DAMASK_EICMD/python/damask/_result.py

1272 lines
48 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import multiprocessing as mp
import re
import glob
import os
import datetime
import xml.etree.ElementTree as ET
import xml.dom.minidom
from pathlib import Path
from functools import partial
import h5py
import numpy as np
from numpy.lib import recfunctions as rfn
import damask
from . import VTK
from . import Table
from . import Rotation
from . import Orientation
from . import grid_filters
from . import mechanics
from . import util
class Result:
"""
Read and write to DADF5 files.
DADF5 (DAMASK HDF5) files contain DAMASK results.
"""
def __init__(self,fname):
"""
Open an existing DADF5 file.
Parameters
----------
fname : str
name of the DADF5 file to be opened.
"""
with h5py.File(fname,'r') as f:
try:
self.version_major = f.attrs['DADF5_version_major']
self.version_minor = f.attrs['DADF5_version_minor']
except KeyError:
self.version_major = f.attrs['DADF5-major']
self.version_minor = f.attrs['DADF5-minor']
if self.version_major != 0 or not 2 <= self.version_minor <= 7:
raise TypeError(f'Unsupported DADF5 version {self.version_major}.{self.version_minor}')
self.structured = 'grid' in f['geometry'].attrs.keys()
if self.structured:
self.grid = f['geometry'].attrs['grid']
self.size = f['geometry'].attrs['size']
self.origin = f['geometry'].attrs['origin'] if self.version_major == 0 and self.version_minor >= 5 else \
np.zeros(3)
r=re.compile('inc[0-9]+')
increments_unsorted = {int(i[3:]):i for i in f.keys() if r.match(i)}
self.increments = [increments_unsorted[i] for i in sorted(increments_unsorted)]
self.times = [round(f[i].attrs['time/s'],12) for i in self.increments]
self.Nmaterialpoints, self.Nconstituents = np.shape(f['mapping/cellResults/constituent'])
self.materialpoints = [m.decode() for m in np.unique(f['mapping/cellResults/materialpoint']['Name'])]
self.constituents = [c.decode() for c in np.unique(f['mapping/cellResults/constituent'] ['Name'])]
# faster, but does not work with (deprecated) DADF5_postResults
#self.materialpoints = [m for m in f['inc0/materialpoint']]
#self.constituents = [c for c in f['inc0/constituent']]
self.con_physics = []
for c in self.constituents:
self.con_physics += f['/'.join([self.increments[0],'constituent',c])].keys()
self.con_physics = list(set(self.con_physics)) # make unique
self.mat_physics = []
for m in self.materialpoints:
self.mat_physics += f['/'.join([self.increments[0],'materialpoint',m])].keys()
self.mat_physics = list(set(self.mat_physics)) # make unique
self.selection = {'increments': self.increments,
'constituents': self.constituents,'materialpoints': self.materialpoints,
'con_physics': self.con_physics, 'mat_physics': self.mat_physics
}
self.fname = Path(fname).absolute()
self._allow_modification = False
def __repr__(self):
"""Show selected data."""
all_selected_increments = self.selection['increments']
self.pick('increments',all_selected_increments[0:1])
first = self.list_data()
self.pick('increments',all_selected_increments[-1:])
last = '' if len(all_selected_increments) < 2 else self.list_data()
self.pick('increments',all_selected_increments)
in_between = '' if len(all_selected_increments) < 3 else \
''.join([f'\n{inc}\n ...\n' for inc in all_selected_increments[1:-2]])
return util.srepr(first + in_between + last)
def _manage_selection(self,action,what,datasets):
"""
Manages the visibility of the groups.
Parameters
----------
action : str
select from 'set', 'add', and 'del'
what : str
attribute to change (must be from self.selection)
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
"""
# allow True/False and string arguments
if datasets is True:
datasets = ['*']
elif datasets is False:
datasets = []
choice = datasets if hasattr(datasets,'__iter__') and not isinstance(datasets,str) else \
[datasets]
if what == 'increments':
choice = [c if isinstance(c,str) and c.startswith('inc') else
f'inc{c}' for c in choice]
elif what == 'times':
what = 'increments'
if choice == ['*']:
choice = self.increments
else:
iterator = map(float,choice)
choice = []
for c in iterator:
idx = np.searchsorted(self.times,c)
if idx >= len(self.times): continue
if np.isclose(c,self.times[idx]):
choice.append(self.increments[idx])
elif np.isclose(c,self.times[idx+1]):
choice.append(self.increments[idx+1])
valid = [e for e_ in [glob.fnmatch.filter(getattr(self,what),s) for s in choice] for e in e_]
existing = set(self.selection[what])
if action == 'set':
self.selection[what] = valid
elif action == 'add':
add = existing.union(valid)
add_sorted = sorted(add, key=lambda x: int("".join([i for i in x if i.isdigit()])))
self.selection[what] = add_sorted
elif action == 'del':
diff = existing.difference(valid)
diff_sorted = sorted(diff, key=lambda x: int("".join([i for i in x if i.isdigit()])))
self.selection[what] = diff_sorted
def allow_modification(self):
print(util.bcolors().WARNING+util.bcolors().BOLD+
'Warning: Modification of existing datasets allowed!'+
util.bcolors().ENDC)
self._allow_modification = True
def disallow_modification(self):
self._allow_modification = False
def incs_in_range(self,start,end):
selected = []
for i,inc in enumerate([int(i[3:]) for i in self.increments]):
s,e = map(lambda x: int(x[3:] if isinstance(x,str) and x.startswith('inc') else x), (start,end))
if s <= inc <= e:
selected.append(self.increments[i])
return selected
def times_in_range(self,start,end):
selected = []
for i,time in enumerate(self.times):
if start <= time <= end:
selected.append(self.times[i])
return selected
def iterate(self,what):
"""
Iterate over selection items by setting each one selected.
Parameters
----------
what : str
attribute to change (must be from self.selection)
"""
datasets = self.selection[what]
last_selection = datasets.copy()
for dataset in datasets:
if last_selection != self.selection[what]:
self._manage_selection('set',what,datasets)
raise Exception
self._manage_selection('set',what,dataset)
last_selection = self.selection[what]
yield dataset
self._manage_selection('set',what,datasets)
def pick(self,what,datasets):
"""
Set selection.
Parameters
----------
what : str
attribute to change (must be from self.selection)
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
"""
self._manage_selection('set',what,datasets)
def pick_more(self,what,datasets):
"""
Add to selection.
Parameters
----------
what : str
attribute to change (must be from self.selection)
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
"""
self._manage_selection('add',what,datasets)
def pick_less(self,what,datasets):
"""
Delete from selection.
Parameters
----------
what : str
attribute to change (must be from self.selection)
datasets : list of str or bool
name of datasets as list, supports ? and * wildcards.
True is equivalent to [*], False is equivalent to []
"""
self._manage_selection('del',what,datasets)
def rename(self,name_old,name_new):
"""
Rename datasets.
Parameters
----------
name_old : str
name of the datasets to be renamed
name_new : str
new name of the datasets
"""
if self._allow_modification:
with h5py.File(self.fname,'a') as f:
for path_old in self.get_dataset_location(name_old):
path_new = os.path.join(os.path.dirname(path_old),name_new)
f[path_new] = f[path_old]
f[path_new].attrs['Renamed'] = 'Original name: {}'.encode()
del f[path_old]
else:
raise PermissionError('Rename operation not permitted')
# def datamerger(regular expression to filter groups into one copy)
def place(self,datasets,component=0,tagged=False,split=True):
"""
Distribute datasets onto geometry and return Table or (split) dictionary of Tables.
Must not mix nodal end cell data.
Only data within
- inc?????/constituent/*_*/*
- inc?????/materialpoint/*_*/*
- inc?????/geometry/*
are considered.
Parameters
----------
datasets : iterable or str
component : int
homogenization component to consider for constituent data
tagged : bool
tag Table.column name with '#component'
defaults to False
split : bool
split Table by increment and return dictionary of Tables
defaults to True
"""
sets = datasets if hasattr(datasets,'__iter__') and not isinstance(datasets,str) \
else [datasets]
tag = f'#{component}' if tagged else ''
tbl = {} if split else None
inGeom = {}
inData = {}
with h5py.File(self.fname,'r') as f:
for dataset in sets:
for group in self.groups_with_datasets(dataset):
path = os.path.join(group,dataset)
inc,prop,name,cat,item = (path.split('/') + ['']*5)[:5]
key = '/'.join([prop,name+tag])
if key not in inGeom:
if prop == 'geometry':
inGeom[key] = inData[key] = np.arange(self.Nmaterialpoints)
elif prop == 'constituent':
inGeom[key] = np.where(f['mapping/cellResults/constituent'][:,component]['Name'] == str.encode(name))[0]
inData[key] = f['mapping/cellResults/constituent'][inGeom[key],component]['Position']
else:
inGeom[key] = np.where(f['mapping/cellResults/materialpoint']['Name'] == str.encode(name))[0]
inData[key] = f['mapping/cellResults/materialpoint'][inGeom[key].tolist()]['Position']
shape = np.shape(f[path])
data = np.full((self.Nmaterialpoints,) + (shape[1:] if len(shape)>1 else (1,)),
np.nan,
dtype=np.dtype(f[path]))
data[inGeom[key]] = (f[path] if len(shape)>1 else np.expand_dims(f[path],1))[inData[key]]
path = (os.path.join(*([prop,name]+([cat] if cat else [])+([item] if item else []))) if split else path)+tag
if split:
try:
tbl[inc].add(path,data)
except KeyError:
tbl[inc] = Table(data.reshape(self.Nmaterialpoints,-1),{path:data.shape[1:]})
else:
try:
tbl.add(path,data)
except AttributeError:
tbl = Table(data.reshape(self.Nmaterialpoints,-1),{path:data.shape[1:]})
return tbl
def groups_with_datasets(self,datasets):
"""
Return groups that contain all requested datasets.
Only groups within
- inc*/constituent/*/*
- inc*/materialpoint/*/*
- inc*/geometry/*
are considered as they contain user-relevant data.
Single strings will be treated as list with one entry.
Wild card matching is allowed, but the number of arguments need to fit.
Parameters
----------
datasets : iterable or str or bool
Examples
--------
datasets = False matches no group
datasets = True matches all groups
datasets = ['F','P'] matches a group with ['F','P','sigma']
datasets = ['*','P'] matches a group with ['F','P']
datasets = ['*'] does not match a group with ['F','P','sigma']
datasets = ['*','*'] does not match a group with ['F','P','sigma']
datasets = ['*','*','*'] matches a group with ['F','P','sigma']
"""
if datasets is False: return []
sets = datasets if isinstance(datasets,bool) or (hasattr(datasets,'__iter__') and not isinstance(datasets,str)) else \
[datasets]
groups = []
with h5py.File(self.fname,'r') as f:
for i in self.iterate('increments'):
for o,p in zip(['constituents','materialpoints'],['con_physics','mat_physics']):
for oo in self.iterate(o):
for pp in self.iterate(p):
group = '/'.join([i,o[:-1],oo,pp]) # o[:-1]: plural/singular issue
if sets is True:
groups.append(group)
else:
if group in f.keys():
match = [e for e_ in [glob.fnmatch.filter(f[group].keys(),s) for s in sets] for e in e_]
if len(set(match)) == len(sets): groups.append(group)
return groups
def list_data(self):
"""Return information on all active datasets in the file."""
message = ''
with h5py.File(self.fname,'r') as f:
for i in self.iterate('increments'):
message += f'\n{i} ({self.times[self.increments.index(i)]}s)\n'
for o,p in zip(['constituents','materialpoints'],['con_physics','mat_physics']):
message += f' {o[:-1]}\n'
for oo in self.iterate(o):
message += f' {oo}\n'
for pp in self.iterate(p):
message += f' {pp}\n'
group = '/'.join([i,o[:-1],oo,pp]) # o[:-1]: plural/singular issue
for d in f[group].keys():
try:
dataset = f['/'.join([group,d])]
unit = f" / {dataset.attrs['Unit'].decode()}" if 'Unit' in dataset.attrs else ''
description = dataset.attrs['Description'].decode()
message += f' {d}{unit}: {description}\n'
except KeyError:
pass
return message
def get_dataset_location(self,label):
"""Return the location of all active datasets with given label."""
path = []
with h5py.File(self.fname,'r') as f:
for i in self.iterate('increments'):
k = '/'.join([i,'geometry',label])
try:
f[k]
path.append(k)
except KeyError:
pass
for o,p in zip(['constituents','materialpoints'],['con_physics','mat_physics']):
for oo in self.iterate(o):
for pp in self.iterate(p):
k = '/'.join([i,o[:-1],oo,pp,label])
try:
f[k]
path.append(k)
except KeyError:
pass
return path
def get_constituent_ID(self,c=0):
"""Pointwise constituent ID."""
with h5py.File(self.fname,'r') as f:
names = f['/mapping/cellResults/constituent']['Name'][:,c].astype('str')
return np.array([int(n.split('_')[0]) for n in names.tolist()],dtype=np.int32)
def get_crystal_structure(self): # ToDo: extension to multi constituents/phase
"""Info about the crystal structure."""
with h5py.File(self.fname,'r') as f:
return f[self.get_dataset_location('orientation')[0]].attrs['Lattice'].astype('str') # np.bytes_ to string
def enable_user_function(self,func):
globals()[func.__name__]=func
print(f'Function {func.__name__} enabled in add_calculation.')
def read_dataset(self,path,c=0,plain=False):
"""
Dataset for all points/cells.
If more than one path is given, the dataset is composed of the individual contributions.
"""
with h5py.File(self.fname,'r') as f:
shape = (self.Nmaterialpoints,) + np.shape(f[path[0]])[1:]
if len(shape) == 1: shape = shape +(1,)
dataset = np.full(shape,np.nan,dtype=np.dtype(f[path[0]]))
for pa in path:
label = pa.split('/')[2]
if pa.split('/')[1] == 'geometry':
dataset = np.array(f[pa])
continue
p = np.where(f['mapping/cellResults/constituent'][:,c]['Name'] == str.encode(label))[0]
if len(p)>0:
u = (f['mapping/cellResults/constituent']['Position'][p,c])
a = np.array(f[pa])
if len(a.shape) == 1:
a=a.reshape([a.shape[0],1])
dataset[p,:] = a[u,:]
p = np.where(f['mapping/cellResults/materialpoint']['Name'] == str.encode(label))[0]
if len(p)>0:
u = (f['mapping/cellResults/materialpoint']['Position'][p.tolist()])
a = np.array(f[pa])
if len(a.shape) == 1:
a=a.reshape([a.shape[0],1])
dataset[p,:] = a[u,:]
if plain and dataset.dtype.names is not None:
return dataset.view(('float64',len(dataset.dtype.names)))
else:
return dataset
@property
def cell_coordinates(self):
"""Return initial coordinates of the cell centers."""
if self.structured:
return grid_filters.cell_coord0(self.grid,self.size,self.origin).reshape(-1,3,order='F')
else:
with h5py.File(self.fname,'r') as f:
return f['geometry/x_c'][()]
@property
def node_coordinates(self):
"""Return initial coordinates of the cell centers."""
if self.structured:
return grid_filters.node_coord0(self.grid,self.size,self.origin).reshape(-1,3,order='F')
else:
with h5py.File(self.fname,'r') as f:
return f['geometry/x_n'][()]
@staticmethod
def _add_absolute(x):
return {
'data': np.abs(x['data']),
'label': f'|{x["label"]}|',
'meta': {
'Unit': x['meta']['Unit'],
'Description': f"Absolute value of {x['label']} ({x['meta']['Description']})",
'Creator': 'add_absolute'
}
}
def add_absolute(self,x):
"""
Add absolute value.
Parameters
----------
x : str
Label of scalar, vector, or tensor dataset to take absolute value of.
"""
self._add_generic_pointwise(self._add_absolute,{'x':x})
@staticmethod
def _add_calculation(**kwargs):
formula = kwargs['formula']
for d in re.findall(r'#(.*?)#',formula):
formula = formula.replace(f'#{d}#',f"kwargs['{d}']['data']")
return {
'data': eval(formula),
'label': kwargs['label'],
'meta': {
'Unit': kwargs['unit'],
'Description': f"{kwargs['description']} (formula: {kwargs['formula']})",
'Creator': 'add_calculation'
}
}
def add_calculation(self,label,formula,unit='n/a',description=None):
"""
Add result of a general formula.
Parameters
----------
label : str
Label of resulting dataset.
formula : str
Formula to calculate resulting dataset. Existing datasets are referenced by #TheirLabel#.
unit : str, optional
Physical unit of the result.
description : str, optional
Human-readable description of the result.
"""
dataset_mapping = {d:d for d in set(re.findall(r'#(.*?)#',formula))} # datasets used in the formula
args = {'formula':formula,'label':label,'unit':unit,'description':description}
self._add_generic_pointwise(self._add_calculation,dataset_mapping,args)
@staticmethod
def _add_Cauchy(P,F):
return {
'data': mechanics.Cauchy(P['data'],F['data']),
'label': 'sigma',
'meta': {
'Unit': P['meta']['Unit'],
'Description': "Cauchy stress calculated "
f"from {P['label']} ({P['meta']['Description']})"
f" and {F['label']} ({F['meta']['Description']})",
'Creator': 'add_Cauchy'
}
}
def add_Cauchy(self,P='P',F='F'):
"""
Add Cauchy stress calculated from first Piola-Kirchhoff stress and deformation gradient.
Parameters
----------
P : str, optional
Label of the dataset containing the first Piola-Kirchhoff stress. Defaults to P.
F : str, optional
Label of the dataset containing the deformation gradient. Defaults to F.
"""
self._add_generic_pointwise(self._add_Cauchy,{'P':P,'F':F})
@staticmethod
def _add_determinant(T):
return {
'data': np.linalg.det(T['data']),
'label': f"det({T['label']})",
'meta': {
'Unit': T['meta']['Unit'],
'Description': f"Determinant of tensor {T['label']} ({T['meta']['Description']})",
'Creator': 'add_determinant'
}
}
def add_determinant(self,T):
"""
Add the determinant of a tensor.
Parameters
----------
T : str
Label of tensor dataset.
"""
self._add_generic_pointwise(self._add_determinant,{'T':T})
@staticmethod
def _add_deviator(T):
return {
'data': mechanics.deviatoric_part(T['data']),
'label': f"s_{T['label']}",
'meta': {
'Unit': T['meta']['Unit'],
'Description': f"Deviator of tensor {T['label']} ({T['meta']['Description']})",
'Creator': 'add_deviator'
}
}
def add_deviator(self,T):
"""
Add the deviatoric part of a tensor.
Parameters
----------
T : str
Label of tensor dataset.
"""
self._add_generic_pointwise(self._add_deviator,{'T':T})
@staticmethod
def _add_eigenvalue(T_sym,eigenvalue):
if eigenvalue == 'max':
label,p = 'Maximum',2
elif eigenvalue == 'mid':
label,p = 'Intermediate',1
elif eigenvalue == 'min':
label,p = 'Minimum',0
return {
'data': mechanics.eigenvalues(T_sym['data'])[:,p],
'label': f"lambda_{eigenvalue}({T_sym['label']})",
'meta' : {
'Unit': T_sym['meta']['Unit'],
'Description': f"{label} eigenvalue of {T_sym['label']} ({T_sym['meta']['Description']})",
'Creator': 'add_eigenvalue'
}
}
def add_eigenvalue(self,T_sym,eigenvalue='max'):
"""
Add eigenvalues of symmetric tensor.
Parameters
----------
T_sym : str
Label of symmetric tensor dataset.
eigenvalue : str, optional
Eigenvalue. Select from max, mid, min. Defaults to max.
"""
self._add_generic_pointwise(self._add_eigenvalue,{'T_sym':T_sym},{'eigenvalue':eigenvalue})
@staticmethod
def _add_eigenvector(T_sym,eigenvalue):
if eigenvalue == 'max':
label,p = 'maximum',2
elif eigenvalue == 'mid':
label,p = 'intermediate',1
elif eigenvalue == 'min':
label,p = 'minimum',0
return {
'data': mechanics.eigenvectors(T_sym['data'])[:,p],
'label': f"v_{eigenvalue}({T_sym['label']})",
'meta' : {
'Unit': '1',
'Description': f"Eigenvector corresponding to {label} eigenvalue"
f" of {T_sym['label']} ({T_sym['meta']['Description']})",
'Creator': 'add_eigenvector'
}
}
def add_eigenvector(self,T_sym,eigenvalue='max'):
"""
Add eigenvector of symmetric tensor.
Parameters
----------
T_sym : str
Label of symmetric tensor dataset.
eigenvalue : str, optional
Eigenvalue to which the eigenvector corresponds. Select from
max, mid, min. Defaults to max.
"""
self._add_generic_pointwise(self._add_eigenvector,{'T_sym':T_sym},{'eigenvalue':eigenvalue})
@staticmethod
def _add_IPF_color(q,l):
m = util.scale_to_coprime(np.array(l))
o = Orientation(Rotation(rfn.structured_to_unstructured(q['data'])),
lattice = q['meta']['Lattice'])
return {
'data': np.uint8(o.IPF_color(l)*255),
'label': 'IPFcolor_[{} {} {}]'.format(*m),
'meta' : {
'Unit': '8-bit RGB',
'Lattice': q['meta']['Lattice'],
'Description': 'Inverse Pole Figure (IPF) colors along sample direction [{} {} {}]'.format(*m),
'Creator': 'add_IPF_color'
}
}
def add_IPF_color(self,q,l):
"""
Add RGB color tuple of inverse pole figure (IPF) color.
Parameters
----------
q : str
Label of the dataset containing the crystallographic orientation as quaternions.
l : numpy.array of shape (3)
Lab frame direction for inverse pole figure.
"""
self._add_generic_pointwise(self._add_IPF_color,{'q':q},{'l':l})
@staticmethod
def _add_maximum_shear(T_sym):
return {
'data': mechanics.maximum_shear(T_sym['data']),
'label': f"max_shear({T_sym['label']})",
'meta': {
'Unit': T_sym['meta']['Unit'],
'Description': f"Maximum shear component of {T_sym['label']} ({T_sym['meta']['Description']})",
'Creator': 'add_maximum_shear'
}
}
def add_maximum_shear(self,T_sym):
"""
Add maximum shear components of symmetric tensor.
Parameters
----------
T_sym : str
Label of symmetric tensor dataset.
"""
self._add_generic_pointwise(self._add_maximum_shear,{'T_sym':T_sym})
@staticmethod
def _add_Mises(T_sym):
t = 'strain' if T_sym['meta']['Unit'] == '1' else \
'stress'
return {
'data': (mechanics.Mises_strain if t=='strain' else mechanics.Mises_stress)(T_sym['data']),
'label': f"{T_sym['label']}_vM",
'meta': {
'Unit': T_sym['meta']['Unit'],
'Description': f"Mises equivalent {t} of {T_sym['label']} ({T_sym['meta']['Description']})",
'Creator': 'add_Mises'
}
}
def add_Mises(self,T_sym):
"""
Add the equivalent Mises stress or strain of a symmetric tensor.
Parameters
----------
T_sym : str
Label of symmetric tensorial stress or strain dataset.
"""
self._add_generic_pointwise(self._add_Mises,{'T_sym':T_sym})
@staticmethod
def _add_norm(x,ord):
o = ord
if len(x['data'].shape) == 2:
axis = 1
t = 'vector'
if o is None: o = 2
elif len(x['data'].shape) == 3:
axis = (1,2)
t = 'tensor'
if o is None: o = 'fro'
else:
raise ValueError
return {
'data': np.linalg.norm(x['data'],ord=o,axis=axis,keepdims=True),
'label': f"|{x['label']}|_{o}",
'meta': {
'Unit': x['meta']['Unit'],
'Description': f"{o}-norm of {t} {x['label']} ({x['meta']['Description']})",
'Creator': 'add_norm'
}
}
def add_norm(self,x,ord=None):
"""
Add the norm of vector or tensor.
Parameters
----------
x : str
Label of vector or tensor dataset.
ord : {non-zero int, inf, -inf, fro, nuc}, optional
Order of the norm. inf means NumPys inf object. For details refer to numpy.linalg.norm.
"""
self._add_generic_pointwise(self._add_norm,{'x':x},{'ord':ord})
@staticmethod
def _add_PK2(P,F):
return {
'data': mechanics.PK2(P['data'],F['data']),
'label': 'S',
'meta': {
'Unit': P['meta']['Unit'],
'Description': "2. Piola-Kirchhoff stress calculated "
f"from {P['label']} ({P['meta']['Description']})"
f" and {F['label']} ({F['meta']['Description']})",
'Creator': 'add_PK2'
}
}
def add_PK2(self,P='P',F='F'):
"""
Add second Piola-Kirchhoff stress calculated from first Piola-Kirchhoff stress and deformation gradient.
Parameters
----------
P : str, optional
Label of first Piola-Kirchhoff stress dataset. Defaults to P.
F : str, optional
Label of deformation gradient dataset. Defaults to F.
"""
self._add_generic_pointwise(self._add_PK2,{'P':P,'F':F})
@staticmethod
def _add_pole(q,p,polar):
pole = np.array(p)
unit_pole = pole/np.linalg.norm(pole)
m = util.scale_to_coprime(pole)
rot = Rotation(q['data'].view(np.double).reshape(-1,4))
rotatedPole = rot @ np.broadcast_to(unit_pole,rot.shape+(3,)) # rotate pole according to crystal orientation
xy = rotatedPole[:,0:2]/(1.+abs(unit_pole[2])) # stereographic projection
coords = xy if not polar else \
np.block([np.sqrt(xy[:,0:1]*xy[:,0:1]+xy[:,1:2]*xy[:,1:2]),np.arctan2(xy[:,1:2],xy[:,0:1])])
return {
'data': coords,
'label': 'p^{}_[{} {} {})'.format(u'' if polar else 'xy',*m),
'meta' : {
'Unit': '1',
'Description': '{} coordinates of stereographic projection of pole (direction/plane) in crystal frame'\
.format('Polar' if polar else 'Cartesian'),
'Creator': 'add_pole'
}
}
def add_pole(self,q,p,polar=False):
"""
Add coordinates of stereographic projection of given pole in crystal frame.
Parameters
----------
q : str
Label of the dataset containing the crystallographic orientation as quaternions.
p : numpy.array of shape (3)
Crystallographic direction or plane.
polar : bool, optional
Give pole in polar coordinates. Defaults to False.
"""
self._add_generic_pointwise(self._add_pole,{'q':q},{'p':p,'polar':polar})
@staticmethod
def _add_rotational_part(F):
return {
'data': mechanics.rotational_part(F['data']),
'label': f"R({F['label']})",
'meta': {
'Unit': F['meta']['Unit'],
'Description': f"Rotational part of {F['label']} ({F['meta']['Description']})",
'Creator': 'add_rotational_part'
}
}
def add_rotational_part(self,F):
"""
Add rotational part of a deformation gradient.
Parameters
----------
F : str, optional
Label of deformation gradient dataset.
"""
self._add_generic_pointwise(self._add_rotational_part,{'F':F})
@staticmethod
def _add_spherical(T):
return {
'data': mechanics.spherical_part(T['data']),
'label': f"p_{T['label']}",
'meta': {
'Unit': T['meta']['Unit'],
'Description': f"Spherical component of tensor {T['label']} ({T['meta']['Description']})",
'Creator': 'add_spherical'
}
}
def add_spherical(self,T):
"""
Add the spherical (hydrostatic) part of a tensor.
Parameters
----------
T : str
Label of tensor dataset.
"""
self._add_generic_pointwise(self._add_spherical,{'T':T})
@staticmethod
def _add_strain_tensor(F,t,m):
return {
'data': mechanics.strain_tensor(F['data'],t,m),
'label': f"epsilon_{t}^{m}({F['label']})",
'meta': {
'Unit': F['meta']['Unit'],
'Description': f"Strain tensor of {F['label']} ({F['meta']['Description']})",
'Creator': 'add_strain_tensor'
}
}
def add_strain_tensor(self,F='F',t='V',m=0.0):
"""
Add strain tensor of a deformation gradient.
For details refer to damask.mechanics.strain_tensor
Parameters
----------
F : str, optional
Label of deformation gradient dataset. Defaults to F.
t : {V, U}, optional
Type of the polar decomposition, V for left stretch tensor and U for right stretch tensor.
Defaults to V.
m : float, optional
Order of the strain calculation. Defaults to 0.0.
"""
self._add_generic_pointwise(self._add_strain_tensor,{'F':F},{'t':t,'m':m})
@staticmethod
def _add_stretch_tensor(F,t):
return {
'data': (mechanics.left_stretch if t.upper() == 'V' else mechanics.right_stretch)(F['data']),
'label': f"{t}({F['label']})",
'meta': {
'Unit': F['meta']['Unit'],
'Description': '{} stretch tensor of {} ({})'.format('Left' if t.upper() == 'V' else 'Right',
F['label'],F['meta']['Description']),
'Creator': 'add_stretch_tensor'
}
}
def add_stretch_tensor(self,F='F',t='V'):
"""
Add stretch tensor of a deformation gradient.
Parameters
----------
F : str, optional
Label of deformation gradient dataset. Defaults to F.
t : {V, U}, optional
Type of the polar decomposition, V for left stretch tensor and U for right stretch tensor.
Defaults to V.
"""
self._add_generic_pointwise(self._add_stretch_tensor,{'F':F},{'t':t})
def _job(self,group,func,datasets,args,lock):
"""Execute job for _add_generic_pointwise."""
try:
datasets_in = {}
lock.acquire()
with h5py.File(self.fname,'r') as f:
for arg,label in datasets.items():
loc = f[group+'/'+label]
datasets_in[arg]={'data' :loc[()],
'label':label,
'meta': {k:v.decode() for k,v in loc.attrs.items()}}
lock.release()
r = func(**datasets_in,**args)
return [group,r]
except Exception as err:
print(f'Error during calculation: {err}.')
return None
def _add_generic_pointwise(self,func,datasets,args={}):
"""
General function to add pointwise data.
Parameters
----------
func : function
Callback function that calculates a new dataset from one or
more datasets per HDF5 group.
datasets : dictionary
Details of the datasets to be used: label (in HDF5 file) and
arg (argument to which the data is parsed in func).
args : dictionary, optional
Arguments parsed to func.
"""
num_threads = damask.environment.options['DAMASK_NUM_THREADS']
pool = mp.Pool(int(num_threads) if num_threads is not None else None)
lock = mp.Manager().Lock()
groups = self.groups_with_datasets(datasets.values())
if len(groups) == 0:
print('No matching dataset found, no data was added.')
return
default_arg = partial(self._job,func=func,datasets=datasets,args=args,lock=lock)
for result in util.show_progress(pool.imap_unordered(default_arg,groups),len(groups)):
if not result:
continue
lock.acquire()
with h5py.File(self.fname, 'a') as f:
try:
if self._allow_modification and result[0]+'/'+result[1]['label'] in f:
dataset = f[result[0]+'/'+result[1]['label']]
dataset[...] = result[1]['data']
dataset.attrs['Overwritten'] = 'Yes'.encode()
else:
dataset = f[result[0]].create_dataset(result[1]['label'],data=result[1]['data'])
now = datetime.datetime.now().astimezone()
dataset.attrs['Created'] = now.strftime('%Y-%m-%d %H:%M:%S%z').encode()
for l,v in result[1]['meta'].items():
dataset.attrs[l]=v.encode()
creator = f"damask.Result.{dataset.attrs['Creator'].decode()} v{damask.version}"
dataset.attrs['Creator'] = creator.encode()
except (OSError,RuntimeError) as err:
print(f'Could not add dataset: {err}.')
lock.release()
pool.close()
pool.join()
def write_XDMF(self):
"""
Write XDMF file to directly visualize data in DADF5 file.
This works only for scalar, 3-vector and 3x3-tensor data.
Selection is not taken into account.
"""
if len(self.constituents) != 1 or not self.structured:
raise NotImplementedError('XDMF only available for grid results with 1 constituent.')
xdmf=ET.Element('Xdmf')
xdmf.attrib={'Version': '2.0',
'xmlns:xi': 'http://www.w3.org/2001/XInclude'}
domain=ET.SubElement(xdmf, 'Domain')
collection = ET.SubElement(domain, 'Grid')
collection.attrib={'GridType': 'Collection',
'CollectionType': 'Temporal'}
time = ET.SubElement(collection, 'Time')
time.attrib={'TimeType': 'List'}
time_data = ET.SubElement(time, 'DataItem')
time_data.attrib={'Format': 'XML',
'NumberType': 'Float',
'Dimensions': f'{len(self.times)}'}
time_data.text = ' '.join(map(str,self.times))
attributes = []
data_items = []
for inc in self.increments:
grid=ET.SubElement(collection,'Grid')
grid.attrib = {'GridType': 'Uniform',
'Name': inc}
topology=ET.SubElement(grid, 'Topology')
topology.attrib={'TopologyType': '3DCoRectMesh',
'Dimensions': '{} {} {}'.format(*self.grid+1)}
geometry=ET.SubElement(grid, 'Geometry')
geometry.attrib={'GeometryType':'Origin_DxDyDz'}
origin=ET.SubElement(geometry, 'DataItem')
origin.attrib={'Format': 'XML',
'NumberType': 'Float',
'Dimensions': '3'}
origin.text="{} {} {}".format(*self.origin)
delta=ET.SubElement(geometry, 'DataItem')
delta.attrib={'Format': 'XML',
'NumberType': 'Float',
'Dimensions': '3'}
delta.text="{} {} {}".format(*(self.size/self.grid))
with h5py.File(self.fname,'r') as f:
attributes.append(ET.SubElement(grid, 'Attribute'))
attributes[-1].attrib={'Name': 'u',
'Center': 'Node',
'AttributeType': 'Vector'}
data_items.append(ET.SubElement(attributes[-1], 'DataItem'))
data_items[-1].attrib={'Format': 'HDF',
'Precision': '8',
'Dimensions': '{} {} {} 3'.format(*(self.grid+1))}
data_items[-1].text=f'{os.path.split(self.fname)[1]}:/{inc}/geometry/u_n'
for o,p in zip(['constituents','materialpoints'],['con_physics','mat_physics']):
for oo in getattr(self,o):
for pp in getattr(self,p):
g = '/'.join([inc,o[:-1],oo,pp])
for l in f[g]:
name = '/'.join([g,l])
shape = f[name].shape[1:]
dtype = f[name].dtype
prec = f[name].dtype.itemsize
if (shape not in [(1,), (3,), (3,3)]) or dtype != np.float64: continue
attributes.append(ET.SubElement(grid, 'Attribute'))
attributes[-1].attrib={'Name': name.split('/',2)[2],
'Center': 'Cell',
'AttributeType': 'Tensor'}
data_items.append(ET.SubElement(attributes[-1], 'DataItem'))
data_items[-1].attrib={'Format': 'HDF',
'NumberType': 'Float',
'Precision': f'{prec}',
'Dimensions': '{} {} {} {}'.format(*self.grid,np.prod(shape))}
data_items[-1].text=f'{os.path.split(self.fname)[1]}:{name}'
with open(self.fname.with_suffix('.xdmf').name,'w') as f:
f.write(xml.dom.minidom.parseString(ET.tostring(xdmf).decode()).toprettyxml())
def to_vtk(self,labels=[],mode='cell'):
"""
Export to vtk cell/point data.
Parameters
----------
labels : str or list of, optional
Labels of the datasets to be exported.
mode : str, either 'cell' or 'point'
Export in cell format or point format.
Defaults to 'cell'.
"""
if mode.lower()=='cell':
if self.structured:
v = VTK.from_rectilinearGrid(self.grid,self.size,self.origin)
else:
with h5py.File(self.fname,'r') as f:
v = VTK.from_unstructuredGrid(f['/geometry/x_n'][()],
f['/geometry/T_c'][()]-1,
f['/geometry/T_c'].attrs['VTK_TYPE'].decode())
elif mode.lower()=='point':
v = VTK.from_polyData(self.cell_coordinates())
N_digits = int(np.floor(np.log10(max(1,int(self.increments[-1][3:])))))+1
for inc in util.show_progress(self.iterate('increments'),len(self.selection['increments'])):
materialpoints_backup = self.selection['materialpoints'].copy()
self.pick('materialpoints',False)
for label in (labels if isinstance(labels,list) else [labels]):
for p in self.iterate('con_physics'):
if p != 'generic':
for c in self.iterate('constituents'):
x = self.get_dataset_location(label)
if len(x) == 0:
continue
array = self.read_dataset(x,0)
v.add(array,'1_'+x[0].split('/',1)[1]) #ToDo: hard coded 1!
else:
x = self.get_dataset_location(label)
if len(x) == 0:
continue
array = self.read_dataset(x,0)
ph_name = re.compile(r'(?<=(constituent\/))(.*?)(?=(generic))') # identify phase name
dset_name = '1_' + re.sub(ph_name,r'',x[0].split('/',1)[1]) # removing phase name
v.add(array,dset_name)
self.pick('materialpoints',materialpoints_backup)
constituents_backup = self.selection['constituents'].copy()
self.pick('constituents',False)
for label in (labels if isinstance(labels,list) else [labels]):
for p in self.iterate('mat_physics'):
if p != 'generic':
for m in self.iterate('materialpoints'):
x = self.get_dataset_location(label)
if len(x) == 0:
continue
array = self.read_dataset(x,0)
v.add(array,'1_'+x[0].split('/',1)[1]) #ToDo: why 1_?
else:
x = self.get_dataset_location(label)
if len(x) == 0:
continue
array = self.read_dataset(x,0)
v.add(array,'1_'+x[0].split('/',1)[1])
self.pick('constituents',constituents_backup)
u = self.read_dataset(self.get_dataset_location('u_n' if mode.lower() == 'cell' else 'u_p'))
v.add(u,'u')
v.to_file(f'{self.fname.stem}_inc{inc[3:].zfill(N_digits)}')