material in solid section
mesh_mapMaterial !< name of elementSet for material
integer(pInt), dimension(:,:), allocatable, private :: &
mesh_mapElemSet !< list of elements in elementSet
integer(pInt), dimension(:,:), allocatable, target, private :: &
mesh_mapFEtoCPelem, & !< [sorted FEid, corresponding CPid]
mesh_mapFEtoCPnode !< [sorted FEid, corresponding CPid]
logical, private :: noPart !< for cases where the ABAQUS input file does not use part/assembly information
public :: &
mesh_init, &
mesh_build_cellnodes, &
mesh_build_ipVolumes, &
mesh_build_ipCoordinates, &
mesh_cellCenterCoordinates, &
mesh_FEasCP
private :: &
mesh_get_damaskOptions, &
mesh_build_cellconnectivity, &
mesh_build_ipAreas, &
FE_mapElemtype, &
mesh_build_FEdata, &
mesh_build_nodeTwins, &
mesh_build_sharedElems, &
mesh_build_ipNeighborhood, &
mesh_abaqus_count_nodesAndElements, &
mesh_abaqus_count_elementSets, &
mesh_abaqus_count_materials, &
mesh_abaqus_map_elementSets, &
mesh_abaqus_map_materials, &
mesh_abaqus_count_cpElements, &
mesh_abaqus_map_elements, &
mesh_abaqus_map_nodes, &
mesh_abaqus_build_nodes, &
mesh_abaqus_count_cpSizes, &
mesh_abaqus_build_elements
type, public, extends(tMesh) :: tMesh_abaqus
integer(pInt):: &
mesh_Nelems, & !< total number of elements in mesh (including non-DAMASK elements)
mesh_maxNnodes, & !< max number of nodes in any CP element
mesh_NelemSets, &
mesh_maxNelemInSet, &
mesh_Nmaterials
character(len=64), dimension(:), allocatable :: &
mesh_nameElemSet, & !< names of elementSet
mesh_nameMaterial, & !< names of material in solid section
mesh_mapMaterial !< name of elementSet for material
integer(pInt), dimension(:,:), allocatable :: &
mesh_mapElemSet !< list of elements in elementSet
logical:: noPart !< for cases where the ABAQUS input file does not use part/assembly information
contains
procedure, pass(self) :: tMesh_abaqus_init
generic, public :: init => tMesh_abaqus_init
end type tMesh_abaqus
type(tMesh_abaqus), public, protected :: theMesh
contains
subroutine tMesh_abaqus_init(self,elemType,nodes)
implicit none
class(tMesh_abaqus) :: self
real(pReal), dimension(:,:), intent(in) :: nodes
integer(pInt), intent(in) :: elemType
call self%tMesh%init('mesh',elemType,nodes)
end subroutine tMesh_abaqus_init
!--------------------------------------------------------------------------------------------------
!> @brief initializes the mesh by calling all necessary private routines the mesh module
!! Order and routines strongly depend on type of solver
!--------------------------------------------------------------------------------------------------
subroutine mesh_init(ip,el)
use DAMASK_interface
use IO, only: &
IO_open_InputFile, &
IO_error
use debug, only: &
debug_e, &
debug_i, &
debug_level, &
debug_mesh, &
debug_levelBasic
use numerics, only: &
usePingPong, &
numerics_unitlength, &
worldrank
use FEsolving, only: &
modelName, &
calcMode, & FEsolving_execElem, &
FEsolving_execIP
implicit none
integer(pInt), parameter :: FILEUNIT = 222_pInt
integer(pInt), intent(in), optional :: el, ip
integer(pInt) :: j
logical :: myDebug
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh
myDebug = (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt)
call IO_open_inputFile(FILEUNIT,modelName) ! parse info from input file...
if (myDebug) write(6,'(a)') ' Opened input file'; flush(6)
noPart = hasNoPart(FILEUNIT)
call mesh_abaqus_count_nodesAndElements(FILEUNIT)
if (myDebug) write(6,'(a)') ' Counted nodes/elements'; flush(6)
call mesh_abaqus_count_elementSets(FILEUNIT)
if (myDebug) write(6,'(a)') ' Counted element sets'; flush(6)
call mesh_abaqus_count_materials(FILEUNIT)
if (myDebug) write(6,'(a)') ' Counted materials'; flush(6)
call mesh_abaqus_map_elementSets(FILEUNIT)
if (myDebug) write(6,'(a)') ' Mapped element sets'; flush(6)
call mesh_abaqus_map_materials(FILEUNIT)
if (myDebug) write(6,'(a)') ' Mapped materials'; flush(6)
call mesh_abaqus_count_cpElements(FILEUNIT)
if (myDebug) write(6,'(a)') ' Counted CP elements'; flush(6)
call mesh_abaqus_map_elements(FILEUNIT)
if (myDebug) write(6,'(a)') ' Mapped elements'; flush(6)
call mesh_abaqus_map_nodes(FILEUNIT)
if (myDebug) write(6,'(a)') ' Mapped nodes'; flush(6)
call mesh_abaqus_build_nodes(FILEUNIT)
if (myDebug) write(6,'(a)') ' Built nodes'; flush(6)
call mesh_abaqus_count_cpSizes(FILEUNIT)
if (myDebug) write(6,'(a)') ' Counted CP sizes'; flush(6)
call mesh_abaqus_build_elements(FILEUNIT)
if (myDebug) write(6,'(a)') ' Built elements'; flush(6)
call mesh_get_damaskOptions(mesh_periodicSurface,FILEUNIT)
if (myDebug) write(6,'(a)') ' Got DAMASK options'; flush(6)
close (FILEUNIT)
call theMesh%init(mesh_element(2,1),mesh_node0)
call theMesh%setNelems(mesh_NcpElems)
call mesh_build_FEdata ! get properties of the different types of elements
call mesh_build_cellconnectivity
if (myDebug) write(6,'(a)') ' Built cell connectivity'; flush(6)
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6)
call mesh_build_ipCoordinates
if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6)
call mesh_build_ipVolumes
if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6)
call mesh_build_ipAreas
if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6)
call mesh_build_nodeTwins
if (myDebug) write(6,'(a)') ' Built node twins'; flush(6)
call mesh_build_sharedElems
if (myDebug) write(6,'(a)') ' Built shared elements'; flush(6)
call mesh_build_ipNeighborhood
if (myDebug) write(6,'(a)') ' Built IP neighborhood'; flush(6)
if (usePingPong .and. (mesh_Nelems /= mesh_NcpElems)) &
call IO_error(600_pInt) ! ping-pong must be disabled when having non-DAMASK elements
if (debug_e < 1 .or. debug_e > mesh_NcpElems) &
call IO_error(602_pInt,ext_msg='element') ! selected element does not exist
if (debug_i < 1 .or. debug_i > FE_Nips(FE_geomtype(mesh_element(2_pInt,debug_e)))) &
call IO_error(602_pInt,ext_msg='IP') ! selected element does not have requested IP
FEsolving_execElem = [ 1_pInt,mesh_NcpElems ] ! parallel loop bounds set to comprise all DAMASK elements
allocate(FEsolving_execIP(2_pInt,mesh_NcpElems), source=1_pInt) ! parallel loop bounds set to comprise from first IP...
forall (j = 1_pInt:mesh_NcpElems) FEsolving_execIP(2,j) = FE_Nips(FE_geomtype(mesh_element(2,j))) ! ...up to own IP count for each element
allocate(calcMode(mesh_maxNips,mesh_NcpElems))
calcMode = .false. ! pretend to have collected what first call is asking (F = I)
calcMode(ip,mesh_FEasCP('elem',el)) = .true. ! first ip,el needs to be already pingponged to "calc"
! better name
theMesh%homogenizationAt = mesh_element(3,:)
theMesh%microstructureAt = mesh_element(4,:)
contains
!--------------------------------------------------------------------------------------------------
!> @brief check if the input file for Abaqus contains part info
!--------------------------------------------------------------------------------------------------
logical function hasNoPart(fileUnit)
use IO, only: &
IO_stringPos, &
IO_stringValue, &
IO_lc
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=65536) :: line
hasNoPart = .true.
rewind(fileUnit)
do
read(fileUnit,'(a65536)',END=620) line
chunkPos = IO_stringPos(line)
if (IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) then
hasNoPart = .false.
exit
endif
enddo
620 end function hasNoPart
end subroutine mesh_init
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of nodes and elements in mesh and stores them in
!! 'mesh_Nelems' and 'mesh_Nnodes'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_nodesAndElements(fileUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countDataLines, &
IO_error
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: inPart
mesh_Nnodes = 0_pInt
mesh_Nelems = 0_pInt
inPart = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'part' ) inPart = .false.
if (inPart .or. noPart) then
select case ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)))
case('*node')
if( &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'print' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'file' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'response' &
) &
mesh_Nnodes = mesh_Nnodes + IO_countDataLines(fileUnit)
case('*element')
if( &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'matrix' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'response' &
) then
mesh_Nelems = mesh_Nelems + IO_countDataLines(fileUnit)
endif
endselect
endif
enddo
if (mesh_Nnodes < 2_pInt) call IO_error(error_ID=900_pInt)
if (mesh_Nelems == 0_pInt) call IO_error(error_ID=901_pInt)
end subroutine mesh_abaqus_count_nodesAndElements
!--------------------------------------------------------------------------------------------------
!> @brief count overall number of element sets in mesh and write 'mesh_NelemSets' and
!! 'mesh_maxNelemInSet'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_elementSets(fileUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: inPart
mesh_NelemSets = 0_pInt
mesh_maxNelemInSet = mesh_Nelems ! have to be conservative, since Abaqus allows for recursive definitons
inPart = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*elset' ) &
mesh_NelemSets = mesh_NelemSets + 1_pInt
enddo
if (mesh_NelemSets == 0) call IO_error(error_ID=902_pInt)
end subroutine mesh_abaqus_count_elementSets
!--------------------------------------------------------------------------------------------------
! count overall number of solid sections sets in mesh (Abaqus only)
!
! mesh_Nmaterials
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_materials(fileUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: inPart
mesh_Nmaterials = 0_pInt
inPart = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. &
IO_lc(IO_StringValue(line,chunkPos,1_pInt)) == '*solid' .and. &
IO_lc(IO_StringValue(line,chunkPos,2_pInt)) == 'section' ) &
mesh_Nmaterials = mesh_Nmaterials + 1_pInt
enddo
if (mesh_Nmaterials == 0_pInt) call IO_error(error_ID=903_pInt)
end subroutine mesh_abaqus_count_materials
!--------------------------------------------------------------------------------------------------
! Build element set mapping
!
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_elementSets(fileUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue, &
IO_continuousIntValues, &
IO_error
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: inPart
integer(pInt) :: elemSet,i
allocate (mesh_nameElemSet(mesh_NelemSets)); mesh_nameElemSet = ''
allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets),source=0_pInt)
elemSet = 0_pInt
inPart = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*elset' ) then
elemSet = elemSet + 1_pInt
mesh_nameElemSet(elemSet) = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2_pInt)),'elset'))
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(fileUnit,mesh_Nelems,mesh_nameElemSet,&
mesh_mapElemSet,elemSet-1_pInt)
endif
enddo
do i = 1_pInt,elemSet
if (mesh_mapElemSet(1,i) == 0_pInt) call IO_error(error_ID=904_pInt,ext_msg=mesh_nameElemSet(i))
enddo
end subroutine mesh_abaqus_map_elementSets
!--------------------------------------------------------------------------------------------------
! map solid section (Abaqus only)
!
! allocate globals: mesh_nameMaterial, mesh_mapMaterial
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_materials(fileUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue, &
IO_error
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: inPart
integer(pInt) :: i,c
character(len=64) :: elemSetName,materialName
allocate (mesh_nameMaterial(mesh_Nmaterials)); mesh_nameMaterial = ''
allocate (mesh_mapMaterial(mesh_Nmaterials)); mesh_mapMaterial = ''
c = 0_pInt
inPart = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'part' ) inPart = .false.
if ( (inPart .or. noPart) .and. &
IO_lc(IO_StringValue(line,chunkPos,1_pInt)) == '*solid' .and. &
IO_lc(IO_StringValue(line,chunkPos,2_pInt)) == 'section' ) then
elemSetName = ''
materialName = ''
do i = 3_pInt,chunkPos(1_pInt)
if (IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,i)),'elset') /= '') &
elemSetName = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,i)),'elset'))
if (IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,i)),'material') /= '') &
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,i)),'material'))
enddo
if (elemSetName /= '' .and. materialName /= '') then
c = c + 1_pInt
mesh_nameMaterial(c) = materialName ! name of material used for this section
mesh_mapMaterial(c) = elemSetName ! mapped to respective element set
endif
endif
enddo
if (c==0_pInt) call IO_error(error_ID=905_pInt)
do i=1_pInt,c
if (mesh_nameMaterial(i)=='' .or. mesh_mapMaterial(i)=='') call IO_error(error_ID=905_pInt)
enddo
end subroutine mesh_abaqus_map_materials
!--------------------------------------------------------------------------------------------------
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_cpElements(fileUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_error, &
IO_extractValue
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: materialFound
integer(pInt) :: i,k
character(len=64) ::materialName,elemSetName
mesh_NcpElems = 0_pInt
materialFound = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
select case ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) )
case('*material')
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2_pInt)),'name')) ! extract name=value
materialFound = materialName /= '' ! valid name?
case('*user')
if (IO_lc(IO_StringValue(line,chunkPos,2_pInt)) == 'material' .and. materialFound) then
do i = 1_pInt,mesh_Nmaterials ! look thru material names
if (materialName == mesh_nameMaterial(i)) then ! found one
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
if (elemSetName == mesh_nameElemSet(k)) & ! matched?
mesh_NcpElems = mesh_NcpElems + mesh_mapElemSet(1,k) ! add those elem count
enddo
endif
enddo
materialFound = .false.
endif
endselect
enddo
if (mesh_NcpElems == 0_pInt) call IO_error(error_ID=906_pInt)
end subroutine mesh_abaqus_count_cpElements
!--------------------------------------------------------------------------------------------------
!> @brief Maps elements from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPelem'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_elements(fileUnit)
use math, only: math_sort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue, &
IO_error
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: materialFound
integer(pInt) ::i,j,k,cpElem
character (len=64) materialName,elemSetName ! why limited to 64? ABAQUS?
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems), source = 0_pInt)
cpElem = 0_pInt
materialFound = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
select case ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) )
case('*material')
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2_pInt)),'name')) ! extract name=value
materialFound = materialName /= '' ! valid name?
case('*user')
if (IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'material' .and. materialFound) then
do i = 1_pInt,mesh_Nmaterials ! look thru material names
if (materialName == mesh_nameMaterial(i)) then ! found one
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
do j = 1_pInt,mesh_mapElemSet(1,k)
cpElem = cpElem + 1_pInt
mesh_mapFEtoCPelem(1,cpElem) = mesh_mapElemSet(1_pInt+j,k) ! store FE id
mesh_mapFEtoCPelem(2,cpElem) = cpElem ! store our id
enddo
endif
enddo
endif
enddo
materialFound = .false.
endif
endselect
enddo
call math_sort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems
if (int(size(mesh_mapFEtoCPelem),pInt) < 2_pInt) call IO_error(error_ID=907_pInt)
end subroutine mesh_abaqus_map_elements
!--------------------------------------------------------------------------------------------------
!> @brief Maps node from FE ID to internal (consecutive) representation.
!! Allocates global array 'mesh_mapFEtoCPnode'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_map_nodes(fileUnit)
use math, only: math_sort
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_countDataLines, &
IO_intValue, &
IO_error
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: inPart
integer(pInt) :: i,c,cpNode
allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes), source=0_pInt)
cpNode = 0_pInt
inPart = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*node' .and. &
( IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'print' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'file' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'response' ) &
) then
c = IO_countDataLines(fileUnit)
do i = 1_pInt,c
backspace(fileUnit)
enddo
do i = 1_pInt,c
read (fileUnit,'(a300)') line
chunkPos = IO_stringPos(line)
cpNode = cpNode + 1_pInt
mesh_mapFEtoCPnode(1_pInt,cpNode) = IO_intValue(line,chunkPos,1_pInt)
mesh_mapFEtoCPnode(2_pInt,cpNode) = cpNode
enddo
endif
enddo
call math_sort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt))
if (int(size(mesh_mapFEtoCPnode),pInt) == 0_pInt) call IO_error(error_ID=908_pInt)
end subroutine mesh_abaqus_map_nodes
!--------------------------------------------------------------------------------------------------
!> @brief store x,y,z coordinates of all nodes in mesh.
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_build_nodes(fileUnit)
use IO, only: &
IO_lc, &
IO_stringValue, &
IO_floatValue, &
IO_stringPos, &
IO_error, &
IO_countDataLines, &
IO_intValue
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: inPart
integer(pInt) :: i,j,m,c
allocate ( mesh_node0 (3,mesh_Nnodes), source=0.0_pReal)
allocate ( mesh_node (3,mesh_Nnodes), source=0.0_pReal)
inPart = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*node' .and. &
( IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'print' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'file' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'response' ) &
) then
c = IO_countDataLines(fileUnit) ! how many nodes are defined here?
do i = 1_pInt,c
backspace(fileUnit) ! rewind to first entry
enddo
do i = 1_pInt,c
read (fileUnit,'(a300)') line
chunkPos = IO_stringPos(line)
m = mesh_FEasCP('node',IO_intValue(line,chunkPos,1_pInt))
do j=1_pInt, 3_pInt
mesh_node0(j,m) = mesh_unitlength * IO_floatValue(line,chunkPos,j+1_pInt)
enddo
enddo
endif
enddo
if (int(size(mesh_node0,2_pInt),pInt) /= mesh_Nnodes) call IO_error(error_ID=909_pInt)
mesh_node = mesh_node0
end subroutine mesh_abaqus_build_nodes
!--------------------------------------------------------------------------------------------------
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
!! Sets global values 'mesh_maxNnodes', 'mesh_maxNips', 'mesh_maxNipNeighbors',
!! and 'mesh_maxNcellnodes'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_count_cpSizes(fileUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_extractValue ,&
IO_error, &
IO_countDataLines, &
IO_intValue
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: inPart
integer(pInt) :: i,c,t,g
mesh_maxNnodes = 0_pInt
mesh_maxNips = 0_pInt
mesh_maxNipNeighbors = 0_pInt
mesh_maxNcellnodes = 0_pInt
inPart = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*element' .and. &
( IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'matrix' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'response' ) &
) then
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2_pInt)),'type')) ! remember elem type
g = FE_geomtype(t)
c = FE_celltype(g)
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t))
mesh_maxNips = max(mesh_maxNips,FE_Nips(g))
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(c))
mesh_maxNcellnodes = max(mesh_maxNcellnodes,FE_Ncellnodes(g))
endif
enddo
end subroutine mesh_abaqus_count_cpSizes
!--------------------------------------------------------------------------------------------------
!> @brief Store FEid, type, mat, tex, and node list per elemen.
!! Allocates global array 'mesh_element'
!--------------------------------------------------------------------------------------------------
subroutine mesh_abaqus_build_elements(fileUnit)
use IO, only: IO_lc, &
IO_stringValue, &
IO_stringPos, &
IO_intValue, &
IO_extractValue, &
IO_floatValue, &
IO_countDataLines, &
IO_error
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
logical :: inPart, materialFound
integer(pInt) :: i,j,k,c,e,t,homog,micro, nNodesAlreadyRead
character (len=64) :: materialName,elemSetName
allocate(mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems), source=0_pInt)
mesh_elemType = -1_pInt
inPart = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*part' ) inPart = .true.
if ( IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*end' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) == 'part' ) inPart = .false.
if( (inPart .or. noPart) .and. &
IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '*element' .and. &
( IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'output' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'matrix' .and. &
IO_lc(IO_stringValue(line,chunkPos,2_pInt)) /= 'response' ) &
) then
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2_pInt)),'type')) ! remember elem type
c = IO_countDataLines(fileUnit)
do i = 1_pInt,c
backspace(fileUnit)
enddo
do i = 1_pInt,c
read (fileUnit,'(a300)') line
chunkPos = IO_stringPos(line) ! limit to 64 nodes max
e = mesh_FEasCP('elem',IO_intValue(line,chunkPos,1_pInt))
if (e /= 0_pInt) then ! disregard non CP elems
mesh_element(1,e) = -1_pInt ! DEPRECATED
if (mesh_elemType /= t .and. mesh_elemType /= -1_pInt) &
call IO_error(191,el=t,ip=mesh_elemType)
mesh_elemType = t
mesh_element(2,e) = t ! elem type
nNodesAlreadyRead = 0_pInt
do j = 1_pInt,chunkPos(1)-1_pInt
mesh_element(4_pInt+j,e) = mesh_FEasCP('node',IO_intValue(line,chunkPos,1_pInt+j)) ! put CP ids of nodes to position 5:
enddo
nNodesAlreadyRead = chunkPos(1) - 1_pInt
do while(nNodesAlreadyRead < FE_Nnodes(t)) ! read on if not all nodes in one line
read (fileUnit,'(a300)') line
chunkPos = IO_stringPos(line)
do j = 1_pInt,chunkPos(1)
mesh_element(4_pInt+nNodesAlreadyRead+j,e) &
= mesh_FEasCP('node',IO_IntValue(line,chunkPos,j)) ! CP ids of nodes
enddo
nNodesAlreadyRead = nNodesAlreadyRead + chunkPos(1)
enddo
endif
enddo
endif
enddo
rewind(fileUnit) ! just in case "*material" definitions apear before "*element"
materialFound = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
select case ( IO_lc(IO_StringValue(line,chunkPos,1_pInt)))
case('*material')
materialName = trim(IO_extractValue(IO_lc(IO_StringValue(line,chunkPos,2_pInt)),'name')) ! extract name=value
materialFound = materialName /= '' ! valid name?
case('*user')
if ( IO_lc(IO_StringValue(line,chunkPos,2_pInt)) == 'material' .and. &
materialFound ) then
read (fileUnit,'(a300)') line ! read homogenization and microstructure
chunkPos = IO_stringPos(line)
homog = nint(IO_floatValue(line,chunkPos,1_pInt),pInt)
micro = nint(IO_floatValue(line,chunkPos,2_pInt),pInt)
do i = 1_pInt,mesh_Nmaterials ! look thru material names
if (materialName == mesh_nameMaterial(i)) then ! found one
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
do j = 1_pInt,mesh_mapElemSet(1,k)
e = mesh_FEasCP('elem',mesh_mapElemSet(1+j,k))
mesh_element(3,e) = homog ! store homogenization
mesh_element(4,e) = micro ! store microstructure
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),homog)
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),micro)
enddo
endif
enddo
endif
enddo
materialFound = .false.
endif
endselect
enddo
end subroutine mesh_abaqus_build_elements
!--------------------------------------------------------------------------------------------------
!> @brief get any additional damask options from input file, sets mesh_periodicSurface
!--------------------------------------------------------------------------------------------------
subroutine mesh_get_damaskOptions(periodic_surface,fileUnit)
use IO, only: &
IO_lc, &
IO_stringValue, &
IO_stringPos
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
character(len=300) :: line
integer :: myStat
integer(pInt) :: chunk, Nchunks
character(len=300) :: v
logical, dimension(3) :: periodic_surface
periodic_surface = .false.
myStat = 0
rewind(fileUnit)
do while(myStat == 0)
read (fileUnit,'(a300)',iostat=myStat) line
chunkPos = IO_stringPos(line)
Nchunks = chunkPos(1)
if (IO_lc(IO_stringValue(line,chunkPos,1_pInt)) == '**damask' .and. Nchunks > 1_pInt) then ! found keyword for damask option and there is at least one more chunk to read
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case('periodic') ! damask Option that allows to specify periodic fluxes
do chunk = 3_pInt,Nchunks ! loop through chunks (skipping the keyword)
v = IO_lc(IO_stringValue(line,chunkPos,chunk)) ! chunk matches keyvalues x,y, or z?
mesh_periodicSurface(1) = mesh_periodicSurface(1) .or. v == 'x'
mesh_periodicSurface(2) = mesh_periodicSurface(2) .or. v == 'y'
mesh_periodicSurface(3) = mesh_periodicSurface(3) .or. v == 'z'
enddo
endselect
endif
enddo
end subroutine mesh_get_damaskOptions
!--------------------------------------------------------------------------------------------------
!> @brief Split CP elements into cells.
!> @details Build a mapping between cells and the corresponding cell nodes ('mesh_cell').
!> Cell nodes that are also matching nodes are unique in the list of cell nodes,
!> all others (currently) might be stored more than once.
!> Also allocates the 'mesh_node' array.
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_cellconnectivity
implicit none
integer(pInt), dimension(:), allocatable :: &
matchingNode2cellnode
integer(pInt), dimension(:,:), allocatable :: &
cellnodeParent
integer(pInt), dimension(mesh_maxNcellnodes) :: &
localCellnode2globalCellnode
integer(pInt) :: &
e,t,g,c,n,i, &
matchingNodeID, &
localCellnodeID
allocate(mesh_cell(FE_maxNcellnodesPerCell,mesh_maxNips,mesh_NcpElems), source=0_pInt)
allocate(matchingNode2cellnode(mesh_Nnodes), source=0_pInt)
allocate(cellnodeParent(2_pInt,mesh_maxNcellnodes*mesh_NcpElems), source=0_pInt)
!--------------------------------------------------------------------------------------------------
! Count cell nodes (including duplicates) and generate cell connectivity list
mesh_Ncellnodes = 0_pInt
mesh_Ncells = 0_pInt
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = mesh_element(2_pInt,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
localCellnode2globalCellnode = 0_pInt
mesh_Ncells = mesh_Ncells + FE_Nips(g)
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
localCellnodeID = FE_cell(n,i,g)
if (localCellnodeID <= FE_NmatchingNodes(g)) then ! this cell node is a matching node
matchingNodeID = mesh_element(4_pInt+localCellnodeID,e)
if (matchingNode2cellnode(matchingNodeID) == 0_pInt) then ! if this matching node does not yet exist in the glbal cell node list ...
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
matchingNode2cellnode(matchingNodeID) = mesh_Ncellnodes ! ... and remember its global ID
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and where it belongs to
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
endif
mesh_cell(n,i,e) = matchingNode2cellnode(matchingNodeID)
else ! this cell node is no matching node
if (localCellnode2globalCellnode(localCellnodeID) == 0_pInt) then ! if this local cell node does not yet exist in the global cell node list ...
mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ...
localCellnode2globalCellnode(localCellnodeID) = mesh_Ncellnodes ! ... and remember its global ID ...
cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and it belongs to
cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID
endif
mesh_cell(n,i,e) = localCellnode2globalCellnode(localCellnodeID)
endif
enddo
enddo
enddo
allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes))
allocate(mesh_cellnode(3_pInt,mesh_Ncellnodes))
forall(n = 1_pInt:mesh_Ncellnodes)
mesh_cellnodeParent(1,n) = cellnodeParent(1,n)
mesh_cellnodeParent(2,n) = cellnodeParent(2,n)
endforall
end subroutine mesh_build_cellconnectivity
!--------------------------------------------------------------------------------------------------
!> @brief Calculate position of cellnodes from the given position of nodes
!> Build list of cellnodes' coordinates.
!> Cellnode coordinates are calculated from a weighted sum of node coordinates.
!--------------------------------------------------------------------------------------------------
function mesh_build_cellnodes(nodes,Ncellnodes)
implicit none
integer(pInt), intent(in) :: Ncellnodes !< requested number of cellnodes
real(pReal), dimension(3,mesh_Nnodes), intent(in) :: nodes
real(pReal), dimension(3,Ncellnodes) :: mesh_build_cellnodes
integer(pInt) :: &
e,t,n,m, &
localCellnodeID
real(pReal), dimension(3) :: &
myCoords
mesh_build_cellnodes = 0.0_pReal
!$OMP PARALLEL DO PRIVATE(e,localCellnodeID,t,myCoords)
do n = 1_pInt,Ncellnodes ! loop over cell nodes
e = mesh_cellnodeParent(1,n)
localCellnodeID = mesh_cellnodeParent(2,n)
t = mesh_element(2,e) ! get element type
myCoords = 0.0_pReal
do m = 1_pInt,FE_Nnodes(t)
myCoords = myCoords + nodes(1:3,mesh_element(4_pInt+m,e)) &
* FE_cellnodeParentnodeWeights(m,localCellnodeID,t)
enddo
mesh_build_cellnodes(1:3,n) = myCoords / sum(FE_cellnodeParentnodeWeights(:,localCellnodeID,t))
enddo
!$OMP END PARALLEL DO
end function mesh_build_cellnodes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
!> @details The IP volume is calculated differently depending on the cell type.
!> 2D cells assume an element depth of one in order to calculate the volume.
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
!> shape with a cell face as basis and the central ip at the tip. This subvolume is
!> calculated as an average of four tetrahedals with three corners on the cell face
!> and one corner at the central ip.
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipVolumes
use math, only: &
math_volTetrahedron, &
math_areaTriangle
implicit none
integer(pInt) :: e,t,g,c,i,m,f,n
real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume
allocate(mesh_ipVolume(mesh_maxNips,mesh_NcpElems),source=0.0_pReal)
!$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume)
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = mesh_element(2_pInt,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
select case (c)
case (1_pInt) ! 2D 3node
forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e)))
case (2_pInt) ! 2D 4node
forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e))) &
+ math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), &
mesh_cellnode(1:3,mesh_cell(4,i,e)), &
mesh_cellnode(1:3,mesh_cell(1,i,e)))
case (3_pInt) ! 3D 4node
forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element
mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
mesh_cellnode(1:3,mesh_cell(3,i,e)), &
mesh_cellnode(1:3,mesh_cell(4,i,e)))
case (4_pInt) ! 3D 8node
m = FE_NcellnodesPerCellface(c)
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
subvolume = 0.0_pReal
forall(f = 1_pInt:FE_NipNeighbors(c), n = 1_pInt:FE_NcellnodesPerCellface(c)) &
subvolume(n,f) = math_volTetrahedron(&
mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), &
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), &
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), &
mesh_ipCoordinates(1:3,i,e))
mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
enddo
end select
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipVolumes
!--------------------------------------------------------------------------------------------------
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus,
! so no need to use this subroutine anymore; Marc however only provides nodal displacements,
! so in this case the ip coordinates are always calculated on the basis of this subroutine.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES,
! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME.
! HAS TO BE CHANGED IN A LATER VERSION.
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipCoordinates
implicit none
integer(pInt) :: e,t,g,c,i,n
real(pReal), dimension(3) :: myCoords
if (.not. allocated(mesh_ipCoordinates)) &
allocate(mesh_ipCoordinates(3,mesh_maxNips,mesh_NcpElems),source=0.0_pReal)
!$OMP PARALLEL DO PRIVATE(t,g,c,myCoords)
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = mesh_element(2_pInt,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
myCoords = 0.0_pReal
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
myCoords = myCoords + mesh_cellnode(1:3,mesh_cell(n,i,e))
enddo
mesh_ipCoordinates(1:3,i,e) = myCoords / real(FE_NcellnodesPerCell(c),pReal)
enddo
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipCoordinates
!--------------------------------------------------------------------------------------------------
!> @brief Calculates cell center coordinates.
!--------------------------------------------------------------------------------------------------
pure function mesh_cellCenterCoordinates(ip,el)
implicit none
integer(pInt), intent(in) :: el, & !< element number
ip !< integration point number
real(pReal), dimension(3) :: mesh_cellCenterCoordinates !< x,y,z coordinates of the cell center of the requested IP cell
integer(pInt) :: t,g,c,n
t = mesh_element(2_pInt,el) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
mesh_cellCenterCoordinates = 0.0_pReal
do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates + mesh_cellnode(1:3,mesh_cell(n,ip,el))
enddo
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates / real(FE_NcellnodesPerCell(c),pReal)
end function mesh_cellCenterCoordinates
!--------------------------------------------------------------------------------------------------
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipAreas
use math, only: &
math_cross
implicit none
integer(pInt) :: e,t,g,c,i,f,n,m
real(pReal), dimension (3,FE_maxNcellnodesPerCellface) :: nodePos, normals
real(pReal), dimension(3) :: normal
allocate(mesh_ipArea(mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(mesh_ipAreaNormal(3_pInt,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
!$OMP PARALLEL DO PRIVATE(t,g,c,nodePos,normal,normals)
do e = 1_pInt,mesh_NcpElems ! loop over cpElems
t = mesh_element(2_pInt,e) ! get element type
g = FE_geomtype(t) ! get geometry type
c = FE_celltype(g) ! get cell type
select case (c)
case (1_pInt,2_pInt) ! 2D 3 or 4 node
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
normal(3) = 0.0_pReal
mesh_ipArea(f,i,e) = norm2(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
enddo
enddo
case (3_pInt) ! 3D 4node
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
normal = math_cross(nodePos(1:3,2) - nodePos(1:3,1), &
nodePos(1:3,3) - nodePos(1:3,1))
mesh_ipArea(f,i,e) = norm2(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
enddo
enddo
case (4_pInt) ! 3D 8node
! for this cell type we get the normal of the quadrilateral face as an average of
! four normals of triangular subfaces; since the face consists only of two triangles,
! the sum has to be divided by two; this whole prcedure tries to compensate for
! probable non-planar cell surfaces
m = FE_NcellnodesPerCellface(c)
do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element
do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) &
normals(1:3,n) = 0.5_pReal &
* math_cross(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
normal = 0.5_pReal * sum(normals,2)
mesh_ipArea(f,i,e) = norm2(normal)
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal)
enddo
enddo
end select
enddo
!$OMP END PARALLEL DO
end subroutine mesh_build_ipAreas
!--------------------------------------------------------------------------------------------------
!> @brief assignment of twin nodes for each cp node, allocate globals '_nodeTwins'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_nodeTwins
implicit none
integer(pInt) dir, & ! direction of periodicity
node, &
minimumNode, &
maximumNode, &
n1, &
n2
integer(pInt), dimension(mesh_Nnodes+1) :: minimumNodes, maximumNodes ! list of surface nodes (minimum and maximum coordinate value) with first entry giving the number of nodes
real(pReal) minCoord, maxCoord, & ! extreme positions in one dimension
tolerance ! tolerance below which positions are assumed identical
real(pReal), dimension(3) :: distance ! distance between two nodes in all three coordinates
logical, dimension(mesh_Nnodes) :: unpaired
allocate(mesh_nodeTwins(3,mesh_Nnodes))
mesh_nodeTwins = 0_pInt
tolerance = 0.001_pReal * minval(mesh_ipVolume) ** 0.333_pReal
do dir = 1_pInt,3_pInt ! check periodicity in directions of x,y,z
if (mesh_periodicSurface(dir)) then ! only if periodicity is requested
!*** find out which nodes sit on the surface
!*** and have a minimum or maximum position in this dimension
minimumNodes = 0_pInt
maximumNodes = 0_pInt
minCoord = minval(mesh_node0(dir,:))
maxCoord = maxval(mesh_node0(dir,:))
do node = 1_pInt,mesh_Nnodes ! loop through all nodes and find surface nodes
if (abs(mesh_node0(dir,node) - minCoord) <= tolerance) then
minimumNodes(1) = minimumNodes(1) + 1_pInt
minimumNodes(minimumNodes(1)+1_pInt) = node
elseif (abs(mesh_node0(dir,node) - maxCoord) <= tolerance) then
maximumNodes(1) = maximumNodes(1) + 1_pInt
maximumNodes(maximumNodes(1)+1_pInt) = node
endif
enddo
!*** find the corresponding node on the other side with the same position in this dimension
unpaired = .true.
do n1 = 1_pInt,minimumNodes(1)
minimumNode = minimumNodes(n1+1_pInt)
if (unpaired(minimumNode)) then
do n2 = 1_pInt,maximumNodes(1)
maximumNode = maximumNodes(n2+1_pInt)
distance = abs(mesh_node0(:,minimumNode) - mesh_node0(:,maximumNode))
if (sum(distance) - distance(dir) <= tolerance) then ! minimum possible distance (within tolerance)
mesh_nodeTwins(dir,minimumNode) = maximumNode
mesh_nodeTwins(dir,maximumNode) = minimumNode
unpaired(maximumNode) = .false. ! remember this node, we don't have to look for his partner again
exit
endif
enddo
endif
enddo
endif
enddo
end subroutine mesh_build_nodeTwins
!--------------------------------------------------------------------------------------------------
!> @brief get maximum count of shared elements among cpElements and build list of elements shared
!! by each node in mesh. Allocate globals '_maxNsharedElems' and '_sharedElem'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_sharedElems
implicit none
integer(pint) e, & ! element index
g, & ! element type
node, & ! CP node index
n, & ! node index per element
myDim, & ! dimension index
nodeTwin ! node twin in the specified dimension
integer(pInt), dimension (mesh_Nnodes) :: node_count
integer(pInt), dimension(:), allocatable :: node_seen
allocate(node_seen(maxval(FE_NmatchingNodes)))
node_count = 0_pInt
do e = 1_pInt,mesh_NcpElems
g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
node_seen = 0_pInt ! reset node duplicates
do n = 1_pInt,FE_NmatchingNodes(g) ! check each node of element
node = mesh_element(4+n,e)
if (all(node_seen /= node)) then
node_count(node) = node_count(node) + 1_pInt ! if FE node not yet encountered -> count it
do myDim = 1_pInt,3_pInt ! check in each dimension...
nodeTwin = mesh_nodeTwins(myDim,node)
if (nodeTwin > 0_pInt) & ! if I am a twin of some node...
node_count(nodeTwin) = node_count(nodeTwin) + 1_pInt ! -> count me again for the twin node
enddo
endif
node_seen(n) = node ! remember this node to be counted already
enddo
enddo
mesh_maxNsharedElems = int(maxval(node_count),pInt) ! most shared node
allocate(mesh_sharedElem(1+mesh_maxNsharedElems,mesh_Nnodes),source=0_pInt)
do e = 1_pInt,mesh_NcpElems
g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
node_seen = 0_pInt
do n = 1_pInt,FE_NmatchingNodes(g)
node = mesh_element(4_pInt+n,e)
if (all(node_seen /= node)) then
mesh_sharedElem(1,node) = mesh_sharedElem(1,node) + 1_pInt ! count for each node the connected elements
mesh_sharedElem(mesh_sharedElem(1,node)+1_pInt,node) = e ! store the respective element id
do myDim = 1_pInt,3_pInt ! check in each dimension...
nodeTwin = mesh_nodeTwins(myDim,node)
if (nodeTwin > 0_pInt) then ! if i am a twin of some node...
mesh_sharedElem(1,nodeTwin) = mesh_sharedElem(1,nodeTwin) + 1_pInt ! ...count me again for the twin
mesh_sharedElem(mesh_sharedElem(1,nodeTwin)+1,nodeTwin) = e ! store the respective element id
endif
enddo
endif
node_seen(n) = node
enddo
enddo
end subroutine mesh_build_sharedElems
!--------------------------------------------------------------------------------------------------
!> @brief build up of IP neighborhood, allocate globals '_ipNeighborhood'
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_ipNeighborhood
use math, only: &
math_mul3x3
implicit none
integer(pInt) :: myElem, & ! my CP element index
myIP, &
myType, & ! my element type
myFace, &
neighbor, & ! neighor index
neighboringIPkey, & ! positive integer indicating the neighboring IP (for intra-element) and negative integer indicating the face towards neighbor (for neighboring element)
candidateIP, &
neighboringType, & ! element type of neighbor
NlinkedNodes, & ! number of linked nodes
twin_of_linkedNode, & ! node twin of a specific linkedNode
NmatchingNodes, & ! number of matching nodes
dir, & ! direction of periodicity
matchingElem, & ! CP elem number of matching element
matchingFace, & ! face ID of matching element
a, anchor, &
neighboringIP, &
neighboringElem, &
pointingToMe
integer(pInt), dimension(FE_maxmaxNnodesAtIP) :: &
linkedNodes = 0_pInt, &
matchingNodes
logical checkTwins
allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems))
mesh_ipNeighborhood = 0_pInt
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
do neighbor = 1_pInt,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP
neighboringIPkey = FE_ipNeighbor(neighbor,myIP,myType)
!*** if the key is positive, the neighbor is inside the element
!*** that means, we have already found our neighboring IP
if (neighboringIPkey > 0_pInt) then
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = myElem
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = neighboringIPkey
!*** if the key is negative, the neighbor resides in a neighboring element
!*** that means, we have to look through the face indicated by the key and see which element is behind that face
elseif (neighboringIPkey < 0_pInt) then ! neighboring element's IP
myFace = -neighboringIPkey
call mesh_faceMatch(myElem, myFace, matchingElem, matchingFace) ! get face and CP elem id of face match
if (matchingElem > 0_pInt) then ! found match?
neighboringType = FE_geomtype(mesh_element(2,matchingElem))
!*** trivial solution if neighbor has only one IP
if (FE_Nips(neighboringType) == 1_pInt) then
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = 1_pInt
cycle
endif
!*** find those nodes which build the link to the neighbor
NlinkedNodes = 0_pInt
linkedNodes = 0_pInt
do a = 1_pInt,FE_maxNnodesAtIP(myType) ! figure my anchor nodes on connecting face
anchor = FE_nodesAtIP(a,myIP,myType)
if (anchor /= 0_pInt) then ! valid anchor node
if (any(FE_face(:,myFace,myType) == anchor)) then ! ip anchor sits on face?
NlinkedNodes = NlinkedNodes + 1_pInt
linkedNodes(NlinkedNodes) = mesh_element(4_pInt+anchor,myElem) ! CP id of anchor node
else ! something went wrong with the linkage, since not all anchors sit on my face
NlinkedNodes = 0_pInt
linkedNodes = 0_pInt
exit
endif
endif
enddo
!*** loop through the ips of my neighbor
!*** and try to find an ip with matching nodes
!*** also try to match with node twins
checkCandidateIP: do candidateIP = 1_pInt,FE_Nips(neighboringType)
NmatchingNodes = 0_pInt
matchingNodes = 0_pInt
do a = 1_pInt,FE_maxNnodesAtIP(neighboringType) ! check each anchor node of that ip
anchor = FE_nodesAtIP(a,candidateIP,neighboringType)
if (anchor /= 0_pInt) then ! valid anchor node
if (any(FE_face(:,matchingFace,neighboringType) == anchor)) then ! sits on matching face?
NmatchingNodes = NmatchingNodes + 1_pInt
matchingNodes(NmatchingNodes) = mesh_element(4+anchor,matchingElem) ! CP id of neighbor's anchor node
else ! no matching, because not all nodes sit on the matching face
NmatchingNodes = 0_pInt
matchingNodes = 0_pInt
exit
endif
endif
enddo
if (NmatchingNodes /= NlinkedNodes) & ! this ip has wrong count of anchors on face
cycle checkCandidateIP
!*** check "normal" nodes whether they match or not
checkTwins = .false.
do a = 1_pInt,NlinkedNodes
if (all(matchingNodes /= linkedNodes(a))) then ! this linkedNode does not match any matchingNode
checkTwins = .true.
exit ! no need to search further
endif
enddo
!*** if no match found, then also check node twins
if(checkTwins) then
dir = int(maxloc(abs(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem)),1),pInt) ! check for twins only in direction of the surface normal
do a = 1_pInt,NlinkedNodes
twin_of_linkedNode = mesh_nodeTwins(dir,linkedNodes(a))
if (twin_of_linkedNode == 0_pInt .or. & ! twin of linkedNode does not exist...
all(matchingNodes /= twin_of_linkedNode)) then ! ... or it does not match any matchingNode
cycle checkCandidateIP ! ... then check next candidateIP
endif
enddo
endif
!*** we found a match !!!
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = candidateIP
exit checkCandidateIP
enddo checkCandidateIP
endif ! end of valid external matching
endif ! end of internal/external matching
enddo
enddo
enddo
do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem
do neighbor = 1_pInt,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP
neighboringElem = mesh_ipNeighborhood(1,neighbor,myIP,myElem)
neighboringIP = mesh_ipNeighborhood(2,neighbor,myIP,myElem)
if (neighboringElem > 0_pInt .and. neighboringIP > 0_pInt) then ! if neighbor exists ...
neighboringType = FE_geomtype(mesh_element(2,neighboringElem))
do pointingToMe = 1_pInt,FE_NipNeighbors(FE_celltype(neighboringType)) ! find neighboring index that points from my neighbor to myself
if ( myElem == mesh_ipNeighborhood(1,pointingToMe,neighboringIP,neighboringElem) &
.and. myIP == mesh_ipNeighborhood(2,pointingToMe,neighboringIP,neighboringElem)) then ! possible candidate
if (math_mul3x3(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem),&
mesh_ipAreaNormal(1:3,pointingToMe,neighboringIP,neighboringElem)) < 0.0_pReal) then ! area normals have opposite orientation (we have to check that because of special case for single element with two ips and periodicity. In this case the neighbor is identical in two different directions.)
mesh_ipNeighborhood(3,neighbor,myIP,myElem) = pointingToMe ! found match
exit ! so no need to search further
endif
endif
enddo
endif
enddo
enddo
enddo
contains
!--------------------------------------------------------------------------------------------------
!> @brief find face-matching element of same type
!--------------------------------------------------------------------------------------------------
subroutine mesh_faceMatch(elem, face ,matchingElem, matchingFace)
implicit none
integer(pInt), intent(out) :: matchingElem, & ! matching CP element ID
matchingFace ! matching face ID
integer(pInt), intent(in) :: face, & ! face ID
elem ! CP elem ID
integer(pInt), dimension(FE_NmatchingNodesPerFace(face,FE_geomtype(mesh_element(2,elem)))) :: &
myFaceNodes ! global node ids on my face
integer(pInt) :: myType, &
candidateType, &
candidateElem, &
candidateFace, &
candidateFaceNode, &
minNsharedElems, &
NsharedElems, &
lonelyNode = 0_pInt, &
i, &
n, &
dir ! periodicity direction
integer(pInt), dimension(:), allocatable :: element_seen
logical checkTwins
matchingElem = 0_pInt
matchingFace = 0_pInt
minNsharedElems = mesh_maxNsharedElems + 1_pInt ! init to worst case
myType = FE_geomtype(mesh_element(2_pInt,elem)) ! figure elemGeomType
do n = 1_pInt,FE_NmatchingNodesPerFace(face,myType) ! loop over nodes on face
myFaceNodes(n) = mesh_element(4_pInt+FE_face(n,face,myType),elem) ! CP id of face node
NsharedElems = mesh_sharedElem(1_pInt,myFaceNodes(n)) ! figure # shared elements for this node
if (NsharedElems < minNsharedElems) then
minNsharedElems = NsharedElems ! remember min # shared elems
lonelyNode = n ! remember most lonely node
endif
enddo
allocate(element_seen(minNsharedElems))
element_seen = 0_pInt
checkCandidate: do i = 1_pInt,minNsharedElems ! iterate over lonelyNode's shared elements
candidateElem = mesh_sharedElem(1_pInt+i,myFaceNodes(lonelyNode)) ! present candidate elem
if (all(element_seen /= candidateElem)) then ! element seen for the first time?
element_seen(i) = candidateElem
candidateType = FE_geomtype(mesh_element(2_pInt,candidateElem)) ! figure elemGeomType of candidate
checkCandidateFace: do candidateFace = 1_pInt,FE_maxNipNeighbors ! check each face of candidate
if (FE_NmatchingNodesPerFace(candidateFace,candidateType) &
/= FE_NmatchingNodesPerFace(face,myType) & ! incompatible face
.or. (candidateElem == elem .and. candidateFace == face)) then ! this is my face
cycle checkCandidateFace
endif
checkTwins = .false.
do n = 1_pInt,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face
candidateFaceNode = mesh_element(4_pInt+FE_face(n,candidateFace,candidateType),candidateElem)
if (all(myFaceNodes /= candidateFaceNode)) then ! candidate node does not match any of my face nodes
checkTwins = .true. ! perhaps the twin nodes do match
exit
endif
enddo
if(checkTwins) then
checkCandidateFaceTwins: do dir = 1_pInt,3_pInt
do n = 1_pInt,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face
candidateFaceNode = mesh_element(4+FE_face(n,candidateFace,candidateType),candidateElem)
if (all(myFaceNodes /= mesh_nodeTwins(dir,candidateFaceNode))) then ! node twin does not match either
if (dir == 3_pInt) then
cycle checkCandidateFace
else
cycle checkCandidateFaceTwins ! try twins in next dimension
endif
endif
enddo
exit checkCandidateFaceTwins
enddo checkCandidateFaceTwins
endif
matchingFace = candidateFace
matchingElem = candidateElem
exit checkCandidate ! found my matching candidate
enddo checkCandidateFace
endif
enddo checkCandidate
end subroutine mesh_faceMatch
end subroutine mesh_build_ipNeighborhood
!--------------------------------------------------------------------------------------------------
!> @brief mapping of FE element types to internal representation
!--------------------------------------------------------------------------------------------------
integer(pInt) function FE_mapElemtype(what)
use IO, only: IO_lc, IO_error
implicit none
character(len=*), intent(in) :: what
select case (IO_lc(what))
case ( 'cpe4', &
'cpe4t')
FE_mapElemtype = 3_pInt ! Arbitrary Quadrilateral Plane-strain
case ( 'cpe8', &
'cpe8t')
FE_mapElemtype = 4_pInt ! Plane Strain, Eight-node Distorted Quadrilateral
case ( 'c3d4', &
'c3d4t')
FE_mapElemtype = 6_pInt ! Three-dimensional Four-node Tetrahedron
case ( 'c3d6', &
'c3d6t')
FE_mapElemtype = 9_pInt ! Three-dimensional Arbitrarily Distorted Pentahedral
case ( 'c3d8r', &
'c3d8rt')
FE_mapElemtype = 10_pInt ! Three-dimensional Arbitrarily Distorted linear hexahedral with reduced integration
case ( 'c3d8', &
'c3d8t')
FE_mapElemtype = 11_pInt ! Three-dimensional Arbitrarily Distorted Brick
case ( 'c3d20r', &
'c3d20rt')
FE_mapElemtype = 12_pInt ! Three-dimensional Arbitrarily Distorted quad hexahedral with reduced integration
case ( 'c3d20', &
'c3d20t')
FE_mapElemtype = 13_pInt ! Three-dimensional Arbitrarily Distorted quadratic hexahedral
case default
call IO_error(error_ID=190_pInt,ext_msg=IO_lc(what))
end select
end function FE_mapElemtype
!--------------------------------------------------------------------------------------------------
!> @brief get properties of different types of finite elements
!> @details assign globals: FE_nodesAtIP, FE_ipNeighbor, FE_cellnodeParentnodeWeights, FE_subNodeOnIPFace
!--------------------------------------------------------------------------------------------------
subroutine mesh_build_FEdata
implicit none
integer(pInt) :: me
allocate(FE_nodesAtIP(FE_maxmaxNnodesAtIP,FE_maxNips,FE_Ngeomtypes), source=0_pInt)
allocate(FE_ipNeighbor(FE_maxNipNeighbors,FE_maxNips,FE_Ngeomtypes), source=0_pInt)
allocate(FE_cell(FE_maxNcellnodesPerCell,FE_maxNips,FE_Ngeomtypes), source=0_pInt)
allocate(FE_cellnodeParentnodeWeights(FE_maxNnodes,FE_maxNcellnodes,FE_Nelemtypes), source=0.0_pReal)
allocate(FE_cellface(FE_maxNcellnodesPerCellface,FE_maxNcellfaces,FE_Ncelltypes), source=0_pInt)
!*** fill FE_nodesAtIP with data ***
me = 0_pInt
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
reshape(int([&
1,2,3 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
1, &
2, &
3 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
1, &
2, &
4, &
3 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
1,0, &
1,2, &
2,0, &
1,4, &
0,0, &
2,3, &
4,0, &
3,4, &
3,0 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
reshape(int([&
1,2,3,4 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
1, &
2, &
3, &
4 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
1, &
2, &
3, &
4, &
5, &
6 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
reshape(int([&
1,2,3,4,5,6,7,8 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
1, &
2, &
4, &
3, &
5, &
6, &
8, &
7 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
me = me + 1_pInt
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
1,0, 0,0, &
1,2, 0,0, &
2,0, 0,0, &
1,4, 0,0, &
1,3, 2,4, &
2,3, 0,0, &
4,0, 0,0, &
3,4, 0,0, &
3,0, 0,0, &
1,5, 0,0, &
1,6, 2,5, &
2,6, 0,0, &
1,8, 4,5, &
0,0, 0,0, &
2,7, 3,6, &
4,8, 0,0, &
3,8, 4,7, &
3,7, 0,0, &
5,0, 0,0, &
5,6, 0,0, &
6,0, 0,0, &
5,8, 0,0, &
5,7, 6,8, &
6,7, 0,0, &
8,0, 0,0, &
7,8, 0,0, &
7,0, 0,0 &
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
! *** FE_ipNeighbor ***
! is a list of the neighborhood of each IP.
! It is sorted in (local) +x,-x, +y,-y, +z,-z direction.
! Positive integers denote an intra-FE IP identifier.
! Negative integers denote the interface behind which the neighboring (extra-FE) IP will be located.
me = 0_pInt
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
reshape(int([&
-2,-3,-1 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
2,-3, 3,-1, &
-2, 1, 3,-1, &
2,-3,-2, 1 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
2,-4, 3,-1, &
-2, 1, 4,-1, &
4,-4,-3, 1, &
-2, 3,-3, 2 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
2,-4, 4,-1, &
3, 1, 5,-1, &
-2, 2, 6,-1, &
5,-4, 7, 1, &
6, 4, 8, 2, &
-2, 5, 9, 3, &
8,-4,-3, 4, &
9, 7,-3, 5, &
-2, 8,-3, 6 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
reshape(int([&
-1,-2,-3,-4 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
2,-4, 3,-2, 4,-1, &
-2, 1, 3,-2, 4,-1, &
2,-4,-3, 1, 4,-1, &
2,-4, 3,-2,-3, 1 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
2,-4, 3,-2, 4,-1, &
-3, 1, 3,-2, 5,-1, &
2,-4,-3, 1, 6,-1, &
5,-4, 6,-2,-5, 1, &
-3, 4, 6,-2,-5, 2, &
5,-4,-3, 4,-5, 3 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
reshape(int([&
-3,-5,-4,-2,-6,-1 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
2,-5, 3,-2, 5,-1, &
-3, 1, 4,-2, 6,-1, &
4,-5,-4, 1, 7,-1, &
-3, 3,-4, 2, 8,-1, &
6,-5, 7,-2,-6, 1, &
-3, 5, 8,-2,-6, 2, &
8,-5,-4, 5,-6, 3, &
-3, 7,-4, 6,-6, 4 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
2,-5, 4,-2,10,-1, &
3, 1, 5,-2,11,-1, &
-3, 2, 6,-2,12,-1, &
5,-5, 7, 1,13,-1, &
6, 4, 8, 2,14,-1, &
-3, 5, 9, 3,15,-1, &
8,-5,-4, 4,16,-1, &
9, 7,-4, 5,17,-1, &
-3, 8,-4, 6,18,-1, &
11,-5,13,-2,19, 1, &
12,10,14,-2,20, 2, &
-3,11,15,-2,21, 3, &
14,-5,16,10,22, 4, &
15,13,17,11,23, 5, &
-3,14,18,12,24, 6, &
17,-5,-4,13,25, 7, &
18,16,-4,14,26, 8, &
-3,17,-4,15,27, 9, &
20,-5,22,-2,-6,10, &
21,19,23,-2,-6,11, &
-3,20,24,-2,-6,12, &
23,-5,25,19,-6,13, &
24,22,26,20,-6,14, &
-3,23,27,21,-6,15, &
26,-5,-4,22,-6,16, &
27,25,-4,23,-6,17, &
-3,26,-4,24,-6,18 &
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
! *** FE_cell ***
me = 0_pInt
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
reshape(int([&
1,2,3 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
reshape(int([&
1, 4, 7, 6, &
2, 5, 7, 4, &
3, 6, 7, 5 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
reshape(int([&
1, 5, 9, 8, &
5, 2, 6, 9, &
8, 9, 7, 4, &
9, 6, 3, 7 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
reshape(int([&
1, 5,13,12, &
5, 6,14,13, &
6, 2, 7,14, &
12,13,16,11, &
13,14,15,16, &
14, 7, 8,15, &
11,16,10, 4, &
16,15, 9,10, &
15, 8, 3, 9 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
reshape(int([&
1, 2, 3, 4 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
reshape(int([&
1, 5,11, 7, 8,12,15,14, &
5, 2, 6,11,12, 9,13,15, &
7,11, 6, 3,14,15,13,10, &
8,12,15, 4, 4, 9,13,10 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
reshape(int([&
1, 7,16, 9,10,17,21,19, &
7, 2, 8,16,17,11,18,21, &
9,16, 8, 3,19,21,18,12, &
10,17,21,19, 4,13,20,15, &
17,11,18,21,13, 5,14,20, &
19,21,18,12,15,20,14, 6 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
reshape(int([&
1, 2, 3, 4, 5, 6, 7, 8 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
reshape(int([&
1, 9,21,12,13,22,27,25, &
9, 2,10,21,22,14,23,27, &
12,21,11, 4,25,27,24,16, &
21,10, 3,11,27,23,15,24, &
13,22,27,25, 5,17,26,20, &
22,14,23,27,17, 6,18,26, &
25,27,24,16,20,26,19, 8, &
27,23,15,24,26,18, 7,19 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
me = me + 1_pInt
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
reshape(int([&
1, 9,33,16,17,37,57,44, &
9,10,34,33,37,38,58,57, &
10, 2,11,34,38,18,39,58, &
16,33,36,15,44,57,60,43, &
33,34,35,36,57,58,59,60, &
34,11,12,35,58,39,40,59, &
15,36,14, 4,43,60,42,20, &
36,35,13,14,60,59,41,42, &
35,12, 3,13,59,40,19,41, &
17,37,57,44,21,45,61,52, &
37,38,58,57,45,46,62,61, &
38,18,39,58,46,22,47,62, &
44,57,60,43,52,61,64,51, &
57,58,59,60,61,62,63,64, &
58,39,40,59,62,47,48,63, &
43,60,42,20,51,64,50,24, &
60,59,41,42,64,63,49,50, &
59,40,19,41,63,48,23,49, &
21,45,61,52, 5,25,53,32, &
45,46,62,61,25,26,54,53, &
46,22,47,62,26, 6,27,54, &
52,61,64,51,32,53,56,31, &
61,62,63,64,53,54,55,56, &
62,47,48,63,54,27,28,55, &
51,64,50,24,31,56,30, 8, &
64,63,49,50,56,55,29,30, &
63,48,23,49,55,28, 7,29 &
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
! *** FE_cellnodeParentnodeWeights ***
! center of gravity of the weighted nodes gives the position of the cell node.
! fill with 0.
! example: face-centered cell node with face nodes 1,2,5,6 to be used in,
! e.g., an 8 node element, would be encoded:
! 1, 1, 0, 0, 1, 1, 0, 0
me = 0_pInt
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 6 (2D 3node 1ip)
reshape(real([&
1, 0, 0, &
0, 1, 0, &
0, 0, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 125 (2D 6node 3ip)
reshape(real([&
1, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, &
0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 1, &
1, 1, 1, 2, 2, 2 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 11 (2D 4node 4ip)
reshape(real([&
1, 0, 0, 0, &
0, 1, 0, 0, &
0, 0, 1, 0, &
0, 0, 0, 1, &
1, 1, 0, 0, &
0, 1, 1, 0, &
0, 0, 1, 1, &
1, 0, 0, 1, &
1, 1, 1, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 27 (2D 8node 9ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, 0, 0, &
0, 0, 0, 1, 0, 0, 0, 0, &
1, 0, 0, 0, 2, 0, 0, 0, &
0, 1, 0, 0, 2, 0, 0, 0, &
0, 1, 0, 0, 0, 2, 0, 0, &
0, 0, 1, 0, 0, 2, 0, 0, &
0, 0, 1, 0, 0, 0, 2, 0, &
0, 0, 0, 1, 0, 0, 2, 0, &
0, 0, 0, 1, 0, 0, 0, 2, &
1, 0, 0, 0, 0, 0, 0, 2, &
4, 1, 1, 1, 8, 2, 2, 8, &
1, 4, 1, 1, 8, 8, 2, 2, &
1, 1, 4, 1, 2, 8, 8, 2, &
1, 1, 1, 4, 2, 2, 8, 8 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 54 (2D 8node 4ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, 0, 0, &
0, 0, 0, 1, 0, 0, 0, 0, &
0, 0, 0, 0, 1, 0, 0, 0, &
0, 0, 0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 0, 0, 1, &
1, 1, 1, 1, 2, 2, 2, 2 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 134 (3D 4node 1ip)
reshape(real([&
1, 0, 0, 0, &
0, 1, 0, 0, &
0, 0, 1, 0, &
0, 0, 0, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 157 (3D 5node 4ip)
reshape(real([&
1, 0, 0, 0, 0, &
0, 1, 0, 0, 0, &
0, 0, 1, 0, 0, &
0, 0, 0, 1, 0, &
1, 1, 0, 0, 0, &
0, 1, 1, 0, 0, &
1, 0, 1, 0, 0, &
1, 0, 0, 1, 0, &
0, 1, 0, 1, 0, &
0, 0, 1, 1, 0, &
1, 1, 1, 0, 0, &
1, 1, 0, 1, 0, &
0, 1, 1, 1, 0, &
1, 0, 1, 1, 0, &
0, 0, 0, 0, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 127 (3D 10node 4ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, &
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, &
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, &
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, &
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, &
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, &
1, 1, 1, 0, 2, 2, 2, 0, 0, 0, &
1, 1, 0, 1, 2, 0, 0, 2, 2, 0, &
0, 1, 1, 1, 0, 2, 0, 0, 2, 2, &
1, 0, 1, 1, 0, 0, 2, 2, 0, 2, &
3, 3, 3, 3, 4, 4, 4, 4, 4, 4 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 136 (3D 6node 6ip)
reshape(real([&
1, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, &
0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 1, &
1, 1, 0, 0, 0, 0, &
0, 1, 1, 0, 0, 0, &
1, 0, 1, 0, 0, 0, &
1, 0, 0, 1, 0, 0, &
0, 1, 0, 0, 1, 0, &
0, 0, 1, 0, 0, 1, &
0, 0, 0, 1, 1, 0, &
0, 0, 0, 0, 1, 1, &
0, 0, 0, 1, 0, 1, &
1, 1, 1, 0, 0, 0, &
1, 1, 0, 1, 1, 0, &
0, 1, 1, 0, 1, 1, &
1, 0, 1, 1, 0, 1, &
0, 0, 0, 1, 1, 1, &
1, 1, 1, 1, 1, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 117 (3D 8node 1ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, &
0, 1, 0, 0, 0, 0, 0, 0, &
0, 0, 1, 0, 0, 0, 0, 0, &
0, 0, 0, 1, 0, 0, 0, 0, &
0, 0, 0, 0, 1, 0, 0, 0, &
0, 0, 0, 0, 0, 1, 0, 0, &
0, 0, 0, 0, 0, 0, 1, 0, &
0, 0, 0, 0, 0, 0, 0, 1 &
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 7 (3D 8node 8ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 0, 0, 0, & ! 5
0, 0, 0, 0, 0, 1, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, & !
1, 1, 0, 0, 0, 0, 0, 0, & !
0, 1, 1, 0, 0, 0, 0, 0, & ! 10
0, 0, 1, 1, 0, 0, 0, 0, & !
1, 0, 0, 1, 0, 0, 0, 0, & !
1, 0, 0, 0, 1, 0, 0, 0, & !
0, 1, 0, 0, 0, 1, 0, 0, & !
0, 0, 1, 0, 0, 0, 1, 0, & ! 15
0, 0, 0, 1, 0, 0, 0, 1, & !
0, 0, 0, 0, 1, 1, 0, 0, & !
0, 0, 0, 0, 0, 1, 1, 0, & !
0, 0, 0, 0, 0, 0, 1, 1, & !
0, 0, 0, 0, 1, 0, 0, 1, & ! 20
1, 1, 1, 1, 0, 0, 0, 0, & !
1, 1, 0, 0, 1, 1, 0, 0, & !
0, 1, 1, 0, 0, 1, 1, 0, & !
0, 0, 1, 1, 0, 0, 1, 1, & !
1, 0, 0, 1, 1, 0, 0, 1, & ! 25
0, 0, 0, 0, 1, 1, 1, 1, & !
1, 1, 1, 1, 1, 1, 1, 1 & !
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 57 (3D 20node 8ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, & ! 15
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, & ! 20
1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, & !
0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, & !
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, & !
1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, & ! 25
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, & !
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 & !
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
me = me + 1_pInt
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 21 (3D 20node 27ip)
reshape(real([&
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10
0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 15
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & !
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & !
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & !
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & ! 20
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & !
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & !
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & ! 25
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & !
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & ! 30
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & !
4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 35
1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, & !
4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, & !
1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, 0, & !
0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, & !
0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, & ! 40
0, 0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, & !
0, 0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, & !
1, 0, 0, 4, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 2, 0, 0, 8, & !
4, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, 2, & !
1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, 0, & ! 45
1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, & !
0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, & !
0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, & !
0, 0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, & !
0, 0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, & ! 50
1, 0, 0, 1, 1, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, 8, & !
1, 0, 0, 1, 4, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 8, 8, 0, 0, 2, & !
0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, & !
0, 0, 0, 0, 1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, & ! 55
0, 0, 0, 0, 1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, & !
24, 8, 4, 8, 8, 4, 3, 4, 32,12,12,32, 12, 4, 4,12, 32,12, 4,12, & !
8,24, 8, 4, 4, 8, 4, 3, 32,32,12,12, 12,12, 4, 4, 12,32,12, 4, & !
4, 8,24, 8, 3, 4, 8, 4, 12,32,32,12, 4,12,12, 4, 4,12,32,12, & !
8, 4, 8,24, 4, 3, 4, 8, 12,12,32,32, 4, 4,12,12, 12, 4,12,32, & ! 60
8, 4, 3, 4, 24, 8, 4, 8, 12, 4, 4,12, 32,12,12,32, 32,12, 4,12, & !
4, 8, 4, 3, 8,24, 8, 4, 12,12, 4, 4, 32,32,12,12, 12,32,12, 4, & !
3, 4, 8, 4, 4, 8,24, 8, 4,12,12, 4, 12,32,32,12, 4,12,32,12, & !
4, 3, 4, 8, 8, 4, 8,24, 4, 4,12,12, 12,12,32,32, 12, 4,12,32 & !
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
! *** FE_cellface ***
me = 0_pInt
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 3node, VTK_TRIANGLE (5)
reshape(int([&
2,3, &
3,1, &
1,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 4node, VTK_QUAD (9)
reshape(int([&
2,3, &
4,1, &
3,4, &
1,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 4node, VTK_TETRA (10)
reshape(int([&
1,3,2, &
1,2,4, &
2,3,4, &
1,4,3 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
me = me + 1_pInt
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 8node, VTK_HEXAHEDRON (12)
reshape(int([&
2,3,7,6, &
4,1,5,8, &
3,4,8,7, &
1,2,6,5, &
5,6,7,8, &
1,4,3,2 &
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
end subroutine mesh_build_FEdata
!--------------------------------------------------------------------------------------------------
!> @brief Gives the FE to CP ID mapping by binary search through lookup array
!! valid questions (what) are 'elem', 'node'
!--------------------------------------------------------------------------------------------------
integer(pInt) function mesh_FEasCP(what,myID)
use IO, only: &
IO_lc
implicit none
character(len=*), intent(in) :: what
integer(pInt), intent(in) :: myID
integer(pInt), dimension(:,:), pointer :: lookupMap
integer(pInt) :: lower,upper,center
mesh_FEasCP = 0_pInt
select case(IO_lc(what(1:4)))
case('elem')
lookupMap => mesh_mapFEtoCPelem
case('node')
lookupMap => mesh_mapFEtoCPnode
case default
return
endselect
lower = 1_pInt
upper = int(size(lookupMap,2_pInt),pInt)
if (lookupMap(1_pInt,lower) == myID) then ! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds?
mesh_FEasCP = lookupMap(2_pInt,lower)
return
elseif (lookupMap(1_pInt,upper) == myID) then
mesh_FEasCP = lookupMap(2_pInt,upper)
return
endif
binarySearch: do while (upper-lower > 1_pInt)
center = (lower+upper)/2_pInt
if (lookupMap(1_pInt,center) < myID) then
lower = center
elseif (lookupMap(1_pInt,center) > myID) then
upper = center
else
mesh_FEasCP = lookupMap(2_pInt,center)
exit
endif
enddo binarySearch
end function mesh_FEasCP
end module mesh